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Abstract: The increasing incidence of diseases caused by highly carcinogenic aflatoxin M1 (AFM1) in
food demands a simple, fast, and cost-effective detection technique capable of sensitively monitoring
AFM1. Recent works predominantly focus on the electrochemical aptamer-based biosensor, which
still faces challenges and high costs in experimentally identifying an efficient candidate aptamer.
However, the direct electrochemical detection of AFM1 has been scarcely reported thus far. In this
study, we observed a significant influence on the electrochemical signals of ferric ions at a gold
nanoparticle-modified glassy carbon electrode (AuNPs/GCE) by adding varying amounts of AFM1.
Utilizing ferricyanide as a sensitive indicator of AFM1, we have introduced a novel approach for
detecting AFM1, achieving an unprecedentedly low detection limit of 1.6 × 10−21 g/L. Through
monitoring the fluorescence quenching of AFM1 with Fe3+ addition, the interaction between them
has been identified at a ratio of 1:936. Transient fluorescence analysis reveals that the fluorescence
quenching process is predominantly static. It is interesting that the application of iron chelator
diethylenetriaminepentaacetic acid (DTPA) cannot prevent the interaction between AFM1 and Fe3+.
With a particle size distribution analysis, it is suggested that a combination of AFM1 and Fe3+ occurs
and forms a polymer-like aggregate. Nonetheless, the mutual reaction mechanism between AFM1

and Fe3+ remains unexplained and urgently necessitates unveiling. Finally, the developed sensor
is successfully applied for the AFM1 test in real samples, fully meeting the detection requirements
for milk.

Keywords: aflatoxin M1; electrochemical detection; gold nanoparticles; Fe3+

1. Introduction

Aflatoxins, produced by Aspergillus flavus and Aspergillus. parasiticus, which are com-
monly found in cereal grains, dairy products, beans, and nuts [1–3], are toxic compounds
with a difuran ring structure. The improper storage conditions can result in contamination
with aflatoxins, and the intake of aflatoxins is associated with a significant portion of
hepatocellular carcinoma cases worldwide such as impaired liver function and immune
response and an increase in susceptibility to infectious diseases [4–6]. These toxins can enter
the bloodstream and undergo metabolization in the human body. There are four generally
recognized aflatoxins designated B1, B2, G1, and G2. Aflatoxin B1 (AFB1) is the major
mycotoxin produced by most species under culture conditions and is the most frequently
studied of the four. However, the index compound of AFB1 is not carcinogenic before it
is metabolically activated. AFM1, a hydroxylated metabolite of AFB1 in human food and
animal feed, is excreted in urine and secreted in milk in mammalian species within 12 h
after consumption, while its toxicity is much less known. AFM1, in particular, is reclassified
as a naturally occurring carcinogen belonging to Group 1, with the formation of DNA
adducts [7]. Nonetheless, many nations have set regulatory limits for maximum allowable
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AFM1 in milk and other dairy products. In 2005, the Food and Drug Administration (FDA)
set an AFM1 action level in milk and other dairy products at 0.5 µg/L. The European Union
(EU) set a much stricter standard that allows a maximum of 0.05 µg/L in milk in 2006 [7].
Turna noted that a high AFM1 level in milk was associated with a high level of AFB1 in
animal feed, which upon consumption could harm both animal and human health [8].
Accordingly, timely monitoring of aflatoxins during biological transformation can help
reduce the risk of diseases [9]. Consequently, the development of a sensitive detection
method has become a prominent research focus in recent years.

Currently, the identification and quantification of aflatoxins are commonly performed
using thin-layer chromatography (TLC) [10], immunoaffinity chromatography [11], high-
performance liquid chromatography (HPLC) [12], and enzyme-linked immunosorbent as-
say (ELISA) [13]. However, these methods have drawbacks such as being time-consuming,
requiring special equipment, or involving cumbersome sample pretreatment and false-
positive results [14]. A reliable and promising alternative approach that offers high sensi-
tivity, ease of operation, fast analysis, and cost-effectiveness is the electrochemical method.
Recently, electrochemical aptamer-based sensors have gained significant attention for afla-
toxin monitoring. However, the instability of the biological recognition piece limited the
use as anticipated.

Abnous et al. [15] reported an electrochemical sensing strategy for the detection of
AFB1 based on aptamer-complementary strands of aptamer complex, forming a π-shape
structure on the electrode surface, with a detection limit of 2 pg/mL. Ahmadi et al. [16]
developed a pencil graphite electrode modified with reduced graphene oxide and gold
nanoparticles for the detection of AFM1, achieving a detection limit of 0.3 ng/L. Fur-
thermore, the detection of AFM1 has been accomplished using voltammetric biosensors,
utilizing silver nanoparticles dispersed on an α-cyclodextrin-GQDs nanocomposite [17].
Aflatoxins can be electrochemically oxidized to ketone because of containing an alcohol
group, which is generated by the hydrolysis of the aromatic ester group in a basic medium.
This allows the direct detection of aflatoxins without the need for recognition elements
or tags [18]. Gevaerd et al. [19] reported the direct determination of AFB1 in 2020 at the
screen-printed electrode (SPE) modified with gold nanoparticles and graphene quantum
dots (AuNPs-GQDs), which exerted an electrocatalytic effect on the oxidation of AFB1
(shift of the oxidation peak to less positive values). The performance in ng/mL level by this
approach was quite similar to those obtained with other systems where bioreceptors are
used. However, the low specificity of this format of detection limits its further application
for the selective determination of aflatoxins. Thus, there is still a growing demand for novel
sensors that offer a simple electrode modification process, high sensitivity, low cost, and
ease of use for the detection of Aflatoxins replacing commonly used biological recognition
systems described above.

Aflatoxins belong to the class of coumarin compounds characterized by their difuran
ring structures. Previous reports have identified coumarin compounds as fluorescent probes
for various metal ions such as Mg2+ [20], Cu2+ [21,22], Zn2+ [23], and others. In recent years,
numerous small molecule fluorescent probes for Fe3+ have been developed [24,25] based
on a selective binding approach for example complexation or chelation. Wang et al. [26]
reported a highly selective coumarin-based chemosensor for the detection of Fe3+ where
coumarin FB displayed a high affinity to Fe3+ resulting in forming an FB-Fe3+ complex.
Zhao et al. [27] specifically designed and synthesized Schiff base probes using phenanthro
[9,10-d] imidazole-coumarin derivatives, demonstrating the formation of a 1:1 complex
between these probes and Fe3+.

Considering this, the electrochemical signals of Fe3+ could potentially reflect the
concentration of aflatoxins. There appear to be interactions between Fe3+ and aflatoxins,
which warrant further comprehensive investigation, particularly in understanding the
nature of the interaction between Fe3+ and aflatoxins.

As is known, electrode modifiers having good conductivity and catalytic activity play
an important role in influencing the sensitivity and capability of modified electrodes. Com-
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monly, conducting polymers, molecularly imprinted materials and some metals such as
gold, iron, silver, and palladium can be used as electrode modifier materials for enhancing
the peak currents, which is necessary for determining the trace amount of analytes in
real samples. In this work, we have compared the electrochemical activity of polythion-
ine, molecularly imprinted L-cysteine, and electrodeposited gold nanoparticles (AuNPs).
Among them, the uniform deposition of AuNPs onto the glassy carbon electrode (GCE)
surface is well known for its ability to increase the effective area and confer the direct
electron transfer between the analyte and the electrode base [28,29], making it an excellent
sensing platform and giving a much better electrochemical signal towards Fe3+ as shown in
Supplementary Figure S1. In this study, we have successfully developed an electrochemical
sensor by modifying a GCE with AuNPs (AuNPs/GCE) for the detection of AFM1. While
the electrochemical synthesis of AuNPs without the requirement of an external linker or
functionalizing ligand is well established, aiming for the best electrochemical performance;
herein, we have particularly optimized the electrochemical sweeping methods and parame-
ters, deposition times, and minimal solution preparation because the in situ tailoring of
nanoparticle surface chemistry resulted in improved catalytic activity and selectivity. The
sensor utilizes ferricyanide as a mediator, where the presence of AuNPs greatly facilitates
the electrode reaction and enhances the catalytic activity towards ferricyanide. Conse-
quently, this sensor exhibits an unprecedented lowest detectable concentration of AFM1
over the widest linear range reported thus far.

To demonstrate the specificity of Fe3+ in AFM1 detection, an immunoassay column
was utilized. Remarkably, an impressive reaction ratio of AFM1 to Fe3+ was obtained. The
performance of the developed sensor was evaluated by measuring AFM1 in spiked milk
samples, yielding satisfactory analytical results since it is easy, quick, and does not involve
developing the biological material methodology.

2. Materials and Methods
2.1. Chemicals and Apparatus

AFM1 was obtained from Toronto Research Chemicals, while HAuCl4·3H2O (≥99%)
was acquired from Sigma Aldrich. KCl, K3[Fe(CN)6], K4[Fe(CN)6], NaH2PO4, and Na2HPO4
were purchased from Aladdin Reagents. Unless otherwise specified, all reagents were used
as received. Phosphate buffer solutions (PBS) were prepared by diluting 0.1 M NaH2PO4
and 0.1 M Na2HPO4 stock solutions. All solutions were prepared using double-distilled
water with a resistivity of 18 MΩ·cm.

The electrochemical experiments were conducted at room temperature using a CHI900D
workstation (Shanghai CH Instrument Ltd., Shanghai, China) equipped with a conven-
tional three-electrode system. The system consisted of a glassy carbon electrode (GCE,
3.0 mm in diameter) as the working electrode, a platinum wire as the counter electrode,
and an Ag/AgCl (saturated KCl) electrode as the reference electrode. Electrochemical
impedance spectroscopy (EIS) measurements were performed in PBS containing 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] (mole ratio of 1:1) and 0.1 M KCl at room temperature. An
AUTOLAB PGSTAT302N (Metrohm Auto lab B.V., Herisau, Switzerland) was used for EIS
measurements, employing a formal potential of 0.2 V, 5 mV amplitude, and a frequency
range from 0.1 Hz to 100 kHz. Nyquist plots were generated from the impedance data and
fitted using AUTOLAB Nova 1.8.

Scanning electron microscopy (SEM) experiments were conducted using an XL30
ESEM-FEG (FEI Company, Hillsboro, OR, USA) with an acceleration voltage of 20.0 kV.
Molecular fluorescence spectra were measured using an F-180 fluorescence spectroscope
(Tianjin Gangdong Co., Ltd., Tianjin, China). The steady-state and transient-state fluores-
cence spectra were obtained using an FLS 1000 spectrometer (Edinburgh Instruments, West
Lothian, UK). Particle size distribution analysis was obtained using a nanoparticle size
analyzer Winner 802 (Jinan Weina Particle Instruments, Jinan, China). The enzyme-linked
immunosorbent assay (ELISA) was performed using a Varioskan™ LUX (Thermo Fisher
Scientific, Waltham, MA, USA).
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2.2. Preparation of AuNPs/GCE

Figure 1A depicts the schematic diagram illustrating the modification of GCE with
AuNPs. To achieve this, the GCE was initially polished to a mirror finish using 0.05 µm
alumina slurry on a microcloth. Subsequently, it was ultrasonicated with distilled water
for 1 min to ensure cleanliness. The polished and cleaned GCE was then immersed in
a solution containing 5 mM HAuCl4 and 0.1 M KCl. AuNPs were formed using cyclic
voltammetry (CV) in a potential range from −0.4 V to 1.2 V, with a scan rate of 10 mV/s for
20 cycles. Figure 1B displays the cyclic voltammograms, which exhibit a monotonically
increasing trend of the redox waves, confirming the continuous growth of the AuNPs layer.
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Figure 1. The preparation of AuNPs−modified glassy carbon electrode. (A) Schematic diagram of
AuNPs modification onto glassy carbon electrode; (B) CVs of Au electrodeposition onto GCE in
0.1 M pH 7.0 PBS; (C) SEM image of AuNPs/GCE.

Following the AuNPs formation, the AuNPs/GCE was thoroughly rinsed with deion-
ized water and transferred to a 0.1 M PBS solution at pH 7.0. The electrode was scanned
until a stable voltammogram was obtained. Figure 1C shows the corresponding SEM image
of the AuNPs/GCE, revealing a compact layer with uniformly distributed and smaller
AuNPs, providing full coverage.

2.3. Sample Preparation

AFM1 stock solution was prepared by dissolving an appropriate mass of AFM1 in
pH 7.0 PBS, and working solutions with different concentrations of AFM1 were prepared
by diluting the stock solution with buffer. The commercial milk was purchased from a
local store. In the experimental procedure, 30 mL of the milk sample was transferred to a
centrifuge tube. To remove proteins, 20% TCA (trichloroacetic acid) was added, and the
mixture was centrifuged for 5 min. Subsequently, centrifugation was performed at a speed
of 6000 rpm for 10 min. The resulting supernatant was then filtered through a 0.22 µm filter
and passed through an immunoaffinity column. Finally, the filtered sample was subjected
to testing. The possibility and reliability of the method being applied in practice were
established in regard to evaluating the recovery rate in actual samples.
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3. Results and Discussion
3.1. Electrochemical Characterization of the AuNPs/GCE

The electrochemical behaviors of AuNPs/GCE were investigated by performing CV
(cyclic voltammetry) and EIS (electrochemical impedance spectroscopy) measurements in a
0.1 M PBS solution (pH 7.0) containing 5 mM Fe(CN)63−/4−. Figure 2A clearly shows that
AuNPs/GCE exhibits remarkable activity and reversibility, as evidenced by the distinct
peak-to-peak separation (∆Ep = ca. 78 mV at 100 mV·s−1) and enhanced peak current
observed in the CVs, in comparison to the bare GCE. Furthermore, the CVs of AuNPs/GCE
remained nearly constant despite variations in the number of ultrasonic cleaning cycles,
indicating the high stability of the modifier layer.
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and AuNPs/GCE.

Additionally, the Nyquist plots presented in Figure 2B, obtained from the EIS mea-
surements, further support the superior conductivity of AuNPs/GCE when compared
to the bare GCE. This enhanced conductivity contributes to the exceptional electrochem-
ical catalytic performance exhibited by AuNPs/GCE without the use of any additional
biomolecule as an electrode modifier.

3.2. Effect of pH and Scan Rates on Fe3+ Signals at AuNPs/GCE in the Presence of AFM1

The impact of pH variation on the electrochemical response of Fe3+ at AuNPs/GCE in
the presence of AFM1 was further investigated using different buffer solutions prepared
and adjusted to a pH range of 4.0 to 8.0. Protons always exert a significant impact on the
reaction speed when being involved in the electrochemical reactions of organic compounds.
Figure 3A illustrates the gradual increase in peak currents in differential pulse voltammetry
(DPV) with an increase in pH within the range of 4–9. The peak currents reach a maximum
at pH 7.0 and then decline, leading to the selection of pH 7 for subsequent experiments.
This phenomenon is also aligned with the fact that AFM1 is generally more stable in neutral
pH. Notably, the absence of proton involvement in the reaction is evident as the peak
potential does not exhibit a linear shift with pH.
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Figure 3. The effects of different pH on the sensitivity of AuNPs/GCE to Fe3+ and AFM1. (A) DPVs
of ferricyanide at AuNPs/GCE in 0.1 M PBS in the presence of AFM1 with pH ranging from 4.0 to
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Figure 3B presents the cyclic voltammograms (CVs) obtained at AuNPs/GCE with
different scan rates. It is observed that both the cathodic peak current (Ipa) and an-
odic peak current (Ipc) are directly proportional to the square root of the scan rates
within the range of 10–300 mV·s−1. The correlated linear equations can be expressed
as Ipa (µA) = 5.63 v1/2 (mV·s−1) + 2.72, and Ipc (µA) = −5.84 v1/2 (mV·s−1) − 2.23, respec-
tively, with the consistent regression coefficient (r2) of 0.99 (inset of Figure 3B), suggesting
a diffusion-controlled redox behavior of Fe3+ at AuNPs/GCE according to Randles–Sevcik
equation instead of a surface reaction-controlled process. Moreover, the fact that peak
potential is nearly independent on the scan rate suggests that the redox reaction is electro-
chemically reversible.

3.3. Electrochemical Response of Fe3+ at AuNPs/GCE in the Presence of AFM1

Differential pulse voltammetry (DPV) is an effective and rapid electroanalytical tech-
nique with lower concentration detection limits. The electrochemical responses of Fe3+

were further investigated using the DPV technique, with varying concentrations of AFM1
added to the electrolyte. Figure 4 illustrates the findings, where it can be observed
that the peak currents of Fe3+ decrease as the concentrations of AFM1 increase within
the range of 1.6 × 10−21 to 2.5 × 10−4 g/L. A linear regression equation for AFM1 of
I (µA) = −2.34 lg [AFM1] (g/L) + 54.261 with a correlation coefficient of 0.99879 was de-
rived from the data. Each current response was measured three times, yielding a relative
standard deviation (RSD) of 4.3%. These results clearly demonstrate the successful applica-
tion of the developed sensor for ultrasensitive detection of AFM1, with the lowest observed
concentration of 1.6 × 10−21 g/L, surpassing previous reports based on the electrochemical
method as listed in Table 1. When the electrode was stored in the refrigerator at 4 ◦C, the
current response remained almost unchanged for about 2 weeks by taking advantage of
a highly reliable electrode-preparing process. This raises a crucial question regarding the
nature of the reaction occurring between Fe3+ and AFM1, leading to significant suppression
of the electrochemical signals of Fe3+ in the presence of AFM1. We also confirmed the
capability of the present method for the monitoring of AFB1-NAC and AFB1-lysine, which
are another two metabolites from AFB1 as shown in Supplementary Figure S2.
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Table 1. Comparison of analytical performance for the electrochemical detection of AFM1.

System Detection Limit Linear Range Ref.

A-CD-GQDs-AgNPs/GCE 2 µm 0.015–25 µM [17]
Apt-CS-AuNPs/SPGE 0.9 ng/L 2–600 ng/L [29]

anti-AFM1/SPGE 2.5 × 10−8 g/kg 3 × 10−8–1.6 × 10−7 g/kg [30]
Fe3O4-PANi/IDE 1.98 ng/mL 6–60 ng/mL [31]

NR/P [5]A-COOH/GCE 0.5 ng/L 5–120 ng/L [32]
AuNPs/SPE 37 pg/mL - [33]

ss-HSDNA-AuNPs/GE 0.36 ng/mL 1–14 ng/mL [34]
Fe3+-AuNPs/GCE 1.6 × 10−21 g/L 1.6 × 10−21–2.5 × 10−4 g/L This work

Furthermore, the potential application of this method for detecting other toxins such
as zearalenone (ZEA), ochratoxins (OTA), AFB2, and AFG1 was investigated. The DPVs
obtained for these toxins are shown in Figure 5. Similar phenomena were observed for
AFB2 and AFG1, confirming the method’s suitability for selective detection of aflatoxins.
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3.4. Chronoamperometric Studies

The diffusion coefficient and catalytic rate constant of Fe3+ in the presence of AFM1
were calculated from chronoamperometry. From the time-current curve, as shown in
Figure 6A, it has been deduced that inversely linear dependency exists between the current
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and the square root of time as shown in Figure 6B. The slope of the linear equation could
be obtained by using the Cottrell Equation:

I = nFAD1/2Cπ1/2t1/2

where n is the number of transferred electrons, F is the Faraday constant, A is the proportion
of the electrode, D is the diffusion coefficient of active substance, C is the initial molar
concentration, and t is the running time. From the resulting slope, the D value was obtained
to be 6.463 × 10−8 cm2·s−1. Chronoamperometry was also used to measure the catalytic
rate constants from the following Equation:

Icat/Id = c1/2π1/2 = π1/2(kCt)

where Icat and Id were the currents of Fe3+ at AuNPs/GCE in the presence and absence
of AFM1 and Fe3+, respectively, γ = kCt is the error function, k is the catalytic rate con-
stant, C is the concentration of AFM1 and Fe3+, and t is the running time (s). From the
slope of the Icat/Id vs. t1/2 plot, as shown in Figure 6C, the k value was obtained to be
4.8 × 10−2 cm3·mol−1·s−1.
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(A) Potential is 400 mV. (B) Dependence of Icatal/IL on t1/2. (C) Dependency of transient current
on t−1/2.

3.5. Effect of Fe3+ Concentration on AFM1 Fluorescence Intensity

The fluorescence intensity of AFM1 in the presence of Fe3+ was observed to de-
crease as the solution pH values increased, as shown in Supplementary Figure S3. Al-
though, generally, the fluorescence intensity at neutral pH is higher than that in acidic
or base environments, there is competition occurring between Fe3+ and H+ assumed by
Patel-Sorrentino et al., for the explanation of pH effect [35]. Additionally, in order to further
explore the response properties of AFM1 to Fe3+, the fluorescence titration experiment in
tris buffer solution was performed with the gradual addition of Fe3+ to AFM1. The concen-
tration of AFM1 was maintained at 1 × 10−5 M, while the concentration of Fe3+ was over
the range from 0 to 5.12 × 10−6 M. Figure 7A demonstrates that the fluorescence intensity
gradually decreases with increasing Fe3+ concentration; to put it another way, the addition
of Fe3+ leads to a remarkable fluorescence quenching of AFM1. Once the concentration
reaches 8 mM, the fluorescence intensity remains constant at nearly zero and does not
change because of quenching saturation. It can be assumed that they may tend to form
polymer-like nano-aggregates [36]. The fitting curve is illustrated in Figure 7B, revealing a
concentration ratio of AFM1 to Fe3+ of approximately 1:936. Transient fluorescence analysis
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(Figure 7C) confirms that the fluorescence quenching process is predominantly static, as
AFM1, Fe3+, and AFM1+Fe3+ exhibit high coinciding properties. The second-order fitting
curve of transient fluorescence spectra by the ordinary least square method is displayed in
Supplementary Figure S4. The non-linear Equation is expressed as follows:

Y = A1 × exp(−x/t1) + A2 × exp(−x/t2) + y0 (r2 = 0.99)

where A1 = 3155.94± 17.67, t1 = 1250.31± 14.00, A2 = 156.62± 11.16, t2 = 13,712.75 ± 1427.08,
y0 = −3.42 ± 2.37, respectively. A calculated fluorescence lifetime of 12.402 µs by formula
t = (A1 × t12) + (A2 × t22)/(A1 × t1 + A2 × t2) proves that the interaction between AFM1
and Fe3+ is ultrafast.
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Figure 7. The specific interaction between Fe3+ and AFM1. (A) Effects of Fe3+ addition on fluorescence
emission of AFM1; (B) Fluorescence intensity as a function of Fe3+ concentration; (C) Transient
fluorescence lifetime of AFM1, AFM1 + Fe3+; (D) Effects of other metal ions on the fluorescence
emission of AFM1.

To determine the specific effect of Fe3+, various ions including Na+, K+, Zn2+, Cu2+,
Ni2+, Pb2+, Cd2+, Mn2+, Mg2+, and Co2+ were investigated for their interference on the
fluorescence intensity of AFM1 under the same conditions. As demonstrated in Figure 7D,
none of these ions caused any significant interference even at higher concentrations reflected
by negligible responses of AFM1. The fluorescence intensity of AFM1 was also examined in
the presence of vitamin B12, a water-soluble vitamin known for its metal ion content, and
heme iron. Similar to the effect of Fe3+, the fluorescence intensity gradually decreased with
increasing concentration, as depicted in Supplementary Figure S5. These findings indicate
a certain interaction between AFM1 and Fe3+.

To evaluate the intensity of this interaction, diethylenetriaminepentaacetic acid (DTPA)
was employed as a competitor against AFM1. As it was, DTPA may form a complexation
with Fe3+ to release AFM1 so as to observe an increase in fluorescence intensity. Despite
the strong Fe3+-binding ability of DTPA, the addition of DTPA (5 mM) to a mixture of
AFM1 (4 µg/mL) and Fe3+ (3.2 mM) unexpectedly led to a further decrease in fluorescence
intensity, as depicted in Figure 8A. This suggests that DTPA can surprisingly enhance the
interaction between AFM1 and Fe3+. The particle size distribution analysis of AFM1+Fe3+
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in the 420–600 nm range (Figure 8B) compared with Fe3+ and AFM1 in the range of
500–800 nm and 400–1000 nm, respectively, further confirms their combination.
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3.6. Determination of AFM1 in Milk

To assess the effectiveness and feasibility of the proposed method, AFM1 levels in
milk were measured. Spike and recovery experiments were conducted by measuring DPV
responses in real milk samples with known concentrations of AFM1 added. The AFM1
concentrations in the milk samples were determined through calibration and are presented
in Table 2. In all cases, good recoveries were obtained for AFM1 varying from 92.0%
to 93.9% considering the level of concentration being analyzed, which is comparatively
better than those obtained from spectrofluorimetry and ELISA. These findings strongly
demonstrate the practical applicability and reliability of the proposed method.

Table 2. The determination of AFM1 in milk with three methods.

Method Add/µM Detected/µM Recovery%

This work
2.96 2.78 93.9
8.91 8.24 92.4

23.78 22.17 93.2

Spectrofluorimetry
2.2 1.9 86
3.16 2.5 78

12.65 10.08 84

ELISA
2.6 2.39 92.1
8.41 7.82 93

20.25 18.71 92.4

4. Conclusions

In this study, we have introduced a novel approach for detecting AFM1, utilizing the
electrochemical signals of ferricyanide as a sensitive indicator of AFM1 concentrations.
Notably, we achieved an unprecedentedly low detection limit of 1.6 × 10−21 g/L, surpass-
ing previous reports. Furthermore, the recovery rates of 92.4–93.9% obtained from real
sample testing underscore the potential of this method as a reliable screening technique
for AFM1 detection in food. This approach combines the advantages of nanotechnology,
supramolecular recognition techniques, and signal amplification, providing a versatile
tool for monitoring aflatoxins. Ongoing investigations aim to elucidate the underlying
interaction mechanism between AFM1 and Fe3+. Since most research on the electrochemical
detection of aflatoxins is focused on aptamer immunosensors, this work may open new
opportunities for Fe3+ as a probe for reversely monitoring coumarin-based small molecules.
Meanwhile, this work will provide a beneficial reference for sensing of other toxins in food
or pharmaceutical assays.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods12132521/s1, Figure S1: CV response of different modified electrodes
in Fe3+ and AFM1; Figure S2: Effect of pH on fluorescence spectrum intensity; Figure S3: The DPV
response of AFB1, AFB1-NAC and AFB1-lysine respectively at AuNPs/GCE; Figure S4: The second-
order fitting curve of transient fluorescence spectra; Figure S5 Fluorescence intensity at different
concentrations of heme iron and VB12.
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