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Abstract: Laser-induced breakdown spectroscopy (LIBS) is an atomic-emission spectroscopy tech-
nique that employs a focused laser beam to produce microplasma. Although LIBS was designed
for applications in the field of materials science, it has lately been proposed as a method for the
compositional analysis of agricultural goods. We deployed commercial handheld LIBS equipment to
illustrate the performance of this promising optical technology in the context of food authentication,
as the growing incidence of food fraud necessitates the development of novel portable methods for
detection. We focused on regional agricultural commodities such as European Alpine-style cheeses,
coffee, spices, balsamic vinegar, and vanilla extracts. Liquid examples, including seven balsamic
vinegar products and six representatives of vanilla extract, were measured on a nitrocellulose mem-
brane. No sample preparation was required for solid foods, which consisted of seven brands of
coffee beans, sixteen varieties of Alpine-style cheeses, and eight different spices. The pre-processed
and standardized LIBS spectra were used to train and test the elastic net-regularized multinomial
classifier. The performance of the portable and benchtop LIBS systems was compared and described.
The results indicate that field-deployable, portable LIBS devices provide a robust, accurate, and
simple-to-use platform for agricultural product verification that requires minimal sample preparation,
if any.

Keywords: authentication; LIBS; spectroscopy; food fraud

1. Introduction

Food fraud, including economically motivated adulteration (EMA), is defined by
the US Food and Drug Administration (FDA) as an act in which a valuable ingredient or
component of a food product is intentionally omitted, removed, or replaced by a substitute.
EMA occurs, as well, when a substance is added to food in order to enhance its appearance,
taste, or perceived value [1–3]. Food fraud may involve the deliberate and intentional
substitution, addition, tampering, or misrepresentation of food, food ingredients, qualities,
or food packaging [2,4].

According to the Food Fraud Database (Decernis LLC, Washington, DC, USA), com-
mon examples of affected foods include coffee, cheese, olive oil, herbs and spices, seafood,
meat, poultry, alcoholic beverages, honey, fruit and vegetable juices, and cereals. As of
2017, the greatest number of food fraud incidents was associated with dairy products [5–7].
The quality of dairy products in general, and cheeses in particular, was the most frequently
reported issue in terms of safety (presence of pathogenic microorganisms), fraud incidences
(fraudulent documentation), and adulteration (presence of wood pulp) [7–11]. Many highly
valued artisanal cheeses are identified by protected designation of origin (PDO), which
helps protect small manufacturers (and local economies) by guaranteeing the authenticity
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of their products and supporting quality maintenance [12]. Hence, in this study, we selected
European Alpine-style cheeses, in addition to coffee, powdered spices, vanilla extract, and
balsamic vinegar, to demonstrate the efficacy of our approach [13–16]. A rapidly growing
number of reports on food fraud further emphasize the importance of the topic [17].

Rapid classification and authentication of food ensure that fraudulent products do not
reach the market or are quickly and efficiently withdrawn. Vibrational spectroscopy, fluo-
rescence spectroscopy, hyperspectral imaging, PCR-based approaches, mass spectrometry,
and liquid chromatography are the currently used technologies for detecting food adulter-
ants specifically and food fraud in general [18–23]. Regrettably, each of these approaches
requires extensive sample preparation, costly laboratory equipment, highly skilled techni-
cians, and, in some instances, multiple chemical reagents. Regardless of which method is
used, there is a considerable time factor associated with the analytical steps.

Laser-induced breakdown spectroscopy (LIBS) has previously been explored as an
analytical approach for assessing food integrity [22,24–30], and it is considered to be a
promising and exciting method by experts [28,31]. It is a technique that directs a high-energy
laser pulse to the surface of a material, resulting in the generation of plasma above this
surface and the subsequent emission of optical radiation characteristic of the elements, ions,
and molecules that originally comprised the sample [28,32,33]. Analyses of the plasma’s
optical emission can be used to determine the elemental makeup of the source material [34].
The advantages of LIBS include multi-element detection ability, speed of sampling, and
compatibility with a variety of samples (solids, liquids, and gases) [22,33]. In addition,
LIBS requires minimal sample preparation and can be used in tandem with other analytical
techniques, such as mass spectrometry and Raman spectroscopy [35,36]. LIBS has been
used to evaluate milk, infant formula, butter, honey, bakery products, coffee, tea, vegetable
oils, water, cereals, flour, potatoes, palm dates, and various types of meat [27,34,37–49].
Moncayo et al. [50] employed LIBS for the authentication of red wines and the localization
of their geographic origin. Bilge, et al. [45] discriminated between beef, chicken, and pork
meats using LIBS. LIBS was used to identify kudzu powder from different habitats [51],
establish the geographical origin of rice [24,52,53], and identify olive oil [54–56].

Herein, the purpose of this study was to determine whether LIBS was a viable choice
for identifying food products in various forms (liquid, solid, and powder food samples),
using classification models to detect food fraud cases (mislabeling). Two LIBS systems
were evaluated to establish the analytical capabilities of LIBS: a benchtop laboratory-based
system and a portable device. To our knowledge, this is the first study to use portable
LIBS systems for classification analysis of these high-value food goods with the goal of
ensuring their authenticity. This is critical since the long-term efficacy of LIBS-based
food authentication depends on the availability of portable diagnostic equipment capable
of preventing food fraud across the commercial distribution chain, especially for highly
valued commodities.

2. Materials and Methods
2.1. Types of Food Samples and Sample Preparation

LIBS is often used on solid samples like metal and plastic that can be recycled. How-
ever, food samples in general and liquid food samples in particular present some extra
challenges. Because of this, we chose several types of food samples, including liquids,
solids, and powders, to represent a wide range of product categories (Table 1).

Table 1. Summary of food samples tested in the study.

Food Forms Liquid Solid Powder

Products Balsamic vinegar Vanilla extract Coffee beans Cheeses Spices
Varieties or

brands 6 6 7 16 8

Testing methods NC membrane NC membrane Surface shots Surface shots Surface shots
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2.1.1. Liquid Samples
Balsamic Vinegar

Six types of balsamic vinegar were acquired and tested in the study. These examples
were chosen to represent the major brands with distinct protected designations of origin,
including three different brands of Modena balsamic vinegar from Italy, barrel-aged bal-
samic vinegar from Napa Valley (Nap, CA, USA), and Gran Deposito Aceto Balsamico
di Modena (Italy), as well as a sample of home-produced barrel-aged balsamic vinegar
generously provided by Prof. Andrea Cossarizza (the University of Modena and Reggio
Emilia, Italy). A list of the brand names of balsamic vinegar used in the study is provided
in Table A1 in Appendix A.

For the measurements of liquid samples in the study, a method utilizing nitrocellulose
paper was used. Ten microliters of a sample were deposited onto a 6 × 6-mm nitrocellulose
square. Four independent samples of each product were analyzed. There was uneven
sample distribution exhibited on the nitrocellulose paper from two samples due to their
viscosity. One-to-one dilution with deionized water (DI) was used to resolve it. Samples
containing only 10 µL of MilliQ on nitrocellulose squares were used as negative controls.
Each nitrocellulose square was measured at different locations 25 times to account for
variability and augment the representative dataset.

Vanilla Extracts

A total of six vanilla extract samples were acquired for this study from local stores
(West Lafayette, IN). Among them were four vanilla extracts from different geographic
locations, represented by different brands, and one vanilla syrup; the remaining one was an
imitation vanilla extract composed using artificial flavors. Brand names of the six vanilla
products measured in the study are listed in Table A2, Appendix A.

A method similar to that used for measuring the balsamic vinegar (nitrocellulose) was
employed for the vanilla extract samples. Briefly, 10 µL of each sample was deposited on a
6 × 6-mm nitrocellulose square and dried at room temperature for 30 min. Each brand was
represented by four nitrocellulose-based samples. Due to the high viscosity of the vanilla
syrup, one-to-two dilutions with DI water were prepared. As before, 10 µL of DI water on
nitrocellulose squares served as the negative control. Each nitrocellulose square was shot
25 times at multiple locations.

2.1.2. Solid Samples
Cheeses

Fifteen types of European Alpine-style cheese purchased from iGourmet, a web-based
food delivery service, were shipped as refrigerated 5- to 10-oz. blocks (from 141.75 to
283.5 g). Separately, American Gruyère-style cheese was purchased from a local Kroger
supermarket. This product is referred to as Wisconsin Gruyère cheese in the study. A total
of 16 types of cheeses are listed in Table A3, Appendix A.

Cheeses were stored at 4 ± 1 ◦C until analysis. Approximately 1 cm of the outside
of the cheese block was cut and discarded to prevent the use of dried material. For
LIBS measurement, cheese samples were cut into rectangular slices of uniform thickness
(approximately 10 mm wide, 10 mm long, and 2 mm thick) using a stainless-steel blade.
For each time point, four replicate specimens were cut from each type of cheese block. The
blade was rinsed and cleaned with ethanol and dried between each cut of the same cheese
and between each cut of different cheeses.

Water activity (aw) was determined for the sixteen Alpine-style cheeses every two
weeks for 42 days of storage in a refrigerator. The purpose was to establish data regarding
the impact of storage on the LIBS-based product classification. In short, grated cheese
samples (0.5 g) were placed in plastic dishes, covered, stored at 4 ◦C, and assayed in
duplicate at 25 ◦C on an AquaLab 4TE Dew Point Water Activity Meter (AquaLab, Pullman,
WA, USA). The precise dewpoint temperature of the sample was established by an infrared
beam focused on a small mirror. The temperature at the dewpoint was then converted into



Foods 2023, 12, 402 4 of 18

water activity. Prior to analysis, the machine was calibrated using a certified AQUA LAB
standard (Lot no. 20805392, 0.920 aw NaCl, 2.33 mol/Kg in H2O). The aw of the cheese was
measured at 0 (T1), 14 (T2), 28 (T3), and 42 (T4) days, along with the LIBS measurement. The
aw data were expressed as the mean of three repetitions in three independent measurements.
Utilizing commercially accessible software, data were analyzed using 2-way ANOVA and
Tukey’s multiple comparisons test (OriginPro, OriginLab Corporation, Northampton, MA,
USA). Comparisons were considered significantly different at a p-value < 0.05.

Coffee Beans

In this study, seven varieties of coffee were tested directly without the need for grinding
or milling. Whole coffee beans were stored in the original sealed package until the test
and resealed after use. The names of the coffee varieties tested in the study are listed in
Table A4, Appendix A.

Four randomly selected coffee beans of each type were measured from both the front
and back sides. To avoid additional variability caused by the movement of the beans when
hit by the laser, the coffee beans were fastened with tape to a sample holder. The location
of the beans was adjusted for multiple LIBS interrogations to cover as much area on the
bean surface as possible.

2.1.3. Powdered Food Samples
Spices

Six different types of spices were chosen and purchased from the retail outlets.
Table A5 in Appendix A provides the brand names of the spices evaluated in the study.

Most of the ground spices used in this study are fine powders, although the classic
nutmeg is roughly milled powder. The red pepper comes as flakes, which splash easily
when hit by laser shots. Therefore, we employed a sample holder when performing the
measurements.

2.2. Benchtop and Handheld LIBS Systems Setup

The custom-built benchtop LIBS system is shown in Figure 1a and consists of a Nano
SG 150-10 pulsed Nd:YAG laser (Litron Lasers, Bozeman, MT, USA). The laser had a pulse
width of 4 ns; a pulse energy of 62 mJ was used in this study. The ablation laser’s spot
size was approximately 700 µm. Details on the optics used to direct the alignment and
the ablation laser beams were described previously [57,58]. Emissions were detected by
an AvaSpec-Mini-VIS-OEM spectrometer (Avantes, Apeldoorn, the Netherlands), which
has a 350–600-nm spectral range with 0.33-nm resolution. Target samples were placed on
a motorized XYZ stage. The stage height was adjusted so that the crosshairs of the two
lasers assisting in sample positioning were visible at the surface of the samples. A digital
delay pulse generator controlled the triggering of the ablation laser, motorized stage, and
spectrometer. The delay between the ablation pulse and spectrometer data acquisition was
1.17 µs.

The Z-300 LIBS Analyzer (SciAps, Inc., Boston, MA, USA) is a commercially available
handheld LIBS system. The laser, spectrometer, optics, argon gas cartridge, electronics,
and control module were housed in a gun-shaped enclosure, as illustrated in Figure 1b.
Measurements were performed when the sample window (3 cm by 3 cm) was covered with
samples, followed by laser activation. The LIBS analyzer uses a pulsed laser, 5–6 mJ/pulse,
and 1- to 2-ns pulse width. The laser spot size was 100 µm. The spectral range was
approximately 190–950 nm. The settings for rastering location and repetition rate were
controlled in the Profile Builder software (SciAps, Inc.) as needed.

All measurements were taken at 25 different locations across a 5 × 5 rastering array of
four different specimens representing each individual food product. The measurements
of cheeses were repeated at multiple time points (Figure 2). Each spot was ablated with
a single laser shot. Accordingly, 100 spectra per food type per time point were analyzed
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for classification. LIBS measurements were performed using both benchtop and handheld
systems for each type of food sample involved in the study.

Laser

Spectrometer

Laser

Spectrometer

(a) (b)
Target

XYZ
Stage

Plasma

Target

Plasma
Mirror

Focusing
Lens

Expanding
Lens

Collection
Lens

Collection
Lens

Focusing
Lens

Handheld device
(Z-300)

Figure 1. Schematic diagram of LIBS system setup; (a) benchtop system and (b) handheld system.

Foods 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Schematic diagram of LIBS system setup; (a) benchtop system and (b) handheld system. 

The Z-300 LIBS Analyzer (SciAps, Inc., Boston, MA, USA) is a commercially available 
handheld LIBS system. The laser, spectrometer, optics, argon gas cartridge, electronics, 
and control module were housed in a gun-shaped enclosure, as illustrated in Figure 1b. 
Measurements were performed when the sample window (3 cm by 3 cm) was covered 
with samples, followed by laser activation. The LIBS analyzer uses a pulsed laser, 5–6 
mJ/pulse, and 1- to 2-ns pulse width. The laser spot size was 100 μm. The spectral range 
was approximately 190–950 nm. The settings for rastering location and repetition rate 
were controlled in the Profile Builder software (SciAps, Inc.) as needed. 

All measurements were taken at 25 different locations across a 5 × 5 rastering array 
of four different specimens representing each individual food product. The measurements 
of cheeses were repeated at multiple time points (Figure 2). Each spot was ablated with a 
single laser shot. Accordingly, 100 spectra per food type per time point were analyzed for 
classification. LIBS measurements were performed using both benchtop and handheld 
systems for each type of food sample involved in the study.  

 
Figure 2. Diagram illustrating the variety of food examples and the testing procedures employed in 
the presented experiments. Each food product was represented by multiple specimens, each of 
which was interrogated repeatedly by LIBS. Please note that only cheeses were sampled at multiple 
time intervals. 

Laser

Spectrom eter

Laser

Spectrom eter

(a) (b)
Target

X Y Z
Stage

Plasm a

Target

Plasm a
M irror

Focusing
Lens

Expanding
Lens

C ollection
Lens

C ollection
Lens

Focusing
Lens

H andheld device
(Z -300)

Solid foods

Liquid foods Powdered 
foods

Cheeses Coffee

Variety 1

Spice 1

Brand 1Brand 1

Variety 1 Variety 2 Variety n Variety 2 Variety n

Spices

Spice 2 Spice n

Balsamic 
vinegar

Vanilla 
extract

Brand 2 Brand n Brand 2 Brand n

All tested 
food 

specimens

All tested 
food 

specimens

Specimen 3Specimen 2Specimen 1

Shot 1 Shot nShot 2

T1 T2 T3 T4

Specimen 4Specimen 3Specimen 2Specimen 1

Shot 1 Shot nShot 2

Specimen 4

Figure 2. Diagram illustrating the variety of food examples and the testing procedures employed
in the presented experiments. Each food product was represented by multiple specimens, each of
which was interrogated repeatedly by LIBS. Please note that only cheeses were sampled at multiple
time intervals.

2.3. Classification Procedures

Raw spectra were filtered to eliminate low signal-to-noise instances due to faulty
sample positioning or similar technical problems. Spectral normalization and a median
filter were applied to reduce the effects of variations in emission intensity coming from
plasma fluctuations. Subsequently, every spectral feature was used in multiple ANOVA
models as a dependent variable in order to select the features associated with large effect
sizes (η2) [59]. This was followed by the training of a regularized multinomial logistic
regression elastic net model (ENET), which provides multivariate feature selection as
well as classification (prediction) [60,61]. ENET combines LASSO and ridge regression
techniques. Although the use of the ENET approach in LIBS data analysis has been reported
before [62], despite its advantages, it is still a very uncommon method for this field, which
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traditionally relies on well-established chemometric techniques such as PLS-DA [63–66].
Importantly, in the n�p setting, it retains the sparse features of LASSO regression and the
stability of ridge regression. Note that the number of selected features per food type could
differ for each ENET model. The ENET prediction quality was evaluated using 10-fold
cross-validation.

3. Results
3.1. LIBS Measurements

Table 1 summarizes all the food products measured in the study. We tested three
different forms of high-value regional foods (liquid, solid/semi-solid, and powder) by
both benchtop and handheld LIBS, including 16 hard cheeses, seven coffee varieties, six
vanilla/vanillin extracts, and six different powdered spices. Additionally, we monitored
changes in the water activity of the cheese samples at four sampling time points. It is
known that water-activity measurement is an important method for predicting the shelf
life of food products. By measuring and controlling the water activity of foodstuffs, it is
possible to monitor and maintain the physical stability of foods and optimize their physical
properties. Therefore, the water activity of cheeses is an indicator informing us about the
shelf-life status of the product. Figure 3 illustrates the evolution of water activity in the test
cheeses during a period of refrigerated storage.
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Figure 3. Changes in water activity in 16 types of tested cheeses over six weeks of refrigerated storage
measured at four time-points.

All the food samples were measured by the benchtop LIBS system covering a spectral
window from 200 to 600 nm. The corresponding data obtained from the handheld LIBS
device covered a spectral range of 190 to 950 nm. The typical LIBS spectra of (a) coffee bean,
(b) vanilla extract, (c) balsamic vinegar, and (d) spice samples, measured using benchtop
and handheld LIBS systems, are shown in Figures 4 and 5, respectively. The spectra of each
food category represent an average of all the measurements. For example, Figure 4b is an
averaged spectrum of 600 (six vanilla extracts × 100 spectra/vanilla extract) measurements.
The data in Figure 5 are spectral results obtained after automatic data processing executed
in the handheld device, whereas Figure 4 represents the raw data from the benchtop system.
The main emission lines from the essential elements for food analysis, selected as inputs
of ENET, have been labeled in Figures 4a and 5a. The detected elemental emission bands
are identified with the aid of the spectroscopic data included in the NIST Atomic Spectra
Database [67]. CN band, Ca ionic, Ca atomic, C2 band, P ionic, and Na atomic peaks, which
are dominantly detected in biomaterials, can be seen in Figure 4.
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Although there was a minor difference in peak values depending on the food products,
the same emission peaks were found in all the tested food samples. Similarly, there were
only minor differences in the handheld LIBS results, as shown in Figure 5. However,
additional peaks, such as C, Mg, H, K, and O peaks, were detected owing to the broader
spectral range (190–950 nm) of the handheld device. This broader spectral range contributed
to improving the classification accuracy of the coffee bean, vanilla extract, and balsamic
vinegar samples.

Figures 6 and 7 show the averaged LIBS spectra of the cheese samples, measured
using the benchtop and handheld LIBS systems at four different time points. Note that each
spectrum is an average of 1600 (16 cheese types × 100 spectra/cheese type) measurements
under the same conditions. The measurements were conducted every 14 days. The cheese
specimens were instantly stored in a vacuum pack and refrigerator after each measurement.
Emissions of the identical elemental components in various LIBS spectral fingerprints of the
cheese samples led to a significant degree of resemblance. Some minor differences in peak
intensities appeared at different time points. As an example of changes over time, Table 2
compares the integrated peak intensity of Na I 589.0 nm in Frantal Emmental Cheese (C10)
at each sampling time point. Integrated peak intensity was calculated by integrating the
peak area study after sum-to-one normalization. It was shown that the averaged integrated
intensities of the Na I emission peak were similar at four different sampling time points,
implying relatively uniform product preservation within time periods.
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Figure 6. Averaged raw LIBS spectra of cheese samples measured on four different dates using the
benchtop LIBS system. Note that every measurement was conducted every two weeks.

Table 2. The averaged integrated intensity of emission peak Na I 589.0 nm at four different sampling
time points in Frantal Emmental Cheese (C10). The values in parentheses represent the relative
standard deviation (RSD).

Time Point Benchtop LIBS Handheld LIBS

T1 0.0060 (17.4%) 0.0071 (11.3%)
T2 0.0062 (10.6%) 0.0063 (15.3%)
T3 0.0056 (10.0%) 0.0067 (16.3%)
T4 0.0054 (18.6%) 0.0074 (18.3%)
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Figure 7. Averaged raw LIBS spectra of cheese samples measured on four different dates using the
handheld LIBS system. Note that every measurement was conducted every two weeks.

3.2. Classification Using the Elastic Net Approach

Table 3 reports the ENET classification accuracy of five different food products mea-
sured using the benchtop LIBS system and the handheld LIBS system. The training (and
accuracy evaluation) was performed via 10-fold cross-validation. As can be seen in the
tables, cheese samples were sampled and measured by two LIBS systems at four time
points. Thus, separate classifiers were developed and applied to the dataset containing
measurements from each of the four time points. As mentioned before, prior to the algorith-
mic training, univariate feature selection via ANOVA was applied to the data to minimize
the subsequent training time. The accuracy of the model was found to be excellent, reaching
94.5 ± 1.51% for vanilla extract and 99.30 ± 0.70% for spices in the benchtop system, and
92.70 ± 2.30% for coffee beans, 98.30 ± 0.69% for vanilla extract, and 90.80 ± 1.88% for
balsamic vinegar in the handheld system.

Table 3. ENET classification accuracy of five different food products measured by the benchtop and
handheld LIBS systems at four different time points.

Food Products
Classifier Accuracy

Benchtop LIBS Handheld LIBS

16 cheeses
T1 85.80 ± 1.57% 81.20 ± 1.51%
T2 82.20 ± 1.53% 83.00 ± 1.34%
T3 87.60 ± 1.99% 84.70 ± 1.79%
T4 84.10 ± 1.93% 84.20 ± 1.71%

6 coffee varieties 85.00 ± 1.94% 92.70 ± 2.30%

6 vanilla extracts 94.50 ± 1.51% 98.30 ± 0.69%

6 balsamic vinegars 88.20 ± 2.10% 90.80 ± 1.88%

8 powdered spices 99.30 ± 0.70% 84.50 ± 1.94%

The classification of coffees and balsamic vinegar showed slightly lower accuracy
in the benchtop system compared to the handheld system. This suggests that the broad
spectral range of the handheld system may be the most dominant factor in the classification
of coffee beans and balsamic vinegar using LIBS. However, the classification accuracy of
spices in powder form was lower using the handheld system, pointing to the spectral
resolution as the decisive factor. Additional studies are required to evaluate these types of
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samples further, particularly with respect to the preparation methods for powders. The test
results for vanilla extracts show comparable classification accuracy in both LIBS systems.

The classification performance for cheese samples measured at different storage time
points was also assessed. There were no observable differences in the measurements
obtained during different periods. The classification accuracy of those measurements
did not present significant differences either. Note that every three sample replicates
were averaged and analyzed to establish the classification performance results. Slightly
higher classification accuracy of cheese samples was shown in the benchtop system than
in the handheld device. It is likely that more sensitive detection in the visible and near-
visible range (350–650-nm wavelength) could be the critical factor for classifying cheeses
using LIBS.

3.3. Food Fraud Detection

In the final step of our study, we simulated two realistic food-fraud detection scenarios
in which a specific sample with a different origin and/or composition than the rest of
the set was to be identified and detected. In the first simulation, we aimed to identify
Wisconsin Gruyère-style cheese manufactured in the USA from pasteurized milk. In the
second scenario, we attempted to identify imitation vanilla taste (vanillin) among natural
vanilla extracts. In the first scenario, we envisioned three classes (unpasteurized European
cheeses branded as “Gruyère” vs. other unpasteurized European Alpine-style cheeses vs.
Wisconsin Gruyère-type cheese produced from pasteurized milk), whereas, in the second
scenario, there are only two classes (real vanilla extract vs. imitation vanilla flavor). We
used multiple repeated independent instances of 5 × 2 cross-validation runs to evaluate the
system. For the cheese detection scenario, the accuracies of the benchtop (90.17 ± 1.04%)
and the portable platforms (90.95 ± 1.05%) were virtually identical (see Table A6). Similarly,
the benchtop and the portable systems operated equally well in detecting the imitation
vanilla (99.66 ± 0.47 and 99.38 ± 0.58%, respectively). See Table A7 in Appendix A for the
result of the individual classification runs.

4. Discussion
4.1. Sample Preparation

Solid specimens were successfully analyzed without any processing. Grinding samples
into powder and pressing them into a pellet is a popular preparation method for solid
foods [68,69]. For instance, Iqbal et al. [70] reported that samples were finely powdered
and vacuum-dried at 370 K for 10 h. The sample was then compressed for 20 min at 30 T
hydraulic pressure into pellets that were 3 mm thick and 1.3 cm in diameter. However, the
preparation of pellets or tablets is an important limiting factor and cannot be easily used
for in-situ analysis. In contrast, in our experiments, solid food samples like Alpine cheeses
and coffee were tested without any preparation. The samples were immobilized for an easy
location adjustment to ensure coverage of the whole sample surface by laser shots during
the collection of complete elemental profiles.

Regarding measurement preparation for powders (spices), we utilized a custom
sample holder to confine the samples. To overcome blowing off and scattering during
laser-matter interaction, a layer of powdered material was applied to a double-sided piece
of tape that covered and adhered to the bottom of the sample holder.

To prevent splashing and the formation of surface ripples caused by the shock wave
of LIBS, as well as to achieve a lower limit of detection, better repeatability, and greater
sensitivity when working with liquid food samples, the formation of a gel using commercial
collagen is commonly performed, followed by drying in an air-assisted oven [50,71,72].
However, the dry gel emission signals cannot be simply subtracted, and additional chemo-
metric spectral treatments are necessary. In our study, we employed a nitrocellulose
paper-based sample-preparation approach that is highly compatible with liquid food sam-
ples owing to its porous structure, hydrophilic property, and minimal effect on the sample
spectra. This approach has been successfully used by other researchers when utilizing
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LIBS to measure the presence of metals in water or oil [73–76]. Moreover, this method is
simpler and more efficient than the commonly used gel-formation technique [77]. The
characteristic peaks of the nitrocellulose membrane do not interfere with the elemental
profiles of foods and can be easily distinguished from the LIBS spectral matrix. This is
the first report on the use of nitrocellulose membranes with LIBS for the classification of
liquid food samples. Compared to the commonly used methods, our approach requires
little or no sample preparation. It is simple, rapid, and cost-effective. Consequently, it
is more practical and compatible with envisioned usage scenarios involving wholesalers,
food inspectors, and customs officers that examine traded agricultural products. However,
we must stress that the viability of using nitrocellulose paper may depend on the viscosity
of the sample. We have not tested a sufficient range of liquid products to endorse this
method unreservedly.

4.2. Water Activity

Most of the 16 types of cheese showed a small but statistically significant difference
in water-activity values between the beginning of storage and 42 days later. However,
despite these small changes in water activity, the classification of cheeses with LIBS systems
remained stable and robust. Interestingly, one recent LIBS application was to measure
the moisture content in cheese, using oxygen emission normalized by CN emission as the
indicator [78]. Another study performed by Ayvaz et al. [79] investigated the potential of
using LIBS with partial least squares regression to determine the chemical quality-control
parameters for cheese samples, such as moisture, dry matter, salt, total ash, total protein,
and pH. In general, our results indicate that small variations in aw are unlikely to be
limiting factors for the use of LIBS in authentication, provided that the classification system
is paired with an appropriate feature-selection strategy.

4.3. Spectral Classification

As anticipated, the LIBS spectra of all the analyzed food items exhibit remarkably
similar spectral characteristics due to their comparable elemental composition. Clearly, the
significant resemblance between these spectra makes their classification challenging, at
least visually. For the differentiation and classification of food samples based on their LIBS
spectra, it is therefore required to employ statistical machine-learning approaches.

We chose ENET as the primary tool for analyzing LIBS spectra due to its embedded
feature selection capability, which is crucial given the usage of high-resolution spectra
and a restricted number of food samples [60,61]. The ENET method classifies products
using LIBS while identifying the most relevant chemical constituents that support the
classification results. It is important to note, however, that features identified by ML
algorithms may not always represent identifiable elemental peaks and may also come
from “background”. Matrix effects play a big role in how complex samples (like food) are
measured by spectroscopy, and multivariate approaches may exploit the matrix effects
when fingerprinting is performed [80].

To the best of our knowledge, relatively few published studies apply LIBS supported
by machine-learning algorithms to discriminate/classify food samples based on their
geographical origins or detection of adulteration. As for liquid food samples, three research
reports have indicated that LIBS techniques paired with machine-learning approaches
were employed with success for the discrimination/classification of several olive oils
according to their acidity and geographical origin [54–56]. The olive oils tested in these
studies are distinct in geographical origin and oil quality, i.e., extra virgin olive oil quality
or typical commercial edible oils. Oil samples were placed in shallow, uncovered glass
Petri plates such that a focused laser beam could reach their free surface to generate
plasma. In these studies, classification accuracy rates of more than 90% were achieved,
indicating the promise of this method. Considering the limitations and difficulties of
working with aqueous samples, researchers developed a liquid-to-solid transformation
of red wine using a dry collagen gel to increase the analytical performance. The LIBS
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technique combined with neural networks provided a classification procedure for the
quality control of red wines with PDO [50]. Furthermore, the identification of milk fraud,
as well as the adulteration ratios, were reported using LIBS coupled with visual clustering
following principal component analysis (PCA) [29].

Previous studies reported using the combination of LIBS and chemometric and/or
machine-learning methods to identify coffee varieties [16] and detect adulteration of wheat,
corn, and chickpeas in Arabica coffee [68]. The samples were ground and pressed into
pellets for LIBS measurements. Zhang et al. tested multiple classifiers (including support
vector machines, neural networks, and partial least squares (PLS) regression), some of which
provided an accuracy of around 80% [16]. In our study, we achieved a higher classification
accuracy by employing the elastic net approach. In the other study, all major and minor
elemental composition differences present in the LIBS spectra of coffee were identified using
traditional chemometric techniques such as PCA and PLS [81]. In contrast, in our study,
the most critical spectral features associated with elemental differences were identified
using the embedded feature selection ability of the ENET model. These findings confirmed
that the combination of LIBS and the ENET classifier has the potential to be used as a
routine technique for determining coffee bean authenticity and detecting adulteration. It is
becoming increasingly important to employ chemometrics and machine-learning methods
in food authentication systems [82–84]. The fact that ENET allows for simultaneous feature
selection (providing insights into the elemental composition), as well as classification,
demonstrated that it is a method exceptionally well-suited for this food analysis task.

As far as we know, this study is the first time that LIBS and chemometric methods
were used together to classify 16 types of cheese. The results showed that this combination
could be a useful and practical way to find food fraud in cheese products without a lot of
sample preparation. Also, this is the first study to utilize LIBS assisted by machine-learning
methods to efficiently classify powdered spices using direct analysis, i.e., without making
pellets. Thus, our results demonstrated that LIBS, aided by suitable statistical methods,
can be an effective technique for verifying the quality and safety of spices and similar
powdered products.

It is astonishing that there are discernible spectral differences between closely related
cheeses. One probable explanation is that artisanal Alpine-style cheeses are produced
seasonally in particular regions, and the bacteria responsible for cheese ripening and matu-
ration are distinctively associated with geographical location and changing seasons [85–89].

Even though our classification experiments show a remarkably high degree of accuracy,
it is important to note a critical limitation. For each example presented, the tests assume a
supervised learning environment with an exhaustively defined training set. In other words,
we assume that all classes are known beforehand (including the classes describing possibly
fraudulent or inferior products). This cannot be guaranteed in many instances, resulting
in the so-called non-exhaustive learning problem, which necessitates simultaneous class
discovery and classification [90]. We plan to address this issue in future research using our
prior experience with non-exhaustive training sets, such as those emerging in food safety
applications [91].

5. Conclusions

The LIBS technique, paired with supervised statistical learning methods, has been
evaluated in real-world applications as a rapid and robust classifier of high-value food
items based on their distinctive spectral fingerprints. This study aimed to demonstrate
that an existing field-deployable LIBS device originally built for material science applica-
tions may provide a rapid, easy, and inexpensive authentication platform for agricultural
products where minimal or no sample preparation is required. To achieve this purpose,
our study utilized new, easy, and cost-effective sample preparation techniques for liquid
and powdered food samples. Utilizing nitrocellulose paper for liquid food samples im-
proved the quality of the spectra and allowed us to avoid the typical sample splashing
caused by LIBS-generated shock waves. The LIBS signal of nitrocellulose paper is readily
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distinguished from the spectra of tested food samples. It has also been demonstrated that
accurate analysis of solid foods such as cheeses and entire coffee beans may be performed
using LIBS without any sample preparation.

Overall, the results point to the feasibility of rapid identification of various high-value
foods by LIBS accompanied by supervised classification methods, using not only lab-based
benchtop instruments but also portable, field-deployable units.
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Appendix A

Additional tables containing information about all the tested food samples and the
detailed results of the food fraud simulation study are described in Section 3.3.

Table A1. Tested balsamic vinegar samples.

Code Balsamic Vinegar Samples

B1 Balsamic Vinegar of Modena
B2 Balsamic Vinegar of Modena (Colavita)
B3 Barrel-aged Balsamic Vinegar (Napa Valley Harvest)
B4 Gran Deposito Aceto Balsamico di Modena (Giuseppe Giusti)
B5 Gold Quality Balsamic Vinegar of Modena (Trader Joe’s)
B6 Prof. Andrea Cossarizza’s private collection balsamic vinegar

Table A2. Tested vanilla samples.

Code Vanilla Samples

V1 Pure vanilla extract (Kroger, Cincinnati, OH)
V2 Imitation vanilla flavor (Kroger, Cincinnati, OH)
V3 Pure vanilla extract (McCormick & Company, Baltimore, MD)

V4 San Luis Rey pure vanilla (La Vencedora e Hijos SA de CV, San
Luis Potosi, Mexico

V5 Vanilla syrup (1883 Maison Routin, La Motte Servolex, France)
V6 Simple Truth Madagascar vanilla extract (Kroger, Cincinnati, OH)
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Table A3. Tested Alpine-style cheese samples.

Code Alpine-Style Cheese Samples

C1 Abondance AOP
C2 Appenzeller
C3 Austrian Alps Gruyère
C4 Berggenuss
C5 Brenta
C6 Charles Arnaud Comté AOP 6 Month Aged
C7 Charles Arnaud Comté AOP Reserve 12 Months Aged
C8 Comté AOP Grande Reserve 24 Months Aged
C9 Comté AOP Reserve 10 Month Aged

C10 Frantal Emmental
C11 Gruyère AOP
C12 Hoch Ybrig
C13 Kaltbach Cave Aged Emmental AOP
C14 Kaltbach Cave Aged Swiss Gruyère AOP
C15 Parpan Alpkaese
C16 Wisconsin Gruyère Alpine-Style Cheese

Table A4. Tested coffee samples.

Code Coffee Samples

F1 Italian Dark Roast (OLDE Brooklyn Coffee, Brooklyn, NY)
F2 Guatemalan Antigua Blend (Copper Moon Coffee, Lafayette, IN)
F3 Lavazza Super Crema (Luigi Lavazza SpA, New York, NY)

F4 Despierta tus Sentidos (Nespresso USA Inc., Long Island City,
NY)

F5 Café Cubano Roast (Mayorga Organics, Rockville, MD)
F6 Artisan Blend (Koffee Kult, Hollywood, FL)
F7 Shot Tower Espresso (Verena Street Coffee Co., Dubuque, IA)

Table A5. Tested spices samples.

Code Spices Samples

S1 East Indian ground nutmeg (McCormick & Company, Baltimore,
MD)

S2 Classic ground nutmeg (McCormick & Company, Baltimore, MD
S3 Ground mustard (Kroger, Cincinnati, OH)
S4 Smidge & Spoon crushed red pepper (Kroger, Cincinnati, OH)
S5 Cayenne pepper (Spice Islands, Ankeny, IA)
S6 Ground cumin (McCormick & Company, Baltimore, MD)
S7 Private Selection ground cumin (Kroger, Cincinnati, OH)
S8 Simple Truth organic ground turmeric (Kroger, Cincinnati, OH)

Table A6. Result of testing three cheese categories (Alpine-style cheeses identified as “Gruyère”
manufactured from unpasteurized milk, other Alpine-style cheese produced from unpasteurized milk,
Wisconsin Alpine-style cheese produced from pasteurized milk). The table reports 10 independent
5 × 2 cross-validation runs.

Experiment Run
Accuracy [%]

Benchtop Handheld

1 89.1 91.3
2 91.5 92.3
3 89.4 89.4
4 90.5 91.8
5 90.8 89.9
6 89.8 90.8
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Table A6. Cont.

Experiment Run
Accuracy [%]

Benchtop Handheld

7 91.6 91.3
8 90.8 89.6
9 88.4 92.3
10 89.8 90.8

90.17 (1.04) 90.95 (1.05)

Table A7. Result of detecting imitation vanilla (vanillin) among real vanilla extracts. The table reports
10 independent 5 × 2 cross-validation runs.

Experiment Run
Accuracy [%]

Benchtop Handheld

1 99.4 98.8
2 100 98.8
3 100 100
4 98.9 100
5 100 99.0
6 99.4 98.6
7 100 99.2
8 100 100
9 98.9 99.4
10 100 100

99.66 (0.47) 99.38 (0.58)
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