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Abstract: Warmer temperatures significantly influence crop yields, which are a critical determinant
of food supply and human well-being. In this study, a probabilistic approach based on bivariate
copula models was used to investigate the dependence (described by joint distribution) between
crop yield and growing season temperature (TGS) in the major producing provinces of China for
three staple crops (i.e., rice, wheat, and maize). Based on the outputs of 12 models from the Coupled
Model Intercomparison Project Phase 6 (CMIP6) under Shared Socioeconomic Pathway 5–8.5, the
probability of yield reduction under 1.5 ◦C and 2 ◦C global warming was estimated, which has
great implications for agricultural risk management. Results showed that yield response to TGS

varied with crop and region, with the most vulnerable being rice in Sichuan, wheat in Sichuan and
Gansu, and maize in Shandong, Liaoning, Jilin, Nei Mongol, Shanxi, and Hebei. Among the selected
five copulas, Archimedean/elliptical copulas were more suitable to describe the joint distribution
between TGS and yield in most rice-/maize-producing provinces. The probability of yield reduction
was greater in vulnerable provinces than in non-vulnerable provinces, with maize facing a higher
risk of warming-driven yield loss than rice and wheat. Compared to the 1.5 ◦C global warming,
an additional 0.5 ◦C warming would increase the yield loss risk in vulnerable provinces by 2–17%,
1–16%, and 3–17% for rice, wheat, and maize, respectively. The copula-based model proved to be an
effective tool to provide probabilistic estimates of yield reduction due to warming and can be applied
to other crops and regions. The results of this study demonstrated the importance of keeping global
warming within 1.5 ◦C to mitigate the yield loss risk and optimize agricultural decision-making in
vulnerable regions.

Keywords: global warming; crop yield; risk; China

1. Introduction

The global surface temperature during the first two decades of the 21st century
(2001–2020) has increased by 0.99 ◦C compared to the pre-industrial level (1850–1900),
with a larger increase on land than in the ocean [1]. This warming trend is projected to
continue in the following decades with rising greenhouse gas emissions, particularly in cul-
tivated areas [2–5]. Given that global food demand is expected to double by the 2050s [3,6,7],
global warming will pose more challenges to crop yield and food supplies for the next
several decades. Therefore, it is crucial to estimate the possible changes in crop yield within
the context of global warming.

Previous studies have shown that crop yields are affected by numerous climatic factors
(e.g., temperature, precipitation, and drought) and their interactions [2,8–13]. Among these
factors, temperature changes (i.e., warming trends) are expected to be more deterministic
than others [14], and thus estimating temperature effects on crop yields is essential for
climate change risk management. Generally, in most regions, higher temperatures can
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reduce crop yields by accelerating crop growth and shortening the growing period, or by
exacerbating the negative impact of other factors on yield, such as warming-driven drought
and compound dry-hot events [8,15–18]. However, warming may positively affect crop
yields in other areas, such as those with heat deficits and those with adaptive measures
(e.g., alteration of cultivar, planting dates, and irrigation types) [5,17,19–21]. Hence, the
different mechanisms of temperature effects on crop growth lead to uncertainty in estimating
possible yield changes under global warming.

Many approaches have been employed to study the climatic effect on crop yield, in-
cluding field experiments, statistical regression, and crop model simulations [5,14,22–25]. For
instance, Zhao et al. [14] investigated the temperature impact on yields of four crops (wheat,
rice, maize, and soybean) based on four analytical methods and the authors found that
temperature negatively affected yield at the global scale. Ray et al. [25] used a statistical crop
time series for ~13,500 political units to analyze the variations in yields of maize, rice, wheat,
and soybean caused by climate change and indicated that climate variability accounted
for roughly one-third (~32–39%) of the observed yield variability. However, most previous
studies have provided deterministic rather than probabilistic estimates of temperature effects
on crop yield [26–28]. In practice, it is difficult to obtain an accurate estimate due to inevitable
uncertainties in model structure or parameters, data quality, and incomplete consideration of
the physical mechanisms related to crop growth [2,8,12,14,29]. In this case, the probability-
based approach helps better characterize the yield-temperature relationship and its variation
under warming conditions [30–32]. Among probabilistic models, copula-based models have
been widely used in agriculture to explore the dependence between crop yields and climate
variability (e.g., precipitation, soil moisture, solar radiation, and temperature) [11,23]. Based
on the joint probability distribution of two individual variables (e.g., yield and temperature),
the copula functions enable flexible estimation of the conditional probability of one variable
when a certain threshold is exceeded for the other variable [33].

A new global temperature goal was recently established in the Paris Agreement to
limit the increase in global temperature to 2 ◦C above pre-industrial levels, and preferably
to 1.5 ◦C [34]. This goal aims to minimize the risk of climate change worldwide. Herein,
we focused on the risk of yield reduction under 1.5 ◦C and 2 ◦C global warming, i.e., the
probability of yield reduction in response to higher temperatures. Meanwhile, China is the
second largest crop-producing country in the world, contributing to 17.4%, 21.9%, and 14.8%
of the total global production of maize, rice, and wheat, respectively [12]. This indicates
that crop yield in China is a matter of both domestic and global food supplies, especially
given the threat of global warming and the continuously increasing population [27,35].

In this study, a copula-based approach is developed to model the joint probability
distribution of crop yield and temperature for assessing the possible outcomes of yield
changes under 1.5 ◦C and 2 ◦C global warming scenarios. This study was conducted on the
main producing provinces corresponding to three staple crops (i.e., rice, wheat, and maize)
in China, focusing on those provinces vulnerable to warming. The objectives of this study
were to: (1) investigate the dependence between crop yield and temperature; (2) examine
the yield sensitivity to different temperature conditions; and (3) estimate the risk of yield
loss at 1.5 ◦C and 2 ◦C global warming targets.

2. Materials and Methods
2.1. Crop Yield and Meteorological Data

We obtained annual crop yield data (from 1995 to 2014) and crop production data
(from 2015 to 2019) for rice, wheat, and maize for all provinces (or autonomous regions)
from the China Agriculture Statistical Report, compiled by the Ministry of Agriculture
and Rural Affairs of the People’s Republic of China. The top ten producing provinces for
each crop were selected as the study area based on the average crop production in recent
years (2015–2019). For each crop, the sum of production in the top ten producing provinces
accounted for more than 80% of the total national production. The growing season and
cropping system information for each crop-province pair were collected from previous
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studies and the agricultural atlas [36–43], as shown in Table 1. The long-term average annual
yield and growing season temperature during the reference period are also shown in Table 1.

Table 1. Crop-producing information for each crop-province pair.

Type Province Short Name Growing Season Cropping System

Rice

Heilongjiang HLJ May-September Single rice
Jiangsu JS April-October Single rice

Zhejiang ZJ April-November Double rice
Anhui AH April-November Double rice
Jiangxi JX April-November Double rice
Hubei HB April-November Double rice
Hunan HN April-November Double rice

Guangdong GD March-November Double rice
Guangxi GX March-November Double rice
Sichuan SC April-October Single rice

Wheat

Hebei HB2 October-May Winter wheat
Jiangsu JS November-May Winter wheat
Anhui AH November-April Winter wheat

Shandong SD September-June Winter wheat
Henan HN2 September-June Winter wheat
Hubei HB November-April Winter wheat

Sichuan SC November-May Winter wheat
Shaanxi SX October-June Winter wheat
Gansu GS October-June Winter wheat

Xinjiang XJ October-June Winter wheat

Maize

Hebei HB2 June-September Summer maize
Shanxi SX2 May-September Spring maize

Nei Mongol NM May-September Spring maize
Liaoning LN May-September Spring maize

Jilin JL May-September Spring maize
Heilongjiang HLJ May-September Spring maize

Shandong SD June-September Spring maize
Henan HN2 June-September Spring maize

Sichuan SC June-September Summer maize
Yunnan YN June-September Summer maize

The observational temperature dataset during 1994–2014 was derived from a daily
high-resolution (0.5◦ × 0.5◦) meteorological dataset (i.e., CN05.1) [44] provided by the
National Climate Center of the China Meteorological Administration. It should be noted
that temperature data were collected from 1994 (one year ahead of crop yield data) because
the growing season for winter wheat starts from the previous winter. This dataset was
constructed based on interpolation from over 2416 station observations across China and
has been widely used to evaluate climate model performance and analyze the climate
characteristics of China [45–47]. It has proven to be a reliable reproduction of the historical
climate in China [48,49]. The monthly temperatures were then calculated based on the daily
data derived from the arithmetic mean. In addition, the simulated daily temperature data for
the historical period and future scenario experiment were derived from 12 models of Coupled
Model Inter-comparison Project Phase 6 (CMIP6), as listed in Table 2. This study focused on
the high-emission shared socioeconomic pathway 5-8.5 (SSP5-8.5). All the model projections
were bias-corrected and downscaled using the Bias Correction and Spatial Downscaling
approach (BCSD), which has been widely used in the meteorological field [50–52].

The spatially weighted average temperature for each province was calculated based
on the weight defined by the crop harvested area mapping in 2000, acquired from the data
center of the global spatial production allocation model (SPAM) (http://mapspam.info/
data/, accessed on 11 August 2022) (Figure 1). According to the growing season information
(Table 1), the annual growing season temperature (TGS) was calculated from the average

http://mapspam.info/data/
http://mapspam.info/data/
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monthly temperatures during the growing season. The first-difference method was used
to detrend the yield and TGS data to eliminate the confounding influence of long-term
variations, such as changes in crop management and technological advancement [9,53,54].

Table 2. Information of 12 CMIP6 models used in this study.

Model Country Modeling Center Resolution
(lat × lon)

ACCESS-ESM1-5 Australia Commonwealth Scientific and Industrial Research Organization
and Bureau of Meteorology 1.25◦ × 1.875◦

BCC-CSM2-MR China Beijing Climate Center 1.125◦ × 1.125◦

EC-Earth3 Europe EC-EARTH consortium 0.7◦ × 0.7◦

FGOALS-g3 China
State Key Laboratory of Numerical Modeling for Atmospheric
Sciences and Geophysical Fluid Dynamics (LASG), Institute of

Atmospheric Physics, Chinese Academy of Sciences
2.25◦ × 2◦

GFDL-CM4
USA NOAA Geophysical Fluid Dynamics Laboratory 1.0◦ × 1.25◦GFDL-ESM4

HadGEM3-GC31-LL UK Met Office Hadley Centre 1.25◦ × 1.875◦

INM-CM4-8 Russia Institute for Numerical Mathematics, Russian Academy of Science 1.5◦ × 2◦

MIROC6 Japan National Institute for Environmental Studies, University of Tokyo 1.4◦ × 1.4◦

MIROC-ES2L 2.8◦ × 2.8◦

MPI-ESM1-2-LR Germany Max Planck Institute for Meteorology 1.875◦ × 1.875◦

MRI-ESM2-0 Japan Meteorological Research Institute 1.125◦ × 1.125◦
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2.2. Copula-Based Model

Copula functions are powerful tools to describe the dependence structure between
random variables [33,55]. In this study, we used the bivariate copula model to construct the
joint probability distribution of temperature (X) and crop yield (Y) based on their univariate
distributions. According to Sklar’s theorem [56], a joint cumulative distribution function
(CDF) can be expressed as follows:

FX,Y(x, y) = C[u, v] (1)

where u and v denote the marginal distribution functions of X and Y, which are uniformly
distributed in the domain of 0 to 1 [33], and copula C describes the bivariate joint CDF of u
and v.

The most commonly used copula families in meteorological and hydrological studies
are elliptical and Archimedean copulas [11,23,57]. Herein, two popular elliptical copulas
(i.e., Gaussian and t) and three Archimedean copulas (i.e., Frank, Clayton, and Gumbel)
were chosen to model the joint probability distribution between temperature (X) and yield
(Y), as listed in Table 3. Different copulas reflect different characteristics of the overall de-
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pendence structure and the tail dependence, with the latter describes the joint distribution
between the extreme values of the variables, which is important for risk analysis. Among
these five copulas, the Gaussian, t, and Frank copulas describe symmetric dependence
structures, i.e., the same degree of dependence in the upper and lower tails (which cor-
respond to extreme values), but with different behaviors at the corners of quadrants. In
contrast, the Clayton and Gumbel copulas characterize an asymmetric tail dependence
with a greater dependence in the lower and upper tails, respectively.

Table 3. Summary of five commonly used bivariate copulas.

Name Function Parameter Range

Gaussian
C(u, v) =∫ Φ−1(u)

−∞

∫ Φ−1(v)
−∞

1
2π
√

(1−θ2)
exp

{
− x2+y2−2θxy

2(1−θ2)

}
dxdy

θ ∈ (−1, 1)

t
C(u, v) =∫ tv

−1(u)
−∞

∫ tv
−1(v)

−∞
1

2π
√

1−θ2 exp
{

1 + x2+y2−2θxy
v(1−θ2)

}− v+2
2 dxdy

θ ∈ (−1, 1)

Clayton C(u, v) = (u−θ + v−θ − 1)
−1/θ θ ∈ [0, ∞ )

Frank C(u, v) = − 1
θ ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
θ ∈ R\0

Gumbel C(u, v) = exp
{
−
[
(− ln u)θ + (− ln v)θ

] 1
θ

}
θ ∈ [1,+∞)

Based on the joint distribution between X and Y, the conditional probability of Y
dropping below a certain threshold (Y < y) under different X conditions (X = x1, x2, . . . ),
i.e., P(Y < y | X = x), can be estimated. The conditional probability density function (PDF)
can be expressed as follows [32,58]:

fY|X(y
∣∣∣x) = c[u, v] · fY(y) (2)

where c denotes the joint PDF of the copula function, and fY(y) denotes the PDF of the
marginal distribution for Y. Once the conditional PDF is determined, the probability
P(Y < y | X = x) can be calculated as the area under the PDF curve within the interval
(−∞, y]. Obviously, the area under the whole PDF curve is always exactly 1.

The data processing flow is as follows. First, the marginal distributions were fitted to
the detrended yield (∆Yield) and TGS (∆TGS). Second, the five bivariate copulas were fitted
to ∆Yield and ∆TGS data, and the optimal copula was selected based on the comprehensive
goodness of fit measures, including the Akaike information criterion (AIC), Bayesian
information criterion (BIC), root mean square error (RMSE), and Nash-Sutcliffe efficiency
(NSE) [59]. The conditional PDFs for different ∆TGS conditions were then determined.
Finally, the probability of yield reduction (i.e., ∆Yield < 0) for each warming condition
(i.e., 1.5 ◦C and 2 ◦C global warming) was estimated. All data processing and analysis
work was implemented based on the MATLAB platform.

2.3. Dependence Measure

Spearman’s rank correlation coefficient (rho) is a measure that assesses the extent to
which a monotonic function can describe the dependence between two random variables,
X and Y. Since it is defined by the rank of given data rather than the data itself, it remains
scale-invariant under strictly increasing transformations of the random variables [33].
Hence, when working with copulas, Spearman’s rho is more appropriate than Pearson’s
correlation coefficient (which measures the linear dependence between random variables).
The Spearman’s rho (ρS) for random variables X and Y can be expressed by the copula
C(u,v) as follows [33]:

ρS = 12
x

[0,1]2
uvdC(u, v)− 3 (3)
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where u and v denote the marginal distribution functions of X and Y, as mentioned earlier.

2.4. Timing of Reaching the Global Warming Targets

The global warming targets of 1.5 ◦C and 2 ◦C refer to global mean surface temperature
(GMST) increases of 1.5 ◦C and 2 ◦C above the pre-industrial level. Since the reference period
was defined as 1995–2014 in this study, a 20-year time window was used to determine the
timing of reaching the 1.5 ◦C and 2 ◦C global warming targets. The specific timing of reaching
the global warming targets was then determined as the first time window when the GMST of
each climate model reached 1.5 ◦C and 2 ◦C above the pre-industrial equivalent. As shown
in Figure 2, this timing under SSP5-8.5 varied with the climate model. Thus, we used a
multi-model ensemble mean to reduce the uncertainty caused by differences among models
to analyze the yield response to future warming.
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Figure 2. Timing to reach 1.5 ◦C (pink triangles) and 2 ◦C (red squares) global warming targets under
SSP5-8.5. The year denotes the central timing of a 20-year time window.

3. Results
3.1. Dependence between Yield and Growing Season Temperature

Figure 3 shows the Spearman’s rho between the detrended TGS and yield for each crop
and province. For rice, temperature and yield were significantly negatively correlated in
Sichuan province (rho = −0.52, p < 0.05), while they were significantly positively correlated
in Heilongjiang (rho = 0.51, p < 0.05) and Jiangsu (rho = 0.45, p < 0.05) provinces as well as
Guangxi Zhuang Autonomous Region (rho = 0.42, p < 0.05). For wheat, temperature and
yield were negatively correlated in the northwestern and southwestern provinces, with
the lowest correlation coefficient of −0.55 (p < 0.05) in Sichuan province, while positive
correlations were observed in northern China and the Yangtze River Delta provinces. In
contrast, for maize, temperature and yield were negatively correlated for all provinces
except Heilongjiang and Henan, with the lowest correlation coefficient of −0.48 (p < 0.05)
in Liaoning province. The correlations between TGS and yield are consistent with those in
previous studies [27,40,42,43,60–63]. These results indicated that the dependence between
yield and TGS varied with crop and region. Overall, a negative correlation between yield
and TGS was observed in about half of the rice- and wheat-producing provinces and in the
vast majority of the maize-producing provinces.
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Figure 3. Spearman’s rank correlation coefficient (rho) between the detrended yield and temperature.

Five copulas were fitted to the detrended TGS and yield data, and then the optimal
copula for each crop and province was selected according to AIC, as shown in Table 4. It can
be seen that Archimedean copulas were more suitable for describing the joint distributions
between TGS and yield in most rice-producing provinces. For wheat-producing provinces,
the optimal copulas were equally divided between elliptical and Archimedean copulas,
while for maize-producing provinces, elliptical copulas dominated. Overall, there was
a tail dependence between ∆TGS and ∆Yield for more than 1/3 of the major producing
provinces, indicating a higher probability of the simultaneous occurrence of extremes in
temperature and yield.

Table 4. Optimal copula for each crop and province during the reference period (1995–2014).

Rice Wheat Maize
Province Copula AIC Province Copula AIC Province Copula AIC

HLJ Gumbel −129.48 HB2 Gaussian −138.18 HB2 Gaussian −124.70
JS Clayton −140.28 JS Gumbel −129.99 SX2 Gaussian −123.97
ZJ Clayton −125.73 AH Gumbel −129.60 NM Gaussian −139.33

AH Frank −122.31 SD Frank −133.21 LN Gaussian −128.61
JX Frank −132.39 HN2 Gumbel −140.42 JL t −127.13
HB Gaussian −138.04 HB t −129.41 HLJ Gaussian −130.76
HN Clayton −127.42 SC Gaussian −126.49 SD Gaussian −130.69
GD Gumbel −130.47 SX Gaussian −137.39 HN2 Clayton −141.53
GX Gaussian −138.24 GS Gaussian −127.69 SC Gaussian −129.09
SC Gaussian −129.33 XJ Frank −134.41 YN Gaussian −140.45

For visualization, a typical province was chosen for each crop to illustrate the de-
pendence characteristics between ∆TGS and ∆Yield. They are Heilongjiang province (rice),
Sichuan province (wheat), and Hebei province (maize), which belong to the cold-temperate
and temperate continental monsoon climate, subtropical monsoon climate, and temperate
continental monsoon climate zones, respectively, indicating that they are under different
heat conditions. Figure 4 compares the estimated ∆Yield distribution with the observed
∆Yield under different ∆TGS during the reference period. Specifically, Heilongjiang province
showed an upper tail dependence based on Gumbel copula, reflecting a greater probability
of higher ∆Yield with higher ∆TGS (Figure 4a). Taking wheat in Sichuan and maize in Hebei
as examples, the joint distribution of ∆TGS and ∆Yield based on Gaussian copula exhibited a
symmetric dependence structure but with tail independence (Figure 4b,c). As seen, most of
the ∆Yield fell in the high-density area of the PDF in all panels, indicating that the estimated
distributions were reliable for describing the dependence between temperature and yield.



Foods 2023, 12, 413 8 of 16

Foods 2023, 12, x FOR PEER REVIEW 8 of 17 
 

 

HB Gaussian −138.04 HB t −129.41 HLJ Gaussian −130.76 
HN Clayton −127.42 SC Gaussian −126.49 SD Gaussian −130.69 
GD Gumbel −130.47 SX Gaussian −137.39 HN2 Clayton −141.53 
GX Gaussian −138.24 GS Gaussian −127.69 SC Gaussian −129.09 
SC Gaussian −129.33 XJ Frank −134.41 YN Gaussian −140.45 

For visualization, a typical province was chosen for each crop to illustrate the de-
pendence characteristics between ∆TGS and ∆Yield. They are Heilongjiang province (rice), 
Sichuan province (wheat), and Hebei province (maize), which belong to the cold-temper-
ate and temperate continental monsoon climate, subtropical monsoon climate, and tem-
perate continental monsoon climate zones, respectively, indicating that they are under 
different heat conditions. Figure 4 compares the estimated ∆Yield distribution with the 
observed ∆Yield under different ∆TGS during the reference period. Specifically, Hei-
longjiang province showed an upper tail dependence based on Gumbel copula, reflecting 
a greater probability of higher ∆Yield with higher ∆TGS (Figure 4a). Taking wheat in Si-
chuan and maize in Hebei as examples, the joint distribution of ∆TGS and ∆Yield based on 
Gaussian copula exhibited a symmetric dependence structure but with tail independence 
(Figure 4b,c). As seen, most of the ∆Yield fell in the high-density area of the PDF in all 
panels, indicating that the estimated distributions were reliable for describing the depend-
ence between temperature and yield. 

 
Figure 4. Joint distribution (normalized between 0 to 1) between detrended temperature (∆TGS) and 
yield (∆Yield) during the reference period for (a) Heilongjiang province (rice), (b) Sichuan province 
(wheat), and (c) Hebei province (maize), respectively. The colored pixels on the z-axis in each panel 
represent the probability density function (PDF) at a given ∆TGS-∆Yield pair, with 1 denoting the 
highest density and 0 denoting the lowest density. The black dots show the location of the observed 
∆Yield at different ∆TGS. 

Figure 4. Joint distribution (normalized between 0 to 1) between detrended temperature (∆TGS) and
yield (∆Yield) during the reference period for (a) Heilongjiang province (rice), (b) Sichuan province
(wheat), and (c) Hebei province (maize), respectively. The colored pixels on the z-axis in each panel
represent the probability density function (PDF) at a given ∆TGS-∆Yield pair, with 1 denoting the
highest density and 0 denoting the lowest density. The black dots show the location of the observed
∆Yield at different ∆TGS.

3.2. Conditional Probability of Yield Reduction under Different Warming Conditions

Based on the joint distribution of ∆TGS and ∆Yield, the conditional probabilities of
yield variation under different warming conditions (herein ∆TGS = 0.5 ◦C, 1 ◦C, 1.5 ◦C, and
2 ◦C) were estimated to reveal the sensitivity of yield to warming. As shown in Figure 5a,
the conditional probability distribution of ∆Yield for rice in Heilongjiang province became
more left-skewed with enhanced warming, indicating that yield was more likely to increase,
or in other words, less likely to decrease, with warmer temperatures. By contrast, the
conditional probability distribution of ∆Yield for wheat in Sichuan province and maize in
Hebei province became more right-skewed as warming intensified (Figure 5b,c), suggesting
a greater likelihood of yield reduction with warmer temperatures. These results indicated
that the probability distribution of yield had different skewness and kurtosis under different
warming conditions and varied with crop and province.

Based on the conditional PDF of yield for each crop and province, we estimated the con-
ditional probability of yield reduction (i.e., ∆Yield < 0) under different warming conditions
by calculating the area under the PDF curve within the interval (−∞, 0]. According to the
correlation between yield and temperature (Figure 3), we divided the producing provinces
of each crop into two parts, one with a negative temperature-yield correlation and the other
with a positive temperature-yield correlation. The negative/positive temperature-yield
correlation reflected the potential benefit/threat of warming on yield. Hence, provinces
with a negative/positive correlation between temperature and yield were referred to as
vulnerable/non-vulnerable provinces thereafter.
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Figure 6 shows the overall probability of yield reduction for each crop under the
four warming conditions. Overall, the yield reduction probability under warming for all
three crops was higher in the vulnerable provinces than in the non-vulnerable provinces,
with maize having a greater probability of yield reduction than rice and maize. It should
be noted that the difference in the probability of yield reduction for maize was smaller
between vulnerable and non-vulnerable provinces than for rice and wheat (Figure 6c). This
suggested that maize was at greater risk of warming-driven yield reduction than rice and
wheat. Specifically, the upward gradient in the probability of maize yield reduction was
greater in the vulnerable provinces than the downward gradient in the non-vulnerable
provinces, indicating that the sensitivity of maize yield to warming was higher in the
vulnerable provinces.

3.3. Future Global Warming and its Effect on Yield Reduction

The bias-corrected and downscaled temperature data were validated in the reference pe-
riod by randomly selecting grid points within China. As shown in Figure 7, the multi-model
ensemble mean of temperature presented a good agreement with the observed tempera-
ture (R2 = 0.976, p < 0.001), indicating that the corrected simulation data could reproduce
the temperature variation and therefore were suitable for future warming prediction. The
future TGS variations for each crop and province were then calculated at 1.5 ◦C and 2 ◦C
global warming under SSP5-8.5 compared to the reference period. Overall, the magnitude
of variation in TGS varies with crop and is ranked under both global warming conditions:
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maize > wheat > rice (Figure 8). Notably, the difference in TGS variation between the 1.5 ◦C
and 2 ◦C global warming will exceed 0.5 ◦C, indicating that the increasing gradient in TGS
between the two warming conditions is greater than that of GMST.
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Figure 8. Growing season temperature variations in main crop-producing provinces at 1.5 ◦C and
2 ◦C global warming under SSP5-8.5 compared to the reference period (1995–2014).

Figure 9 shows the conditional probability of yield reduction (∆Yield < 0) for each
crop and province estimated from the ensemble mean TGS variation (∆TGS) at 1.5 ◦C and
2 ◦C global warming under SSP5-8.5. At the 1.5 ◦C global warming, the yield reduction
probability will be 11–71%, 18–84%, and 34–87% among the main producing provinces
for rice, wheat, and maize, respectively (Figure 9a–c). Overall, the spatial pattern of the
yield reduction probability is consistent for both warming conditions. The most vulnerable
crop-provinces cases under warming are rice in Sichuan province, wheat in the Sichuan and
Gansu provinces, and maize in Shandong, Liaoning, Jilin, Nei Mongol, Shanxi, and Hebei
provinces, in line with the spatial pattern of the temperature-yield correlation (Figure 3).
These provinces should be prioritized for developing climate adaptation strategies.
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Figure 9. Probability of yield reduction for rice (first column, a,d,g), wheat (second column, b,e,h),
and maize (third column, c,f,i) at 1.5 ◦C (top row, a–c) and 2 ◦C (middle row, d–f) global warming
under SSP5-8.5. The difference in the probability of yield reduction between 1.5 ◦C and 2 ◦C global
warming is shown in the bottom row.
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When additional global warming of 0.5 ◦C occurs (i.e., the 2 ◦C global warming
condition), the probability of yield reduction will increase by 2–17%, 1–16%, and 3–17% for
rice, wheat, and maize, respectively, in the vulnerable provinces, while declining to different
degrees in the non-vulnerable provinces (Figure 9g–i). This suggests that the additional
warming would pose a greater risk of yield reduction in the vulnerable provinces, while
mitigating the yield reduction risk in non-vulnerable provinces. For instance, the risk of
rice yield reduction will increase by 17% in Sichuan province, while it will decrease by 8%
in Heilongjiang province.

4. Discussion
4.1. Crop Yield Response to Warming Conditions

The dependence characteristics between the detrended TGS (∆TGS) and yield (∆Yield)
showed an apparent spatial heterogeneity (Figure 3 and Table 4), indicating that yield
response to temperature varied with crop and region. For example, rice yield and temperature
were negatively correlated in Sichuan province, while they were positively correlated in
Heilongjiang and Jiangsu provinces; the temperature was positively correlated with wheat
yield and negatively correlated with maize yield in Shandong province. These results were
broadly consistent with previous studies conducted at different scales over China, though
to different degrees [21,39,40,64–66]. Generally, the warming effect on yield is twofold and
closely related to the optimum temperature for crop growth [67]. On the one hand, warming
can inhibit crop growth, especially during the heading-flowering stage, which shortens the
growth period and thus reduces biomass accumulation [53,66,68,69]. For example, Sichuan
province is relatively abundant in heat, so yields for all three crops were under warming stress
(Figure 3). On the other hand, for some heat-deficient regions (e.g., Heilongjiang province),
warming can converge the temperature to the optimum temperature for crop growth, thus
enhancing photosynthesis and increasing biomass [21,64,66,70]. In addition, yield response
to temperature is also influenced by other external factors, such as water supply [71]. For
example, a study on U.S. maize showed that precipitation substantially altered the magnitude
of temperature-driven yield changes [8]. A global-scale study indicated that the compound
dry-hot condition had a greater impact on maize yields than the individual hot condition [72].

Based on the dependence between yield and temperature, we divided all provinces
into two parts, those threatened by warming (vulnerable provinces) and those benefiting
from it (non-vulnerable provinces). This study focused on the risk of yield reduction in
vulnerable provinces. Figure 9g–i shows that an additional 0.5 ◦C of global warming will
increase the yield reduction risk in vulnerable provinces by 2–17%, 1–16%, and 3–17% for
rice, wheat, and maize, respectively. Since provinces vulnerable to warming account for
about half of the major rice- and wheat-producing provinces and most maize-producing
provinces (Figure 3), the risk of yield reduction in these provinces would threaten China’s
agricultural productivity and total crop production. Hence, it is necessary to limit global
warming to 1.5 ◦C to avoid the adverse effects of global warming on crop yields and thus
protect food supplies.

Overall, the copula-based models proved to be an effective tool for investigating the
temperature-yield relationship in different cropping systems and regions of China. Unlike
the deterministic estimates of previous studies, the copula model can provide yield distribu-
tion given any temperature condition and further offer probabilistic estimates of yield loss
risk. This can help farmers and stakeholders manage agricultural operations to meet the com-
plex challenges of future climate change [73]. Previous studies have shown that copula can
be flexibly applied to explore the relationship between yield and other yield-related climatic
factors (e.g., precipitation and drought) [11,23,73]. Furthermore, by extending the bivariate
model to a trivariate model, it is possible to estimate the yield loss risk under a combination
of two climatic conditions (e.g., temperature and precipitation/drought) [72,74].

4.2. Uncertainties and Limitations

There are some uncertainties and limitations in this study. First, the dependence between
temperature and yield was related to the chosen reference period and the growing period of
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a given crop, which may influence the trend and magnitude of yield changes under different
temperature conditions. Second, this study only considered the effect of temperature on
yield, but the yield is influenced by the combined effects of multiple climatic factors, such as
drought, CO2 concentration, and extreme events [5,13,27,66]. For instance, with and without
considering the effect of CO2 fertilization, yield reduction was projected to be less than
15% and 14% for maize and wheat in most areas of China under the 2 ◦C global warming
condition [66]. Third, this study assumed that the temperature-yield relationship obtained in
the reference period remained unchanged in the future. However, adaptive measures and
technological improvements (e.g., changes in planting time and cultivars, irrigation, and
fertilization) can partly offset the adverse effect of climate change on yield and thus alter
the temperature-yield relationship [24,65,75,76]. Finally, uncertainties may derive from the
model structure and parameters, the spatial and temporal scales, and other factors [27,29,76].
As a result, the probability of yield reduction under global warming may be underestimated
or overestimated. However, despite these uncertainties, this study provided a reasonable
estimate of the yield loss risk in China’s major crops and producing provinces under global
warming. Future work can be extended to the county scale and incorporate other influencing
factors into the copula model to obtain more accurate estimates of yield loss risk under
global change.

5. Conclusions

This study used a probabilistic approach based on bivariate copulas to explore the
dependence between yield and growing season temperature in major producing provinces
of China for three staple crops, i.e., rice, wheat, and maize. The probability of yield reduction
for each crop and province under 1.5 ◦C and 2 ◦C global warming conditions was then
estimated based on the joint distribution of yield and temperature obtained from the optimal
copulas. The main conclusions are as follows:

(1) The dependence between yield and growing season temperature varied with crop and
region. Overall, Archimedean/elliptical copulas provided the best fits of joint distribu-
tion between TGS and yield in most rice-/maize-producing provinces. There were four
rice-producing provinces, five wheat-producing provinces, and eight maize-producing
provinces vulnerable to warming pressures. The most vulnerable crop-province cases
were rice in Sichuan province, wheat in the Sichuan and Gansu provinces, and maize
in the Shandong, Liaoning, Jilin, Nei Mongol, Shanxi, and Hebei provinces.

(2) The yield reduction probability under warming was overall higher in vulnerable
provinces than in non-vulnerable provinces, with maize having a greater yield reduc-
tion risk than rice and wheat. The sensitivity of maize yield to warming gradient was
higher in vulnerable provinces than in non-vulnerable provinces.

(3) From 1.5 ◦C to 2 ◦C global warming, an additional 0.5 ◦C of warming could increase
the risk of yield reduction in vulnerable provinces by 2–17%, 1–16%, and 3–17% for
rice, wheat, and maize, respectively.
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