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Abstract: Adulteration of higher priced milks with cheaper ones to obtain extra profit can adversely
affect consumer health and the market. In this study, pure buffalo milk (BM), goat milk (GM),
camel milk (CM), and their mixtures with 5–50% (vol/vol) cow milk or water were used. Mid-
infrared spectroscopy (MIRS) combined with modern statistical machine learning was used for the
discrimination and quantification of cow milk or water adulteration in BM, GM, and CM. Compared to
partial least squares (PLS), modern statistical machine learning—especially support vector machines
(SVM), projection pursuit regression (PPR), and Bayesian regularized neural networks (BRNN)—
exhibited superior performance for the detection of adulteration. The best prediction models for the
different predictive traits are as follows: The binary classification models developed by SVM resulted
in differentiation of CM-cow milk, and GM/CM-water mixtures. PLS resulted in differentiation of
BM/GM-cow milk and BM-water mixtures. All of the above models have 100% classification accuracy.
SVM was used to develop multi-classification models for identifying the high and low proportions of
cow milk in BM, GM, and CM, as well as the high and low proportions of water adulteration in BM
and GM, with correct classification rates of 94%, 100%, 100%, 99%, and 100%, respectively. In addition,
a PLS-based model was developed for identifying the high and low proportions of water adulteration
in CM, with correct classification rates of 100%. A regression model for quantifying cow milk in BM
was developed using PCA + BRNN, with RMSEV = 5.42%, and RV

2 = 0.88. A regression model for
quantifying water adulteration in BM was developed using PCA + PPR, with RMSEV = 1.70%, and
RV

2 = 0.99. Modern statistical machine learning improved the accuracy of MIRS in predicting BM,
GM, and CM adulteration more effectively than PLS.

Keywords: mid-infrared spectroscopy; machine learning; milk adulteration; milk

1. Introduction

With the growing demand for food and the increasing globalization of the supply chain,
food quality and safety have become a growing concern for consumers, food producers,
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and governments. Food adulteration is defined as the process of intentionally lowering
the quality of a food product by adulterating it with low-quality materials or extracting
valuable ingredients from it [1]. Milk is one of the food products most susceptible to
adulteration [2], where raw milk adulteration is a recurring problem in many countries.
The value and price of buffalo, goat, and camel milk are higher than that of cow milk [3,4],
which suggests the possibility that some producers may be able to increase their profit
margins by adulterating high-value milk using cow milk or water. Apart from the ethical,
religious, and cultural implications, raw milk adulteration has adverse effects on the health
and property safety of consumers, as the milk components in these adulterated products
may induce allergies and other adverse reactions [5]. Due to differences in composition
and sensory attributes, goat milk and buffalo milk are the preferred types of milk for
some cheeses and yogurts [6]. The addition of cow milk to buffalo or goat milk affects
the processing conditions and the final quality of the dairy product, including texture and
sensory properties, which can have a negative impact on the dairy market [7]. Therefore,
there is a need to develop a rapid and reliable method to detect the quality and authenticity
of raw milk in order to protect consumers and the dairy industry.

Currently, some methods have been developed to detect possible fraudulent milk or
water adulteration in buffalo milk, goat milk, and camel milk, such as species-specific poly-
merase chain reactions, an enzyme-linked immunosorbent assay, capillary electrophoresis [6],
polyacrylamide gel electrophoresis, and high-performance liquid chromatography [8]. Isoelec-
tric focusing of fibrinolytic γ casein is the official method for detecting the presence of cow
milk in goat milk and buffalo milk [9]. All of the above techniques have some limitations, such
as being time-consuming, costly, generating large quantities of chemical waste, not being able
to detect on a large scale, and the need for specialized personnel, which prevents these tools
from being used for large-scale screening of raw milk adulteration in the dairy industry. In
recent years, increasing attention has been paid to the application of spectroscopic techniques,
namely vibrational spectroscopy, infrared spectroscopy, and Raman spectroscopy in food,
animal science, and agriculture [10]. Attenuated total reflectance Fourier-transform infrared
spectroscopy, Raman spectroscopy, near-infrared spectroscopy, and laser-induced breakdown
spectroscopy have been used for detecting the adulteration in buffalo milk, goat milk, and
camel milk [4,11–14], and have shown good predictive potential. Mid-infrared spectroscopy
(MIRS) is a real-time, sensitive, fast, green, high-throughput, clean, and low-cost biochemical
fingerprinting technique that does not require sample preparation, and can give results within
one minute [15]. The spectroscopic technique is based on the study of the interaction between
matter and electromagnetic radiation. In the mid-infrared region (2500 to 25,000 nm), when
matter is crossed by electromagnetic radiation, the bonds of the molecules make movements
(e.g., vibration and rotation) through molecular bonds, which results in varying degrees
of energy absorption. By analyzing the energy supplied and the energy absorbed by the
sample, the chemical composition of the sample under test can be determined [16,17]. MIRS,
combined with appropriate machine learning algorithms, can extract qualitative and quan-
titative information from spectra, and thus reach rapid characterization, classification, and
quantitative prediction of food products. Therefore, MIRS technology may be an ideal solution
for detecting and quantifying adulteration (e.g., adulteration with cow milk or water) in these
milks. Several studies have also demonstrated the effectiveness and potential of MIRS in
predicting adulteration in buffalo milk [7,18], goat milk [3,7], and camel milk [19,20], but few
studies report the application of MIRS in predicting water adulteration in buffalo milk, goat
milk, and camel milk.

The reliability and accuracy of MIRS prediction results are highly dependent on
model quality, as well as the modeling dataset, spectral quality, and algorithms (including
variable selection, spectral preprocessing, and model) used to develop the predictive
model [21]. Partial least squares (PLS) is the preferred and most traditional way to correlate
MIRS data with milk and animal traits because of its ability to consider covariate and
high-dimensional datasets. However, for complex relationships between variables (e.g.,
nonlinearities and interactions), PLS may not be an ideal treatment [22]. Some MIRS
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studies on milk have demonstrated that other machine learning algorithms such as random
forests (RF), decision trees, and neural networks (NN) are also able to effectively handle
milk MIRS data [23]. They are able to construct a model for complex relationships, but
to date, these modern statistical machine learning algorithms are not commonly used in
MIRS analysis. Furthermore, few studies have explored their potential to utilize MIRS
information to predict adulteration in raw animal milk, as well as comparisons with PLS
algorithms. Therefore, the aim of this study was to (1) investigate the effectiveness of
modern statistical machine learning algorithms combined with MIRS in identifying and
quantifying adulteration (adulteration with cow milk or water) of raw animal milk (buffalo
milk, goat milk, and camel milk); (2) compare the performance of various modern statistical
machine learning algorithms using PLS as a baseline and a control, and determine the
optimal algorithm; (3) develop classification models and regression models for detecting
the adulteration of cow milk or water in buffalo milk, goat milk, and camel milk, based on
optimal MIRS preprocessing and optimal modeling algorithms.

2. Materials and Methods
2.1. Milk Samples

In total, 157 Holstein cow milk, 198 buffalo milk, 40 goat milk, and 97 camel milk sam-
ples were collected from China between January and December 2021 during the morning
milking. Buffalo breeds include Mediterranean buffalo, Niliravi buffalo, Mulla buffalo, and
crossbred buffalo. Milk samples were collected in batches and immediately delivered to
the laboratory of Huazhong Agricultural University for preparation of adulterated samples
after each collection (store at 4 ◦C).

Cow milk was added to buffalo milk, goat milk, and camel milk, and mixed in the
following proportions: (1) proportion of cow milk in buffalo milk: 0%, 5%, 10%, 20%, and
50% (vol/vol); (2) proportion of cow milk in goat milk and camel milk: 0%, 20%, and 50%
(vol/vol). Similarly, distilled water was added to buffalo milk, goat milk, and camel milk,
and mixed in the following proportions: (1) proportion of water in buffalo milk: 0%, 5%,
10%, 20%, 40%, and 50% (vol/vol); (2) proportion of water in goat milk and camel milk:
0%, 20%, and 50% (vol/vol). Not every sample had both pure milk–cow milk mixtures
and pure milk–water mixtures due to sample volume limitations. Fresh pure milk and
adulterated samples were kept refrigerated at 4 ◦C and immediately delivered to the DHI
center and analyzed using the MilkoScan FT+ (Foss, Hillerød, Denmark) instrument to
obtain the MIRS and the chemical composition of the samples.

A total of 224 buffalo milk–cow milk mixtures, 417 buffalo milk–water mixtures,
80 goat milk–cow milk mixtures, 52 goat milk–water mixtures, 165 camel milk–cow milk
mixtures, and 181 camel milk–water mixtures were prepared during a period from January
to December 2021. The number of samples corresponding to each adulteration ratio is
shown in Table 1.

Table 1. Sample number for each adulteration proportion.

Type Proportion of Adulteration
of Cow Milk (vol/vol) 1 n Proportion of Adulteration

of Water (vol/vol) 1 n

Buffalo milk

0% 198 0% 187
5% 59 5% 68
10% 34 10% 67
20% 82 20% 119
50% 49 40% 52

50% 111

Goat milk
0% 40 0% 33
20% 40 20% 19
50% 40 50% 33

Camel milk
0% 97 0% 97
20% 95 20% 84
50% 70 50% 97

1 10% means pure buffalo milk, goat milk or camel milk.
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2.2. Data Analysis
2.2.1. Spectral Pretreatment

To obey Beer’s law, the spectra were transformed from transmittance into absorbance
before modeling. The region from 2968 to 5008 cm−1 was considered as noise and removed
from the data set. The region from 1773 to 2802 cm−1 contained no valuable information
and was also removed, together with the saturated water signal (O–H bend) from 1692 to
1604 cm−1 [24]. Finally, the remaining 244 wave points were used for modeling (2968 to
2802 cm−1, 1773 to 1692 cm−1, and 925 to 1604 cm−1). Spectral pretreatments are frequently
applied to MIRS data to achieve robust prediction models [25]. In this research, the MIRS
spectra values were processed using four spectral pre-processing algorithms, i.e., Savitzky–
Golay convolution smoothing (SG), first-order derivative (1D), second-order derivative
(2D), and standard normal variate (SNV). The R package “prospect” was utilized for the
preprocessing steps.

2.2.2. Machine Learning Algorithms

The dataset was randomly divided into a calibration set (80%) and a validation set
(20%). The calibration set was used to develop the model, and the validation set was used
to validate the performance and generalization ability of the model independently of the
calibration set. Three types of models were involved in this study. (1) Binary classification
models: pure buffalo milk, goat milk, and camel milk samples were defined as negative
0, and milk–cow milk mixtures or milk–water mixtures were defined as positive 1. The
models can be used to identify milk–cow milk mixtures and milk–water mixtures. (2) Multi-
classification models: pure buffalo milk, goat milk, and camel milk samples were defined as
0, samples with less than 25% (vol/vol) cow milk or water adulteration were defined as 1,
and samples with more than 25% (vol/vol) cow milk or water adulteration were defined as
2. This type of model can be used to classify the samples as no adulteration, low proportion
of adulteration, and high proportion of adulteration; (3) Quantitative regression models:
these models were established using only buffalo milk data, and can be used to predict the
proportion (vol/vol) of cow milk or water added to buffalo milk. The data distribution of
each type of model on the calibration and validation sets is shown in Table 2.

Three classification machine learning methods—partial least squares discriminant
analysis (PLSDA) and support vector machines (svmLinear and svmRadial)—were used to
construct the qualitative model separately, which were then compared with one another.
Twelve regression machine learning methods—partial least squares regression (PLSR), Sup-
port Vector Machines (svmLinear and svmRadial), Bayesian regularized neural networks
(BRNN), spike and slab regression (SSR), projection pursuit regression (PPR), classification
and regression tree (CART), ridge regression (RR), least absolute shrinkage and selection
operator (LASSO), elastic net regression (EN), RF, and gradient boosting machine (GBM)—
were used to construct the quantitative model separately, which were then compared with
one another. For all models, the spectral data were scaled and centered before computation
so that the mean was equal to 0 and the standard deviation was equal to 1. This procedure
was performed using preProc = c (“center”, “scale”) as an argument in the train function of
the CARET package. All the machine learning algorithms utilized the CARET package in
the R program. All analyses in the present study were performed with R statistical software
version 4.2.2 [26]. The inner cross-validation used tenfold cross-validation repeated 5 times,
and was used in the analysis subset to tune the optimized hyperparameters and construct
the predictive model. Finally, each machine learning method constructed 50 models. For
regression models, we selected the model with the lowest root mean square error (RMSE)
of cross-validation; For binary classification models, we selected the model with the highest
area under the curve (AUC) of cross-validation; For multi-classification models, we selected
the model with the highest accuracy of cross-validation.

The maximum number of PLS latent variables was set to 20. The number of the hidden
layer for the BRNN varied from 1 to 4. The number of the mtry for the RF was 3, 10, 20, 50,
100, 300, 700, 1000, and 2000. The computation of SVM was based on the support vector
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machine with a kernel or radial basis function kernel, and was implemented using the
method = “svmLinear” or “svmRadial” as arguments in the train function of the CARET
package. For “svmLinear”, the tested C values were 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75, 2, and 5. For the “svmRadial” kernel, the tested values were 0.01, 0.05, 0.1, 0.25, 0.5,
0.75, 1, 1.25, 1.5, 1.75, 2, and 5 for C; the tested values were 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75, 0.90 for the sigma.

Table 2. Sample number for calibration and validation sets.

Model Type Pure Milk–Adulterants Calibration Sets Validation Sets

Binary
classification

models

Buffalo milk–cow milk 338 (158 pure and 180 mixtures) 84 (40 pure and 44 mixtures)
Buffalo milk–water 484 (150 pure and 334 mixtures) 120 (37 pure and 83 mixtures)
Goat milk–cow milk 96 (33 pure and 63 mixtures) 24 (7 pure and 17 mixtures)

Goat milk–water 68 (29 pure and 39 mixtures) 17 (4 pure and 13 mixtures)
Camel milk–cow milk 210 (78 pure and 132 mixtures) 52 (19 pure and 33 mixtures)

Camel milk–water 223 (77 pure and 146 mixtures) 55 (20 pure and 35 mixtures)

Multi-
classification

models

Buffalo milk–cow milk 338 (158 pure, 140 low, and 40 high) 84 (40 pure, 35 low, and 9 high)
Buffalo milk–water 484 (141 pure, 212 low, and 131 high) 120 (46 pure, 42 low, and 32 high)
Goat milk–cow milk 96 (32 pure, 32 low, and 32 high) 24 (8 pure, 8 low, and 8 high)

Goat milk–water 69 (25 pure, 17 low, and 27 high) 16 (8 pure, 2 low, and 6 high)
Camel milk–cow milk 210 (78 pure, 76 low, and 56 high) 52 (19 pure, 19 low, and 14 high)

Camel milk–water 223 (84 pure, 61 low, and 78 high) 55 (13 pure, 23 low, and 19 high)

Quantitative
regression models

Buffalo milk–cow milk 339 83
Buffalo milk–water 484 120

2.2.3. Performance Evaluation Methods and Metrics

We have used both threshold-independent and threshold-dependent performance
evaluation metrics for the evaluation of binary classification models. These included accu-
racy (Equation (1)), sensitivity (Equation (2)), specificity (Equation (3)), positive predictive
value (Equation (4)), and negative predictive value (Equation (5)). Receiver operating
characteristic (ROC) curves represent the relationship between a model’s true positive rate
and the false positive rate, for different classification thresholds. The AUC measures the
area under the ROC curve.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

Positive predictive value (PPV) = TP/(TP + FP) (4)

Negative predictive value (NPV) = TN/(TN + FN) (5)

True positive (TP) means that an adulterated sample is correctly classified as adul-
terated, true negative (TN) means that an unadulterated sample is correctly classified as
unadulterated, false negative (FN) means that an adulterated sample is incorrectly classified
as pure sample, and false positive (FP) means that a pure sample is incorrectly classified as
adulterated.

For the multi-classification models, the classification methods’ performance was as-
sessed by the accuracy and kappa value.

The performance of each regression method was evaluated by examining RMSE, mean
absolute error (MAE), and the coefficient of determination (R2). Furthermore, the ratio of
performance to deviation (RPD) was used to assess the model consistency and performance.
The RPD is calculated as the ratio of the standard deviation of the reference data to the
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standard error of prediction. El Jabri et al. summarized the R2 and RPD of the prediction
equations: (1) Model robustness can be classified into four classes based on the R2 value:
poor (R2 < 0.66), approximate (0.66 < R2 < 0.81), good (0.82 < R2 < 0.90), and excellent
(R2 ≥ 0.91). (2) The higher the RPD, the better the model. Models with RPD > 2 can achieve
high accuracy predictions. Based on the RPD values, the models can be categorized into
six classes of robustness: very poor (RPD < 1), poor (1 < RPD < 1.4), fair (1.4 < RPD < 1.8),
good (1.8 < RPD < 2), very good (2 < RPD < 2.5), and excellent (RPD > 2.5) [27]. Manley
suggested that predictive models with an RPD higher than 8 were useful for any analytical
application [28].

Furthermore, the relative standard deviations (RSD, %) were also calculated, thus
reflecting the variability and robustness across folds.

RSD(%) = SD/mean

where SD is the standard deviation of 50 AUC (or accuracy or R2) values, and the mean is
the mean of the 50 AUC (or accuracy or R2) values. The smaller the RSD%, the more stable
the model.

The optimal models were determined according to the following rules: (1) Binary
classification models: higher AUC, accuracy, sensitivity, specificity, PPV, and NPV; (2) multi-
classification models: higher accuracy and kappa value; and (3) quantitative regression
models: higher R2 and RPD and lower RMSE and MAE. When the above indicators of two
models were equal, lower RSD was considered.

3. Results and Discussion
3.1. Quality Parameter Evaluation and FTIR Spectral Characteristics of the Milks

The chemical composition of cow milk, buffalo milk, goat milk, and camel milk
determined by the MilkoScan FT+ (Foss, Hillerød, Denmark) instrument is shown in
Table 3. Buffalo milk had the highest total solids, followed by camel milk and goat milk,
while cow milk had the lowest. These data show the higher content of fat in buffalo milk,
goat milk, and camel milk than in cow milk, and are in agreement with those reported in
previous studies [6,18].

Table 3. Mean ± standard deviation of the chemical composition of the milk samples.

Traits Cow Milk Buffalo Milk Goat Milk Camel Milk

Fat, % 3.54 ± 1.00 c 7.76 ± 1.79 a 5.39 ± 4.10 b 5.52 ± 0.48 b

Protein, % 3.59 ± 0.31 b 4.83 ± 1.21 a 3.29 ± 0.42 c 3.71 ± 0.26 b

Lactose, % 4.89 ± 0.31 bc 4.97 ± 0.53 b 4.77 ± 0.45 c 5.11 ± 0.18 a

SNF, % 9.10 ± 0.46 c 10.72 ± 1.16 a 8.58 ± 0.81 d 9.59 ± 0.34 b

TS, % 12.67 ± 1.22 d 18.21 ± 2.38 a 14.27 ± 4.61 c 15.29 ± 0.72 b

MUN, mg/100 g 10.52 ± 1.80 c 12.11 ± 9.14 c 31.95 ± 0.45 b 39.43 ± 2.42 a

Means within a row with different superscripts differ (p < 0.05).

According to the spectra, a region of approximately 2900 cm−1 provided information
about the fat molecules [29], with buffalo milk having the highest peak, followed by goat
milk and camel milk, with cow milk having the lowest peak. The regions at 1640 and
1540 cm−1 are associated with amide-I and amide-II, respectively, and provide information
about the protein molecules [29]. In this region, buffalo milk has the highest peak. The
absorption of goat milk in this region is lower than that of cow milk, which indicates that
goat’s milk has lower protein levels than cow milk. The difference in absorbance between
buffalo milk and cow milk was greater than that between goat milk, camel milk, and cow
milk (Figure 1), corresponding to the results reported in the information on the composition
of milk (Table 3).
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Figure 1. Original mid-infrared spectroscopy. (a) Buffalo milk; (b) Goat milk; (c) Camel milk. Gray
shadow represents the region used for modeling.

As can be seen in Figure 1, the addition of water to pure milk leads to a decrease in the
absorption peaks in each region. The change in absorbance after the addition of cow milk
to pure milk is very small, except for the fat absorption region (decrease). Overall, there
were visible differences in the spectra between pure milk and pure milk–water mixtures
(buffalo, goat, and camel milk adulterated with cow milk), but there were similar spectra
between pure milk and pure milk–cow milk mixtures. After removing the water region,
bands of large differences were located at 2968 to 2802 cm−1 and 1773 to 1692 cm−1, and
the absorbance in these bands is mainly related to fat content [30]. Other pronounced
differences on spectra between pure milk and adulterated milk were located in the milk
protein (1544 cm−1) and lactose (1159 and 1076 cm−1) absorption regions [7].

There were visible differences in spectra between pure milk and pure milk–water
mixtures, and it may be possible to directly identify whether water was adulterated in
buffalo milk, goat milk, and camel milk through spectrograms. However, the spectral
differences between pure milk and pure milk–cow milk mixtures were so subtle that
it was not possible to differentiate them by using a simple visual observation method.
Furthermore, it is even more impossible to quantify the level of adulteration of cow milk.
Nevertheless, with the help of machine learning algorithms, it may be possible to extract
these differences by establishing a model for qualitative identification or quantitative
analysis of its adulteration.

3.2. Models of Cow Milk or Water Adulteration in Buffalo Milk

As buffalo milk has a greater market demand, higher nutritional value, and is more
commonly adulterated than goat milk and camel milk, this study focused on the specific
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process of modeling buffalo milk adulteration, and described it in detail. The nutritional
value and flavor of buffalo milk is superior to that of cow milk, and the price is about twice
that of cow milk [31]. The adulteration of buffalo milk with cow milk is a common fraud,
which not only alters its nutritional and sensory properties, but also leads to cow milk
intolerance or allergies. It is common to adulterate buffalo milk with at least 5% cow’s milk
due to its profit [8], so in this study, we used 5% as the minimum level of adulteration. This
is the first attempt to combine modern statistical machine learning algorithms with MIRS
for identifying adulteration of cow milk or water in buffalo milk, goat milk, and camel milk.
Overall, as expected, the ability of MIRS to predict water adulteration in buffalo milk was
better than that of cow milk adulteration, because buffalo milk is more similar to cow milk
than to water.

3.2.1. Binary Classification Model for Identifying Buffalo–Cow Milk Mixtures or Buffalo
Milk–Water Mixtures

Spectral preprocessing improved the model prediction quality, especially 1D and 2D
preprocessing (Tables S1–S4), which displayed similar effects as the results of Soyeurt
et al. [32]. Table 4 shows the performance of the binary classification model for identifying
buffalo–cow milk mixtures and buffalo milk–water mixtures using three machine learning
algorithms (PLSDA, LSVM, and RSVM).

Table 4. Performance of prediction models obtained in the calibration and validation sets, for the
discrimination of pure milk and adulterant (mixed with milk or water) 1.

Milk
Product 2 Preprocessing 3 Best

Method -4
RSD,
% 5

Calibration 5 Validation 5

AUC Acc Sen Spe PPV NPV AUC Acc Sen Spe PPV NPV

adulterated with cow milk
BM 1D PLSDA 0.49 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1D LSVM 1.94 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2D RSVM 3.86 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.92 0.95 0.88 0.89 0.95

GM 2D PLSDA 2.47 1.00 0.99 0.98 1.00 1.00 0.97 0.99 0.96 0.94 1.00 1.00 0.86
1D LSVM 3.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2D RSVM 10.61 1.00 0.99 0.98 1.00 1.00 0.97 0.98 0.92 0.94 0.86 0.94 0.86

CM 2D PLSDA 0.24 1.00 0.99 0.98 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
1D/2D LSVM 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2D RSVM 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 0.97 0.90 0.95 0.95

adulterated with water
BM 2D PLSDA 0.55 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

1D LSVM 1.03 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 0.97
1D RSVM 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.97 0.99 0.95

GM SNV PLSDA 6.84 1.00 0.97 0.95 1.00 1.00 0.94 1.00 0.94 0.92 1.00 1.00 0.80
1D LSVM 9.58 0.97 0.97 0.95 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
1D RSVM 10.95 1.00 0.97 0.95 1.00 1.00 0.94 1.00 0.94 0.92 1.00 1.00 0.80

CM 1D PLSDA 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2D LSVM 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2D RSVM 0.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 From the records, the positive cases were adulterant and negative cases were pure milk. 2 BM= buffalo milk;
GM = goat milk; CM = camel milk. 3 1D = first-order derivative, 2D = second-order derivative, SNV = standard
normal variate. 4 PLS-DA = partial least squares discriminant analysis; LSVM = svmLinear (support vec-
tor machine with kernel); RSVM = svmRadial (support vector machine with radial basis function kernel).
5 Acc = Accuracy; Sen = Sensitivity; Spe = Specificity; PPV = positive predicted value; NPV = negative predicted
value; AUC = area under the receiver operating characteristic curve; RSD = the relative standard deviations.

The PLSDA was the optimal way to determine buffalo-cow milk mixtures, with the AUC,
accuracy, sensitivity, specificity, PPV, and NPV of the validation sets all being one, and the RSD
was 0.49%. The RSVM is the worst, with the AUC = 0.98, accuracy = 0.92, sensitivity = 0.95,
specificity = 0.88, PPV = 0.89, and NPV = 0.95 in the validation set. Furthermore, RSD = 3.86%,
indicating that the model stability was also worse than LSVM and PLSDA.
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For the prediction of water adulteration in buffalo milk, the PLSDA also generated the
optimal results, with the AUC, accuracy, sensitivity, specificity, PPV, and NPV all being one,
and RSD = 0.55%, followed by LSVM and RSVM algorithms.

The evaluation of 15 models that were built based on three machine learning modeling
algorithms and five MIRS preprocessing algorithms displayed that the binary classifica-
tion model—using the 1D preprocessing algorithm and the PLSDA modeling algorithm—
showed the highest prediction accuracy for identifying buffalo–cow milk mixtures. The
model using the 2D preprocessing algorithm and the PLSDA modeling algorithm produced
the highest prediction accuracy for identifying buffalo milk–water mixtures. These two
models could roughly categorize buffalo milk into unadulterated (pure buffalo milk) and
adulterated (buffalo milk–cow milk/water mixtures), with the AUC, accuracy, sensitivity,
specificity, PPV, and NPV equal to one in the validation set.

Figure 2 illustrates the positive predictive probability (PPP) calculated by the binary
optimal model. For individual milk samples, the prediction model can calculate PPP and
negative prediction probability (NPP) that sum up to one. On the one hand, the model
used this information to predict whether the data is positive (PPP > NPP) or negative
(PPP < NPP). On the other hand, the probability can indicate the certainty of the model’s
prediction, where a high probability suggests a high possibility of correct predictions [33].
It was found that for samples with a high adulteration proportion, PPP was also high
(Figure 2), indicating that the model was more favorable in predicting samples with high
adulteration. Interestingly, we also revealed that for samples with incorrect predictions,
the PPP value given by the model was close to 0.50. This suggested that the certainty of
making correct predictions for these sample models was poor. Therefore, to ensure that the
predictions were unbiased, the predictive probability can also be considered for judging
and identifying the samples. This study not only identifies the adulterated buffalo milk
based on the results of the binary identification model (positive or negative), but it also
does so with reference to the predictive probability of the model in order to improve the
reliability of the model.
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Figure 2. The discriminant results (positive predictive probability, PPP) of samples in calibration and
validation sets using optimal models. BM = buffalo milk; GM = goat milk; CM = camel milk. Circles:
calibration set; triangles: validation set; yellow, red and orange: adulterants (positive); blue: pure
milk (negative). Shades of color indicate the level of adulteration.
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3.2.2. Multi-Classification Models for Identifying High or Low Adulterant Level

Spectral preprocessing improved the model prediction ability (Tables S5 and S6).
Table 5 shows the performance of the multi-classification model for identifying high or low
adulterant levels (with a threshold of 25%) with cow milk or water in buffalo milk. The
LSVM algorithm outperformed PLSDA, with a validation set accuracy of 0.94 and 0.99 for
identifying the high or low proportion of cow milk or water adulteration in buffalo milk,
respectively. In addition, a similar pattern to that reported by Silva et al. was found: the
model presented a worse performance in buffalo milk with a low proportion of adulteration
than for samples with a high proportion of adulteration (results not shown) [31].

Table 5. Performance of prediction models obtained in the calibration and validation set, for the
discrimination of no adulteration, low level adulteration (adulteration proportion less than 25%), and
high level adulteration (adulteration proportion more than 25%) samples.

Type 1 Model 2
Adulterated with Cow’s Milk Adulterated with Water

Preprocessing 3 RSD, % 4 Accc Kappac Accv Kappav Preprocessing 3 RSD, % 4 Accv Kappav Accv Kappav

BM PLSDA 1D 3.39 0.97 0.96 0.91 0.84 1D 2.60 0.98 0.97 0.96 0.94
LSVM 1D 3.49 0.99 0.98 0.94 0.90 1D 1.02 1.00 1.00 0.99 0.99
RSVM 2D 6.63 0.96 0.94 0.83 0.71 1D 1.97 1.00 1.00 0.99 0.99

GM PLSDA None 12.64 0.99 0.98 0.96 0.94 1D 18.17 1.00 1.00 0.94 0.90
LSVM 2D 7.06 1.00 1.00 1.00 1.00 None 9.54 0.97 0.96 1.00 1.00
RSVM 2D 17.97 0.99 0.98 0.92 0.88 2D 19.81 0.96 0.93 1.00 1.00

CM PLSDA 1D 5.39 0.99 0.98 1.00 1.00 1D 1.51 1.00 1.00 1.00 1.00
LSVM 1D 0.00 1.00 1.00 1.00 1.00 2D 1.77 1.00 1.00 1.00 1.00
RSVM 1D 5.12 1.00 1.00 0.98 0.97 2D 2.19 1.00 1.00 1.00 1.00

1 BM = buffalo milk; GM = goat milk; CM = camel milk; 2 PLS-DA = partial least squares discriminant analysis;
LSVM = svmLinear (support vector machine with kernel); RSVM = svmRadial (support vector machine with
radial basis function kernel). 3 1D = first-order derivative, 2D = second-order derivative. 4 Accc = accuracy in
calibration set, kappac = kappa value in calibration set, Accv = accuracy in validation set, kappav = kappa value
in validation set, and RSD = the relative standard deviations.

The multi-classification model developed by LSVM modeling algorithm and the 1D
spectral preprocessing algorithm for identifying the proportion of adulterated cow milk
or water in buffalo milk showed the most favorable results, with an accuracy of 0.94 and
0.99, and kappa values of 0.90 and 0.99 in the validation set, respectively. The above two
models can categorize buffalo milk as no adulteration, low level adulteration (adulteration
proportion less than 25%), and high level adulteration (adulteration proportion more
than 25%). Several studies have reported the identification of cow milk adulteration in
buffalo milk based on MIRS. The accuracy of the binary classification model for identifying
adulteration was 0.91 [10], and the accuracy of the multi-classification model for identifying
the high and low levels of adulteration was 0.96 [31], which was similar to the results of the
present study. Compared to these studies, this study showed several advantages: (1) the use
of multiple modern statistical machine learning algorithms to develop a predictive model,
and (2) the study of water adulteration, which is a very common form of adulteration.

3.2.3. Quantitative Prediction of Adulteration in Buffalo Milk with Cow’s Milk and Water

MIRS can effectively and qualitatively identify adulterated buffalo milk. To further
detect the level of adulteration accurately in buffalo milk, a regression modeling study
was carried out to quantitatively predict the level of adulteration. Although it has been
demonstrated that conventional machine learning algorithms (PLSR) can predict the level
of cow milk in buffalo milk based on MIRS data [7,18,29,31,34], the aim of this study was
to evaluate the predictive ability of modern machine learning algorithms and compare
them with PLSR. Table 6 summarizes the performance of the regression models based on
the 12 machine learning algorithms and the best MIRS preprocessing for predicting the
proportion of cow milk and water adulteration in buffalo milk. Also, the predictive perfor-
mance of the 12 machine learning algorithms using five MIRS preprocessing algorithms is
shown in Tables S7 and S8. PLSR was considered a standard method because of its strong
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predictive performance in chemometric analyses. However, in the present study, PLSR did
not show the best results.

Table 6. Comparison of the partial least squares regression (PLS), and 12 modern statistical machine
learning algorithms of the Fourier transform infrared spectra for determining the adulterated cow
milk or water level in buffalo milk.

Modeling 2 Pre 3 RSD 1
Calibration Set 1 Validation Set 1

RMSEC MAEC RC
2 RPDC RMSEV MAEV RV

2 RPDV

adulterated with cow’s milk
PLSR SNV 10.18 6.53 4.89 0.83 2.46 7.56 5.83 0.76 2.06
LSVM SNV 9.41 6.68 4.66 0.84 2.40 7.88 5.87 0.74 1.98
RSVM 2D 9.36 4.60 2.51 0.92 3.49 7.21 5.12 0.79 2.16

SSR SNV 12.32 8.33 6.27 0.74 1.93 8.22 6.38 0.72 1.89
PPR None 10.15 2.75 1.23 0.97 5.84 7.37 3.73 0.77 2.11

CART SG 40.40 8.21 4.90 0.74 1.95 11.51 6.80 0.49 1.35
BRNN SG 5.56 4.94 3.27 0.91 3.25 6.02 4.09 0.85 2.59

RR SNV 11.06 8.24 6.23 0.75 1.95 8.28 6.46 0.71 1.88
EN SNV 8.47 6.41 4.90 0.84 2.50 7.45 5.69 0.77 2.09

LASSO SNV 7.84 6.32 4.83 0.84 2.54 7.36 5.63 0.77 2.12
RF 2D 12.69 3.77 2.35 0.96 4.25 8.25 5.70 0.72 1.89

GBM 1D 14.19 4.15 2.82 0.93 3.87 8.81 6.01 0.70 1.77
PCA+BRNN 1D 6.71 5.74 3.88 0.87 2.80 5.42 3.65 0.88 2.87

adulterated with water
PLSR None 1.29 2.06 1.31 0.99 9.19 2.25 1.50 0.99 8.39
LSVM 1D 1.28 2.09 1.32 0.99 9.08 2.20 1.48 0.99 8.58
RSVM 1D 1.25 1.66 1.29 0.99 11.40 2.76 1.86 0.98 6.85

SSR 1D 1.37 2.39 1.50 0.98 7.91 2.47 1.73 0.98 7.64
PPR SG 1.32 1.03 0.30 1.00 18.30 1.67 0.59 0.99 11.30

CART 2D 3.16 1.91 0.57 0.99 9.90 3.23 1.09 0.97 5.86
BRNN SG 1.40 1.80 1.15 0.99 10.52 2.12 1.32 0.99 8.92

RR 1D 1.43 2.61 1.71 0.98 7.25 2.58 1.86 0.98 7.33
EN 1D 1.36 2.24 1.43 0.99 8.46 2.37 1.66 0.98 7.97

LASSO 1D 1.36 2.43 1.54 0.98 7.79 2.50 1.76 0.98 7.57
RF 2D 1.33 1.10 0.52 1.00 17.26 2.64 1.41 0.98 7.17

GBM 1D 0.93 0.18 0.07 1.00 104.93 2.51 1.35 0.98 7.53
PCA+PPR 1D 1.27 1.23 0.44 1.00 15.40 1.70 0.68 0.99 11.10

1 RSD = the relative standard deviations, RMSEC = root mean square error in calibration set, RMSEV = root
mean square error in validation set, MAEC = the mean absolute error in calibration set, MAEV = the mean
absolute error in validation set, RC

2 = the coefficient of determination in calibration set, RV
2 = the coefficient

of determination in validation set, and RPD = the ratio performance deviation. 2 PLSR = partial least squares
regression, LSVM = svmLinear (support vector machine with kernel), RSVM = svmRadial (support vector ma-
chine with radial basis function kernel), SSR = spike and slab regression, PPR = projection pursuit regression,
CART = classification and regression tree, BRNN = bayesian regularized neural networks, RR = ridge regression,
EN = elastic net regression, LASSO = least absolute shrinkage and selection operator; RF = random forest, and
GBM = gradient boosting machine. 3 SG = Savitzky–Golay convolution smoothing, 1D = first-order derivative, 2D
= second-order derivative, and SNV = standard normal variate.

For the regression model to quantify the proportion of cow milk adulteration in
buffalo milk, LSVM, SSR, CART, RR, RF, and GBM all showed poor ability with a RPDV
less than two. RSVM, PPR, BRNN, EN, and LASSO outperformed PLSR. BRNN had the
best performance, and the RSD, which indicates the stability of the model, was the lowest
among the 12 machine learning algorithms. Compared to the most commonly used PLSR,
the BRNN reduced RMSEV and RSD by 1.54% and 4.62%, respectively, and improved RV

2

and RPDV by 0.09 and 0.53, respectively.
For the regression models quantifying the proportion of water adulteration in buffalo

milk, all the models showed accurate and robust predictions, with RV
2 higher than 0.95,

and RPDV higher than 5. LSVM, PPR, and BRNN outperformed PLSR, with a RV
2 of 0.99

for all algorithms and RPDV of 8.58, 11.30, 8.92, and 8.39, respectively. The PPR algorithm
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showed excellent predictive performance, with RMSEV = 1.67%, MAEV = 0.59%, RV
2 = 0.99,

and RPDV = 11.30. Compared to the PLSR algorithm, RMSEV was reduced by 0.58% and
RPDV was improved by 2.91 for PPR. BRNN displayed good predictive ability for any
predictions. Studies have shown that NN can provide superior predictions compared
to linear models [35,36]. However, NN are susceptible to overfitting, and may exhibit
lower robustness in predicting new data. NN with Bayesian regularization (BR) training
algorithms can avoid such overfitting.

The performance evaluation of 60 models based on 12 machine learning modeling
algorithms and five MIRS preprocessing algorithms showed that BRNN and PPR were the
optimal modeling algorithms to quantify the proportion of cow milk or water adulteration
in buffalo milk, respectively. To further improve the performance of the models, based on
the above two optimal models, PCA dimensionality reduction for MIRS data was conducted
before modeling. That is, the principal components of 244 wavepoints after PCA were used
for remodeling (PCA + BRNN and PCA + PPR), instead of using the 244 wavepoints for
direct modeling (BRNN and PPR). Compared to BRNN and PPR, PCA+BRNN slightly
improved the ability of MIRS to predict the proportion of cow milk adulteration in buffalo
milk (RMSEV: 6.02% vs. 5.42%, RV

2: 0.85 vs. 0.88, RPDV: 2.59 vs. 2.87), while PCA+PPR did
not improve the ability of MIRS to predict the proportion of water adulteration in buffalo
milk (RMSEV: 1.67% vs. 1.70%, RV

2: 0.99 vs. 0.99, RPDV: 11.30 vs. 11.10). Although the
models built by PCA+BRNN and PCA+PPR displayed similar accuracy to BRNN and PPR,
the run times were considerably shorter, especially compared to the BRNN.

Therefore, considering the model performance and time cost, it was found that the
regression model based on the PCA+BRNN modeling algorithm and 1D preprocessing
algorithm was the optimal way to predict the proportion of cow milk adulteration in buffalo
milk, with RMSEV = 5.42%, MAEV = 3.65%, RV

2 = 0.88, and RPDV = 2.87. The performance
of a regression model based on the PCA + PPR modeling algorithm and 1D preprocessing
algorithm was the optimal for predicting the proportion of water adulteration in buffalo
milk, with RMSEV = 1.70%, MAEV = 0.68%, RV

2 = 0.99, and RPDV = 11.10. The models
developed above performed well (R2 > 0.85, RPD > 2.0), especially the model for predicting
the proportion of water adulteration. These parameters indicated that the presented
method had the potential to predict adulteration. For the water adulteration model, the
method could be used for the routine analysis of milk samples for quality control, but for
the cow milk adulteration model, the method was not adequate for routine applications.
The relationship between the predicted adulteration proportion and true adulteration
proportion is shown in Figure 3. In the regression model for predicting the proportion
of water adulteration in buffalo milk, the relationship between predicted and true values
followed y = x, even when the proportion of adulteration was as low as 5%. However,
for the regression model predicting the proportion of cow milk adulteration in buffalo’s
milk, the model predicted better only for samples where the proportion of adulteration
was higher than 10%. Therefore, the developed MIRS model can accurately predict the
proportion of cow milk adulteration in buffalo milk above 10% and the proportion of
water adulteration above 5%; i.e., the model’s limit of quantitation (LOD) is 10% and 5%,
respectively.

Various methods have been applied to detect cow’s milk adulteration in buffalo milk,
such as the capillary electrophoresis technique [6], lateral flow immunoassay [37], liquid
chromatography-tandem mass spectrometry [8], and frontal fluorescence spectroscopy [38],
with an LOD in a range between 3.1% to 20%. The LOQ value (10%) of the present study is
within this range and has a much lower prediction error. Moreover, the current method
showed advantages in terms of rapidity, environmental impact, and high throughput
measurement. Previous studies reported that the range of RMSE was from 0.23% to
7.42% by MIRS prediction of the proportion of cow’s milk adulteration in buffalo milk [3],
which was similar to the results obtained in this study. Compared with other studies,
our study presented more advantages, such as using the large amount of data and many
modeling algorithms, as well as spectral preprocessing methods, which enabled the useful
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information contained in MIRS to be fully explored, and allowed robust prediction models
to be developed.
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3.3. Models of Cow Milk or Water Adulteration in Goat and Camel Milk

The production level of goat milk and camel milk is much lower than that of cow milk.
It was reported that goat milk is very rich in terms of calcium, phosphorus, magnesium,
copper, conjugated linoleic, and omega 3 and 6 fatty acids [7]. Camel milk is rich in
potassium, sodium, copper, iron, magnesium, zinc, vitamins, insulin, and various bioactive
substances [14]. Goat milk and camel is less allergenic than cow’s milk, so the addition
of cow milk to these milks can have adverse health effects on people who have allergies
and/or sensitive digestive systems [7]. Using the strategies and techniques for developing
buffalo milk adulteration, we further developed models for identifying the adulteration
of cow milk or water in goat milk and camel milk (Tables 3 and 4). In this study, only
two preliminary adulteration percentages, 20% and 50%, were set up, and only qualitative
identification analyses were performed. LSVM was always the optimal and most robust
modeling algorithm.

3.3.1. Classification Model for Identifying Goat Milk Adulterated with Cow Milk or Water
and Its Level of Adulteration (High or Low)

The binary classification model for identifying goat–cow milk mixtures or goat milk–
water mixtures using the 1D preprocessing algorithm and LSVM modeling algorithm
presented a high prediction accuracy, with AUC, Accuracy, Sensitivity, Specificity, PPV, and
NPV equal to 1 in the validation set.

The multi-classification model for identifying low or high proportions of cow milk in
goat milk using the LSVM modeling algorithm and 2D spectral preprocessing algorithm
performed the best, with an accuracy of 1 and kappa value of 1 in the validation set. When
the LSVM modeling algorithm and raw spectra were implemented, the multi-classification
model for identifying the proportion of water adulteration in goat milk was optimal, with
an accuracy and kappa value of 1 in the validation set.

Sen et al. used FTIR spectroscopy and orthogonal partial least squares discriminant
analysis (OPLS-DA) to identify goat–cow milk mixtures, with a classification accuracy
of 0.93 [7]. Differences in prediction accuracy were mainly attributed to adulteration
concentrations, modeling algorithms, and spectral preprocessing methods.
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3.3.2. Classification Model for Identifying Camel Milk Adulterated with Cow Milk or
Water and Its Level of Adulteration (High or Low)

The model for identifying camel milk adulteration showed superior performance than
the model for goat milk, which mainly reflects on its robustness; i.e., lower RSD. The binary
classification model for identifying camel–cow milk mixtures using 1D or 2D preprocessing
algorithms and the LSVM modeling algorithm produced the highest predictive accuracy,
and the binary classification model for identifying camel milk–water mixtures using 1D
preprocessing algorithm and the PLSDA modeling algorithm or 2D preprocessing and
the LSVM modeling algorithms displayed the highest predictive accuracy, with the AUC,
accuracy, sensitivity, specificity, PPV, and NPV equal to 1.00, as well as RSD = 0% in both
calibration and validation sets.

The multi-classification model for identifying the high or low proportion of adulterated
cow’s milk in camel milk exhibited a favorable performance when the LSVM modeling
algorithm and 1D spectral preprocessing algorithm were used. In addition, the LSVM
and 2D algorithms-based multi-classification model displayed the best performance for
identifying the high or low proportion of adulterated water in camel milk. These multi-
classification models could achieve 100% of correct classifications.

The practicality of implementing these methods in different geographic regions and
production scales of the dairy industry has yet to be considered, as the amount of data
used in the modeling process of this paper is not sufficient for production applications
(particularly regarding goat and camel milk models), and the data are only from one
province in China, without external validation with data from other provinces. However,
from the resultant parameters of the preliminary models obtained in this research, it is
very promising that the developed models can be applied in the dairy industry in different
geographic regions and at different production scales.

4. Conclusions

This study demonstrated that modern statistical machine learning algorithms (e.g.,
SVM, BRNN, and PPR) can improve the ability of MIRS to predict adulteration in buffalo
milk, goat milk, and camel milk. We developed raw milk adulteration detection models
based on MIRS and modern statistical machine learning algorithms, which can be used
to detect fraudulent cow milk and water adulteration in buffalo milk, goat milk, and
camel milk, with high classification accuracy (almost close to 1), prediction errors of 5.42%
and 1.70%, and an LOQ of 10% and 5% (vol/vol). The SVM performed better in the
classification model, and the BRNN performed better in the quantitative model; these two
algorithms were recommended to be applied in other related research. This research is
critical to tracking the quality of sold products, helping to ensure consumer confidence
and market integrity. Further research efforts are recommended to collect samples from
different regions and breeds in order to build more robust and accurate prediction models.
In addition, attempts could be made to incorporate multiple adulterants in milk at the same
time, which may be more consistent with production practices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12203856/s1, Table S1: Performance of prediction models
obtained in calibration set, for the discrimination of pure milk and adulterant (mixed with cow milk);
Table S2: Performance of prediction models obtained in validation set, for the discrimination of pure
milk and adulterant (mixed with cow milk); Table S3: Performance of prediction models obtained
in calibration set, for the discrimination of pure milk and adulterant (mixed with water); Table S4:
Performance of prediction models obtained in validation set, for the discrimination of pure milk and
adulterant (mixed with water); Table S5: Performance of prediction models obtained in calibration and
validation set, for the discrimination of no adulteration, low level adulteration (cow milk adulteration
proportion less than 25%), and high level adulteration (cow milk adulteration proportion more than
25%) samples; Table S6: Performance of prediction models obtained in calibration and validation
set, for the discrimination of no adulteration, low level adulteration (water adulteration proportion
less than 25%), and high level adulteration (water adulteration proportion more than 25%) samples;
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Table S7: Comparison of the partial least squares (PLS) regression, and 11 modern statistical machine
learning algorithms of the Fourier transform infrared spectra for determining the adulterated cow
milk level in buffalo milk; Table S8: Comparison of the partial least squares (PLS) regression, and
11 modern statistical machine learning algorithms of the Fourier transform infrared spectra for
determining the adulterated water level in buffalo milk.
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