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Abstract: The limited nutritional information provided by external food representations has con-
strained the further development of food nutrition estimation. Near-infrared hyperspectral imaging
(NIR-HSI) technology can capture food chemical characteristics directly related to nutrition and is
widely used in food science. However, conventional data analysis methods may lack the capability of
modeling complex nonlinear relations between spectral information and nutrition content. Therefore,
we initiated this study to explore the feasibility of integrating deep learning with NIR-HSI for food
nutrition estimation. Inspired by reinforcement learning, we proposed OptmWave, an approach that
can perform modeling and wavelength selection simultaneously. It achieved the highest accuracy on
our constructed scrambled eggs with tomatoes dataset, with a determination coefficient of 0.9913 and
a root mean square error (RMSE) of 0.3548. The interpretability of our selection results was confirmed
through spectral analysis, validating the feasibility of deep learning-based NIR-HSI in food nutrition
estimation.

Keywords: deep learning; near-infrared hyperspectral imaging; food nutrition estimation; wavelength
selection

1. Introduction

Diet plays a crucial role in maintaining health. Poor diet stands as a prominent
instigator of diseases on a global scale, contributing to over a quarter of preventable
fatalities across the world [1]. Food nutrition estimation is a way to ensure a healthy diet by
allowing individuals to understand the specific nutritional value of foods [2]. Traditionally,
it has relied on laboratory analysis, a time-consuming, costly, and labor-intensive process
requiring specialized skills and equipment. While professional dietitians also offer a means
of estimating food nutrition, their estimations may have slightly lower accuracy and may
not fully align with the public’s increasing demand for convenient and reliable methods of
daily food nutrition estimation.

In recent years, as a subdomain of food computing [3], food nutrition estimation
techniques have emerged as promising alternatives. Most existing methods rely on food’s
external representation to estimate its nutrition [4], including from the chewing sounds [5],
food images [6–8], or ingredient text [9]. However, these methods are highly dependent on
datasets and lack a comprehensive analysis of the chemical properties of the food, which
is crucial for accurate nutrition estimation. A more promising approach is near-infrared
hyperspectral imaging (NIR-HSI) which offers a direct and precise prediction of food
nutrition by analyzing functional groups and molecular structures. NIR-HSI has been
shown to be an effective tool for assessing various food quality parameters, including
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carbohydrate, fat, and protein composition [10,11]. Hu et al. leveraged off-the-shelf near-
infrared emitting diodes and a photodiode to develop a portable calorie estimation system,
demonstrating the great potential of near-infrared technology for food nutrition estimation
in everyday life [12]. However, existing works in this field have mainly focused on simple
foods such as staple foods, drinks, and fruits, which exhibit higher inter-class similarities
in terms of their nutritional composition. Yet more complex food items, such as Chinese
dishes, may exhibit larger variations in nutritional content due to differences in ingredient
proportions. The accurate estimation of nutrition in such diverse food items remains a
significant challenge. Therefore, to address this research gap and explore the potential
of combining deep learning and NIR-HSI technology for food nutrition estimation, we
present a case study on predicting the protein content in scrambled eggs with tomatoes.
Protein plays a vital role in food nutrition as it provides essential amino acids and serves
as a fundamental building block for human cells, tissues, and organs [13]. Consequently,
accurately estimating the protein content in food is of great importance for nutritional
assessment. In the context of Chinese dishes, scrambled eggs with tomatoes, a popular
dish, has been selected as the focal point of this study. This choice is motivated by the
dish’s simplicity, consisting of only two main ingredients, and the significant impact that
ingredient proportions can have on its protein content. Therefore, analyzing the protein
content in scrambled eggs with tomatoes serves as an illustrative case to explore the
potential of combining deep learning and NIR-HSI technology for accurate food nutrition
estimation.

The main contributions of this study are as follows: (1) Construct a near-infrared
spectral dataset of scrambled eggs with tomatoes using meticulous measurements and pro-
cessing. (2) Propose a novel deep learning method called OptmWave, which integrates two
neural networks to simultaneously predict protein content and select wavelengths. (3) The
comparison with conventional approaches demonstrates the effectiveness of our proposed
deep learning methods. (4) The interpretability of our selection results is confirmed through
near-infrared spectral analysis.

2. Material and Methods
2.1. Sample Preparation

In this study, tomatoes were purchased from Beijing Xingfurongyao supermarket,
China, and eggs were bought from Beijing Hongyuan Technology Company, Beijing, China.
The tomatoes were blanched and peeled using boiling water and then cut into 8 g chunks.
Meanwhile, the eggs were evenly stirred using an eggbeater. The total weight of each
sample was 560 g, consisting of raw materials (500 g) and seasonings (60 g). Based on the
Chinese dietary guidelines, the seasonings used in the dish included oil (50 g), salt (5 g),
and sugar (5 g). The dish incorporated varying proportions of eggs and tomatoes as raw
materials: 50 g egg with 450 g tomatoes, 100 g egg with 400 g tomatoes, 150 g egg with 350 g
tomatoes, 200 g egg with 300 g tomatoes, and 250 g egg with 250 g tomatoes. To diversify
the sample types, the study also included samples containing only eggs or tomatoes.

The scrambled egg with tomatoes was prepared according to a traditional Chinese
recipe: eggs and salt were evenly mixed, added to 160 °C oil, and fried for 1–1.5 min before
the addition of tomatoes and sugar. The cooking time was 3.5 min, using a cooking power
of 2100 W. Once cooled to an ambient temperature of 24 ◦C, the samples were homogenized
using a KENWOOD-AT320B cooking-chef machine at third gear for 30 s. The resulting
mixture was poured into Petri dishes with a diameter of 3 cm and a height of 0.5 cm and
filled to a weight of 8 g before being smoothed out.

2.2. Hyperspectral Image Acquisition and Spectra Extraction
2.2.1. Hyperspectral Imaging System

The reflectance spectra of the scrambled eggs with tomatoes samples were recorded
using a near-infrared (NIR) system provided by American Ocean Optics Company. The
NIR system comprised a FLAME-S-VIS-NIR-ES spectrometer with a wavelength range
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of 900 to 1700 nm, an HL-2000-FHSA light source, a diffuse reflection standard plate, a
reflection probe bracket, and a laboratory-level reflection probe with a diameter of 400 µm.
For spectrum acquisition, OceanView 1.6.7 software was employed, which allowed for
precise control and measurement of the reflectance spectra. The spectral resolution achieved
with this setup was 3.1 nm, ensuring detailed characterization of the samples. The FLAME-
S-VIS-NIR-ES spectrometer served as the primary instrument for capturing the reflectance
spectra. It utilized the HL-2000-FHSA light source to illuminate the samples, and the
reflected light was collected using the reflection probe. The probe, securely held in place by
the reflection probe bracket, maintained consistent positioning during the measurements.
The diffuse reflection standard plate was employed as a reference to calibrate the system
and ensure accurate measurements. The process of hyperspectral image acquisition is
illustrated in the Figure 1.

Figure 1. The process of hyperspectral image acquisition spectra extraction.

2.2.2. Hyperspectral Image Correction

To minimize the impact of solar altitude angle variations on spectral measurements,
sample spectra were obtained between 10:00 and 14:00 Beijing time. Throughout this time
frame, the solar altitude angle remained above 45 degrees [14]. Prior to data collection,
both the light source and spectrometer were preheated for 30 min, and the sample was
maintained at room temperature (24 degrees Celsius). After cooling, the following parame-
ters were set for collecting spectra of scrambled eggs with tomatoes: an integration time of
196 ms, 10 scanning repetitions, and 5 smoothing points. The spectral data were captured
within the range of 900 to 1700 nm, with a spectral interval of approximately 3.1 nm. A
diffuse reflectance standard served as the white reference, while the dark current was
recorded by deactivating the light source. Furthermore, to achieve black–white calibration,
the following formula was employed:

Rcalibrated =
Rmeasured − Rdark

Rwhite − Rdark
(1)
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where Rcalibrated represents the calibrated hyperspectral image, Rmeasured represents the
measured hyperspectral image, Rdark corresponds to the dark current hyperspectral image,
and Rwhite corresponds to the white reference intensity.

2.2.3. Spectra Extraction

After correction, the spectra of each sample were extracted by utilizing the default
band parameters of the instrument (1453.51 nm, 1246.54 nm, 1123.34 nm) as the RGB
channels for hyperspectral image visualization, followed by the application of the Hough
transform for sample position detection. This computer vision technique, commonly used
for object detection in images, works by transforming the image into a parameter space to
identify peaks corresponding to the presence of a particular shape. The detected position
information was then utilized to automatically delineate the region of interest (ROI) for
each sample. Finally, the sample’s spectral information was extracted by averaging the
data within the ROI. The process of spectra extraction is illustrated in Figure 1.

2.3. Reference Measurement of Protein Content

The Kjeldahl method was used, as specified in GB 5009.5-2016, for measuring the
protein content of the scrambled eggs with tomatoes. A thoroughly mixed sample weighing
0.1 g was added to 0.4 g of copper sulphate, 6 g of potassium sulphate, and 20 mL of sul-
phuric acid in a digestion furnace for digestion. After digestion, the green and transparent
liquid in the digestive tube was cooled and automatically dosed, distilled, titrated, and
recorded using an automatic Kjeldahl nitrogen determinator (FOSS-Kjeltec 2300). The
protein content of the sample was calculated using the following equation:

Z =
(V1 −V2)× c× 0.014

m×V3/100
(2)

where Z represents the protein content of the sample (g/100 g); V1 is the volume of the
reagent blank that consumes the hydrochloric acid standard titration solution (mL); V2
is the volume of the standard titration solution of sulphuric acid or hydrochloric acid
consumed by the reagent blank (mL); c is the concentration of the hydrochloric acid
standard titration solution (mol/L); 0.014 is the mass of nitrogen equivalent to hydrochloric
acid [c(HCl) = 1.000 mol/L] standard titration solution (g); m is the mass of the sample (g);
V3 is the volume of absorbed digestive juice (mL); and F is the reduction coefficient (6.25),
where 100 is the conversion factor.

2.4. A Deep Learning Framework for Wavelength Selection and Regression Simultaneously
2.4.1. Overall Network Architecture

To gain deeper insights into the correlation between the wavelength and protein con-
tent, we present the OptmWave framework, a novel approach for effective wavelength
selection in spectral data. Inspired by INVASE [15], OptmWave integrates two neural
networks: the Selection Probability Generation Network (SPGN) and the Prediction Net-
work (PN). This framework addresses the challenge of accurately identifying the most
informative wavelengths and predicting protein content. By leveraging the SPGN and PN,
OptmWave streamlines the wavelength selection process and enhances protein content
predictions in a spectral data analysis. The architecture of our framework is illustrated in
Figure 2a.

Our framework also inherits the general design of INVASE. The SPGN could be any
neural network with the same input and output dimensions, while the PN could be any
regression network. However, considering the specific characteristics of the dataset in
this case study, it is still necessary to perform a detailed design for the SPGN and PN. A
Multilayer Perceptron (MLP) is chosen as the foundational structure. An MLP is a type of
artificial neural network that consists of an input layer, one or more hidden layers, and an
output layer. The input layer receives the input data, and the hidden layers perform the
computation to extract features and representations of the input data. The output layer
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produces the final prediction result. The principle of an MLP is based on the concept of
artificial neurons, which are modeled after the biological neurons in the human brain. Each
neuron receives inputs from the previous layer and produces an output signal by applying
a nonlinear activation function. The weights and biases of the neurons are learned through
the training process to minimize the prediction error.

(a)

(b)

(c)
Figure 2. (a) The architecture of our proposed OptmWave framework. (b) Detailed design of SPGN.
(c) Detailed design of PN.

The detailed design of the SPGN adopted in this work is illustrated in Figure 2b. It
consists of an MLP with three hidden layers, incorporating dropout layers in both the input
and hidden layers to enhance its robustness. The output layer is connected to a sigmoid
function to ensure that the output values are bounded between 0 and 1. The activation
function is the Scaled Exponential Linear Unit (SELU), which is a self-normalizing activation
function that ensures that the activations of each layer remain close to the mean and variance
of the inputs, regardless of the network’s depth, stabilizing the training process and leading
to faster convergence [16].

The detailed design of the PN adopted in this work is illustrated in Figure 2c. The
PN has three hidden layers of size 128, 64, and 32, respectively, with layer normalization
(LN) [17] layers connected after the input and hidden layers. LN is a technique that
normalizes the activations of each neuron across the features dimension, rather than the
batch dimension, like in batch normalization. This technique has been shown to be effective
in stabilizing the training process and improving the generalization performance of deep
neural networks. The activation function used is the SELU. It is worth noting that the PN can
be trained as an MLP regression model independently to predict protein content. Therefore,
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it can be combined with conventional wavelength selection methods. Consequently, in the
experimental section, we will also evaluate the design of this part separately.

2.4.2. Joint Training Strategy

OptmWave includes our proposed joint training strategy similar to the critic–actor
architecture in reinforcement learning that optimizes both neural networks. The SPGN
operates by receiving a full-spectrum input vector x of dimension d. This input vector
represents the spectral data, with each dimension corresponding to a different wavelength.
Then, it generates an output vector p of the same dimension, with each value of p represent-
ing a probability between 0 and 1, indicating the likelihood of selecting each corresponding
wavelength in the input vector. The probability vector p is used for Bernoulli sampling to
obtain a selection result vector s of dimension d, consisting of only 0 s and 1 s. A value of
0 signifies that the corresponding wavelength is not selected, while a value of 1 denotes its
selection. The selection result vector s is element-wise multiplied with the input vector x,
yielding the selected spectral data x∗.

The PN receives the selected spectral data x∗ and performs one iteration of training. To
estimate the performance of the current selection result s, the trained PN is then evaluated
on x∗. The prediction result is used with the true values to calculate the R2 score as an
evaluation metric. The R2 score measures the goodness of fit between the predicted and
true values and is calculated as 1 min the ratio of the sum of squared errors of the predicted
values to the sum of squared errors of the mean of the true values. A reward is defined to
quantify the performance of the SPGN:

Reward = α(R2 − ϕ) (3)

where R2 represents the R2 score on the validation set, ϕ denotes a baseline R2 score that
serves as a reference point for comparison, and α is a scaling factor employed to adjust the
R2 score to a suitable range. The reward can be either positive or negative, depending on the
performance of the PN after training with the selected spectral data x∗. A positive reward
indicates that s is a good selection result, as it leads to favorable prediction performance
on the training set. In contrast, a negative reward implies that the selection result may not
be suitable and should be avoided for future iterations. Then, the SPGN can perform one
iteration of training according to the reward.

After each iteration of joint training, where the SPGN and PN are trained according
to the proposed strategy, we evaluate the OptmWave’s performance on the validation
set. The training process continues until the SPGN converges, but there is no guarantee
that the PN will also converge. Therefore, we fix the SPGN’s weight and train the PN
separately. At the start, we train the PN with the selected spectral data obtained from the
SPGN in a single iteration. After this training, we evaluate the PN’s performance on the
validation set. If the PN reaches convergence, we stop training and select the optimal model
based on its performance on the validation set. If the PN does not reach convergence, we
continue training with the same spectral data from the SPGN until we achieve satisfactory
performance. When both the SPGN and PN converge, they can be taken out and used
separately. The SPGN prints the same mask, representing the final selection result. The PN
can predict the protein content using spectral data after the wavelength selection.

2.4.3. Loss Functions

To successfully implement the proposed joint training strategy, well-designed loss
functions are essential. In the case of OptmWave, where the PN functions as a regression
model, we have opted for the mean squared error (MSE) as the chosen loss function. Widely
used for regression problems, the MSE calculates the average squared difference between
predicted and actual values, providing a suitable measure for training the PN.

Regarding the SPGN loss function, denoted as LSPGN, it comprises two main com-
ponents: LSelection and LSparsity. These components are effectively balanced through the
hyperparameter λ. During the training process, the combined loss function is utilized to
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update the SPGN, taking into consideration the associated reward. By incorporating both
selection and sparsity considerations, this approach ensures the effectiveness and efficiency
of the SPGN’s training process. The loss function of the SPGN is defined as follows:

LSPGN =
(
LSelection + λLSparsity

)
× Reward (4)

LSelection = −
d

∑
i=1

si log(pi) + (1− si) log(1− pi) (5)

LSparsity =
d

∑
i=1

pi (6)

LSelection quantifies the discrepancy between the selection result vector s and the prob-
ability vector p. It is calculated via the cross-entropy loss function and is thus suitable for
optimization problems involving probabilities. A smaller value signifies a better match
between the selection policy and the actual wavelength selection, as the probability vec-
tor p is closer to the selection result vector s. LSparsity encourages wavelength selection
sparsity by penalizing the sum of probabilities in the probability vector p. A smaller
value corresponds to a sparser selection, reducing the number of selected wavelengths for
more efficient computations and better generalization performance. The hyperparameter λ
balances the contributions of these two loss components, controlling the trade-off between
matching the selection policy to the actual wavelength selection and promoting sparsity
in the selection process. The optimization process for LSPGN is influenced by the reward,
which depends on the performance of the PN on the training set after training with the
selected spectral data s. A positive reward signifies that the current wavelength selection
results in good prediction performance. The optimizer minimizes LSPGN to encourage the
SPGN to maintain or improve the wavelength selection policy. This update enhances the
match between the probability vector p and the selection result vector s while promoting
wavelength sparsity. A negative reward suggests that the current wavelength selection
leads to poor performance. The optimizer maximizes LSPGN, guiding the SPGN to update
its weights to avoid the detrimental wavelength selection policy and explore alternative
strategies by reducing sparsity in the selected wavelengths. The optimizer adjusts the
SPGN’s weights based on the reward sign, aiming to minimize LSPGN when the reward
is positive and maximize it when the reward is negative. This adaptive learning process
refines the SPGN’s wavelength selection policy to achieve better prediction performance
and sparsity. The overall loss function, LSPGN, is obtained by adding the weighted selection
and sparsity loss components and then multiplying the sum by the reward. This ensures
that the SPGN is updated based on its performance, allowing it to learn an effective wave-
length selection policy while considering both prediction performance and the sparsity of
the selected wavelengths.

2.5. Conventional Approaches
2.5.1. Common Regression Models

In the field of near-infrared (NIR) spectroscopy analysis, there are several conven-
tional data analysis approaches that are commonly used for quantitative prediction of the
physical and chemical properties of samples based on their NIR spectra. Two of the most
common regression models in NIR analysis are partial least squares (PLS) [18] and support
vector regression (SVR) [19]. PLS is a linear regression technique that seeks to model the
relationship between the NIR spectra and the property of interest by constructing a set of
orthogonal latent variables, which are also known as latent factors. The latent variables are
constructed in such a way so as to maximize the covariance between the NIR spectra and
the property of interest. The regression model is then built based on the latent variables
instead of the original NIR spectra. SVR is a type of machine learning algorithm that can be
used for regression problems. It aims to find the optimal boundary in the feature space that
separates the samples into two classes and then maps the samples to a high-dimensional
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feature space where a linear regression model can be applied. The regression model is built
based on a subset of the training samples, which are known as support vectors, and the
optimization of the model is performed by minimizing the distance between the support
vectors and the boundary.

2.5.2. Effective Wavelength Selection

Efficient wavelength selection constitutes a crucial phase in NIR data analysis, given
the potential hindrance posed by high-dimensional, uninformative, and redundant vari-
ables to the precise interpretation of wavelength-related information. There are several
effective wavelength selection strategies, such as the successive projections algorithm (SPA)
and competitive adaptive reweighted sampling (CARS). The SPA operates by projecting
one variable onto the others to identify candidate wavelengths. In combination with
the weighted regression coefficient analysis, the SPA assists in determining the optimal
wavelengths for use in multivariate regression models [20]. One PLS model is created via
Monte-Carlo sampling in the CARS. The CARS method involves creating a PLS model
via Monte-Carlo sampling. This process produces regression coefficient magnitudes [21],
which are associated with each wavelength. A decaying exponential function is then used
to exclude wavelengths with the smallest magnitudes. By employing adaptive reweighted
sampling, candidate subsets can be derived. After that, the subset that aligns with the PLS
models showing the lowest RMSE during cross-validation is considered as the optimal
wavelength set.

2.6. Model Evaluation

All the procedures described were implemented using Python. The Spectral Python
library was employed for processing hyperspectral imaging data, while OpenCV and
NumPy were utilized for spectra extraction. For conventional data analysis approaches,
sklearn was used, whereas PyTorch was employed for deep learning approaches.

The performances of the models were assessed using three evaluation metrics: co-
efficient of determination (R2), root mean square error (RMSE), and predictive residual
deviation (RPD). These metrics are defined as follows: R2 measures the proportion of the
variance in the dependent variable that can be explained by the independent variable(s). It
provides an indication of how well the model fits the observed data, with values ranging
from 0 to 1. A higher R2 value indicates a better fit. The formula for R2 is given by

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (7)

where yi represents the observed values of the dependent variable, ŷi represents the pre-
dicted values of the dependent variable, ȳ represents the mean of the observed values of
the dependent variable, and n represents the number of data points.

The RMSE measures the average deviation between the predicted values and the
observed values. The RMSE provides an estimate of the model’s accuracy, with lower
values indicating better performance. The formula for RMSE is given by

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(8)

where yi represents the observed values of the dependent variable, ŷi represents the pre-
dicted values of the dependent variable, and n represents the number of data points.

The RPD is a measure of the ratio between the standard deviation of the reference
values and the standard error of prediction. The RPD is commonly used in spectroscopy to
evaluate the precision of models. Higher RPD values indicate better predictive performance.
The formula for RPD is given by

RPD =
Standard Deviation of Reference Values

Standard Error of Prediction
(9)
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The optimal model is determined based on the model that achieves the highest R2 and
RPD values while also minimizing the RMSE value.

3. Results
3.1. Spectral Profiles

The preprocessed reflectance spectra of the samples are illustrated in Figure 3a. To
eliminate obvious noise at the head and end of the spectra, only the range of 900–1700 nm
was investigated. As shown in Figure 3b, the spectral data for all samples demonstrated a
consistent pattern of peaks and valleys. The major absorptions were observed at valleys
around 970, 1206, and 1440 nm. The local absorption maxima at 970 nm and 1440 nm (O-H
stretching second and first overtones, respectively) were attributed to the presence of water
in the sample [22]. Also, the valley around 1206 nm, which corresponds to the second
overtone of C-H stretching, can be attributed to the fat content of the sample [23,24].

(a) (b)

(c) (d)

Figure 3. Spectral characterization for the dataset and the visualization of experiment results. (a) Re-
flectance spectra of all samples. (b) Mean spectrum and standard deviation of the spectral data. The
blue line shows the mean spectrum, while the shaded area represents the standard deviation of the
reflectance values at each wavelength. (c) Reference versus predicted values for protein content
from OptmWave. (d) Visualization of effective wavelength selection result by SPA, CARS, and our
proposed SPGN.

3.2. Sample Set Split

A total of 487 distinct samples were collected and measured. Before partitioning the
dataset, spectral anomalies were detected using the Hotelling T2 test and subsequently
removed. The remaining samples were randomly shuffled and divided into training,
validation, and test sets with a ratio of 6:2:2. The final training, validation, and test sets
consisted of 292, 98, and 97 samples, respectively. Table 1 presents the minimum value,
maximum value, mean, and standard deviation of the protein content for each data split.



Foods 2023, 12, 3145 10 of 15

Table 1. The statistical summaries of the protein content for each data split.

Data Split Minimum (g/100 g) Maximum (g/100 g) Mean (g/100 g) Standard Deviation (g/100 g)

Training set 0.6258 12.9541 5.4654 3.7056
Validation set 0.6016 13.1858 5.5092 3.6868

Test set 0.6505 12.6843 5.3266 3.8062

3.3. Experimental Setup
3.3.1. Deep Learning Approaches

For the case of using the PN only, the learning rate was set to 10−4. And for the
OptmWave, the hyperparameters were set as follows: the learning rate of the SPGN was
5× 10−5, the learning rate of the PN was 2× 10−3, α was 100, ϕ was 0.95, and λ was 0.1.
The hyperparameters were manually tuned based on the performance on the validation
set, and ϕ was set based on the prediction performance of the PLS. Compared to the case
of using the PN only, the joint training strategy requires the PN to adapt to continuously
changing training data, thus necessitating a larger learning rate.

3.3.2. Conventional Approaches

In this study, we utilized PLS and SVR as conventional prediction models and em-
ployed the SPA and CARS methods to select effective wavelengths. To optimize the
performance of each model, we employed different strategies. For the PLS model, we
utilized a grid search approach. To elaborate, a grid search strategy incorporating a 5-fold
cross-validation was utilized. The grid search is a brute-force approach that exhaustively
searches over a predefined parameter space to find the optimal set of hyperparameters.
The search parameters involved were the maximum number of iterations with values of
500, 1000, and 2000; the tolerance with values of 10−4, 10−3, and 10−2; and the number
of components ranging from two to the specified maximum number of components. For
the SVR model, we used an automated approach called Autosklearn [25] to search for the
optimal hyperparameters. Autosklearn is an automated machine learning tool that applies
Bayesian optimization to find the optimal hyperparameters for a given dataset. The search
time was set to two hours to find the best SVR hyperparameters.

3.4. Result Analysis

The experimental results are summarized in Table 2. For the conventional approaches,
the PLS and SVR models using full-spectra and selected wavelengths all obtained good
results. The R2 score of all the models is over 0.9, and the RPD is over 2.5. The comparison
of the SVR and PLS models using the same full-spectra and wavelength selection dataset
revealed that the SVR outperformed the PLS in the training, validation, and testing sets,
possibly due to SVR’s ability to model nonlinear relationships in the data.

Among the PLS models, the CARS method yielded the best prediction accuracy of
0.9558. However, the results of applying CARS to the SVR model were not as satisfac-
tory, possibly due to the algorithm’s coupling with PLS. In contrast, the SPA showed
slightly better results than using the full-spectra data, likely because of its ability to reduce
multicollinearity in the data.

And for the case of using the PN only, the experimental results showed that the
accuracy on both the full-spectrum data and the wavelength selection data was higher than
that of the conventional models. This is because the deep learning model can capture more
complex nonlinear relationships in the data, as demonstrated by its higher accuracy on the
training set. However, this also leads to a decrease in accuracy on the wavelength selection
data, as the reduction in wavelength selection reduces the amount of information available
for prediction. The CARS results were higher than those of the PLS, possibly because CARS
selected more wavelengths.
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Table 2. Prediction results of protein content.

Models Data Type N.V. *
Training Set Validation Set Test Set

R2 RMSE R2 RMSE RPD R2 RMSE RPD

PLS

Full 240 0.9624 0.7187 0.9689 0.6497 5.6742 0.9487 0.8620 4.4154
CARS 37 0.9673 0.6697 0.9745 0.5887 6.2628 0.9558 0.8004 4.7553
SPA 19 0.9535 0.7990 0.9638 0.7015 5.2556 0.9507 0.8449 4.5051

SPGN 25 0.9569 0.7691 0.9645 0.6943 5.3104 0.9504 0.8478 4.4897

SVR

Full 240 0.9872 0.4189 0.9833 0.4767 7.7335 0.9772 0.5748 6.6219
CARS 37 0.9799 0.5247 0.9781 0.5453 6.7605 0.9649 0.7131 5.3372
SPA 19 0.9835 0.4762 0.9807 0.5116 7.2059 0.9773 0.5740 6.6314

SPGN 25 0.9722 0.6182 0.9749 0.5845 6.3075 0.9653 0.7090 5.3684

PN

Full 240 0.9922 0.3267 0.9834 0.4748 7.7644 0.9876 0.4238 8.9802
CARS 37 0.9926 0.3191 0.9814 0.5027 7.3334 0.9822 0.5073 7.5021
SPA 19 0.9814 0.5061 0.9720 0.6167 5.9779 0.9754 0.5971 6.3740

SPGN 25 0.9945 0.2761 0.9840 0.4666 7.9021 0.9852 0.4633 8.2159

OptmWave 25 0.9938 0.2920 0.9796 0.5263 7.0045 0.9913 0.3548 10.7278

* N.V. is the number of variables.

OptmWave reached the highest prediction performance. Figure 3c shows the visualiza-
tion of the reference versus predicted values for the protein content from the OptmWave. It
can be seen that the protein content can be well-predicted for all samples in the test set. The
experiments were also designed to assess the efficacy of the wavelength selection outcomes
between OptmWave, CARS, and the SPA. Figure 3d shows the visualization of the effective
wavelength selection result by the SPA, CARS, and our method SPGN. In detail, 917.4,
924.03, 943.93, 950.57, 967.16, 970.48, 987.08, 1010.32, 1050.19, 1063.48, 1183.25, 1189.91,
1193.24, 1199.9, 1203.23, 1206.56, 1209.89, 1216.55, 1243.21, 1276.55, 1286.55, 1296.56, 1323.25,
and 1346.61 nm were selected. From the experimental results in Table 2, compared with the
wavelengths selected by the SPA and CARS, our method achieved competitive results: on
the PLS model, the prediction performance was close to that of the SPA and higher than
that of the full-spectrum data; the prediction performance of the SVR model was better
than CARS and the number of selected wavelengths was less than CARS. Good results
were achieved even if the prediction was made directly using the selected wavelengths
from the SPGN without using the joint training strategy.

We also try to explain the selection result by the vibration of chemical bonds. The
selected wavelengths at 970.48, 987.08, and 1010.32 nm correspond to the N-H stretch
second overtone locations associated with proteins [26]. In addition, wavelengths at
1276.55, 1286.55, 1296.56, 1323.25, and 1346.61 nm are also associated with proteins. They
can be attributed to a combination of the first overtone of a specific N-H vibration (in Fermi
resonance with N-H in-plane bend) with the fundamental vibrations of the N-H in-plane
bend and C-N stretch with the N-H in-plane bend [27]. Other wavelengths selected may be
indirectly related to the protein content. For example, the wavelengths around 1200 nm
(1183.25, 1189.91, 1193.24, 1199.9, 1203.23, 1206.56, 1209.89, and 1216.55 nm) correspond to
the C-H stretching second overtone [22,27,28]; 1363.3 nm is related to the C-H combination
second overtone [29]; and 917.4 nm and 924.03 nm correspond to the C-H stretching
third overtone from methyl and methylene, respectively [26]. And these wavelengths
are associated with aliphatic compounds. From 950 nm to 1050 nm, the wavelengths
at 943.43, 950.57, and 967.16 nm are related to the third overtone of C-H and the third
overtone region of O-H from oil nutrient [30–32]. In this study, it has been observed that
the variation among the samples is primarily attributed to the proportion of tomato and
egg, which display significant differences in their aliphatic compounds and oil content. It is
possible that deep learning models could use the spectra associated with these compounds
to uncover their hidden relationship with protein content. Furthermore, our method does
not include wavelengths beyond 1400 nm, as shown in Figure 3b,d, where reflectance is
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low and variance is small within the range of 1400 nm to 1700 nm. Protein information
around 1500 nm, specifically the N-H stretching first overtone, may be masked by water
information [22]. This limited ability to discriminate may have resulted in the exclusion of
this spectral region in our method selection.

3.5. Ablation Study on Deep Learning Approaches

Ablation studies are conducted on deep learning approaches to evaluate the effec-
tiveness of specific design choices. The experimental results for this part are summarized
in Table 3. For the case of using the PN only, the performance without using the SELU,
LN, or both was tested. In the absence of the SELU, a replacement was carried out using
the ReLU activation function, while the omission of all the layer normalization layers was
implemented in the absence of LN. This led to observed declines in varying degrees in the
prediction results, thus affirming the efficacy of these designs.

Table 3. The results of ablation study on proposed deep learning approaches.

Method
Training Set Validation Set Test Set

R2 RMSE R2 RMSE RPD R2 RMSE RPD

PN 0.9922 0.3267 0.9834 0.4748 7.7644 0.9876 0.4238 8.9802
w/o SELU 0.9902 0.3667 0.9811 0.5075 7.2643 0.9773 0.5731 6.6409
w/o LN 0.9566 0.7717 0.9564 0.7694 4.7917 0.9574 0.7859 4.8428
w/o LN and SELU 0.9475 0.8488 0.9599 0.7379 4.9965 0.9460 0.8845 4.3032

OptmWave 0.9938 0.2920 0.9796 0.5263 7.0045 0.9913 0.3548 10.7278
w/o joint training strategy 0.9945 0.2761 0.9840 0.4666 7.9021 0.9852 0.4633 8.2159
w/o LSPGN 0.9363 0.9349 0.8011 1.6444 2.2420 0.8248 1.5929 2.3894

Additionally, the performance of OptmWave without the proposed joint training strat-
egy was evaluated. This involved training the PN directly using the selected wavelength
data from the SPGN in Table 2. The reduction in prediction accuracy highlighted the
importance of the joint training strategy. Our approach enables the MLP to gradually adapt
to changes from the full-spectrum training data to the selected wavelengths, which has
an effect similar to fine-tuning on a pre-trained model. The performance of OptmWave
was also evaluated without our designed LSPGN. Instead, the loss function design from the
implementation of INVASE was adopted [15], where LSparsity is not affected by the value of
the reward. This resulted in poor results because the optimizer continuously tried to reduce
the number of selected wavelengths without considering the prediction performance. That
is mainly because INVASE is a method used for classification tasks to obtain the importance
of input variables at the instance level. In contrast, our method is used for global variable
selection on regression tasks.

4. Discussion

In the present study, the feasibility of deep learning-based NIR-HSI methods in pre-
dicting the protein content of specific foods is confirmed. This confirmation was established
through a comparison of the accuracy and interpretability of various conventional methods
and near-infrared spectroscopy analysis. The results demonstrate the significant potential
of deep learning-based NIR-HSI in predicting food nutrition.

Establishing and analyzing models in the field of NIR-HSI holds significant impor-
tance [33]. According to Table 2, conventional methods have displayed underfitting in the
training set: the models established could not fully fit the training set data. This is typically
due to insufficient model complexity. Given identical data distribution, the better the
results on the training set, the better they will perform on the test set. This is presumably
the primary reason why deep learning methods outperformed conventional methods on
our constructed dataset. Additionally, the SPGN and PN are not limited to our proposed
design. For instance, the SPGN could be any neural network with the same input and
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output dimensions, while the PN could be any regression network. This design offers the
possibility of extending to other tasks in food science. Researchers can design an SPGN and
a PN according to their needs, and use the OptmWave method for training, thus obtaining
models suitable for their tasks. We believe that this will promote the cross-disciplinary
development of food science and artificial intelligence to some extent.

Despite the satisfactory results, our method does have some limitations. Firstly, deep
learning methods require a certain amount of data. With a smaller dataset, the results
might be comparable to, or even worse than, conventional methods [24]. Secondly, data
distribution should be consistent, especially when partitioning into training, validation,
and test sets. If there is a significant difference in distribution, it could lead to severe
overfitting. Finally, the sampling mechanism in OptmWave increases the randomness of
the method. If the random seed is not fixed, the results may vary.

Based on our findings, future research could further explore new paradigms in food
nutrition assessment. For example, combining deep learning models capable of recognizing
foods [34] with NIR-HSI methods for specific foods to accurately predict food nutrition.
Furthermore, future research could focus on creating a large-scale benchmark dataset for
food spectra [35]. Deep learning methods could then be applied to various foods, thereby
establishing a large model for food spectra, empowering various downstream tasks in food
science.

5. Conclusions

In this study, the feasibility of using deep learning approaches in determining the
protein content of a specified food using near-infrared hyperspectral imaging is explored. A
framework is proposed to achieve better prediction performance and effective wavelength
selection. It is compared to conventional prediction approaches, such as PLS and SVR,
and effective wavelength selection approaches, such as the SPA and CARS. The results
demonstrated the effectiveness of deep learning approaches and showed that our proposed
framework and wavelength selection method outperformed the conventional approaches.
Our study highlights the great potential of deep learning-based near-infrared hyperspectral
imaging in predicting nutrient content in food. The findings support the application of
deep learning methods in food science and offer new avenues for food quality control
and nutrition monitoring. Considering the practical implications of our research, the
application of deep learning techniques can lead to increased automation and reduced
human involvement. This could contribute to the development of more portable and
affordable devices for food assessment. Looking ahead, our future studies will focus
on investigating the application of these deep learning approaches in assessing nutrient
content in a wider array of foods. The goal is to further enhance the prediction performance
and broaden the range of practical applications.
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The following abbreviations are used in this manuscript:

NIR-HSI Near-infrared hyperspectral imaging
RMSE Root mean square error
NIR Near infrared
ROI Region of interest
SPGN Selection probability generation network
PN Prediction network
MLP Multilayer perceptron
SELU Scaled exponential linear unit
LN Layer normalization
MSE Mean squared error
PLS Partial least squares
SVR Support vector regression
SPA Successive projections algorithm
CARS Competitive adaptive reweighted sampling
RPD Predictive residual deviation
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