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Abstract: The valorization of industrial fruit and vegetable waste has gained significant attention
due to the environmental concerns and economic opportunities associated with its effective utiliza-
tion. This review article comprehensively discusses the application of subcritical and supercritical
fluid technologies in the valorization process, highlighting the potential benefits of these advanced
extraction techniques for the recovery of bioactive compounds and unconventional oils from waste
materials. Novel pressurized fluid extraction techniques offer significant advantages over conven-
tional methods, enabling effective and sustainable processes that contribute to greener production
in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the
nutritional profile of other food products and determine their application in the food, pharmaceutical,
and nutraceutical industries. Valorization processes also play an important role in coping with the
increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of
spent material in biorefinery and biorefining processes is also explored in terms of energy generation,
such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the
management of waste streams. An economic evaluation is presented, detailing the cost analysis
and potential barriers in the implementation of these valorization strategies. The article emphasizes
the importance of fostering collaboration between academia, industry, and policymakers to enable
the widespread adoption of these promising technologies. This, in turn, will contribute to a more
sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source
of valuable products.

Keywords: supercritical fluids; subcritical fluids; valorization; separation; extraction; value-added
products; green solvents

1. Introduction

According to current UN estimates, about 690 million people go to bed hungry every
night, accounting for 8.9% of the global population. The hunger-related crisis has been
found to be growing in Asia and Africa at a much faster rate than everywhere else in the
globe [1]. The excessive production of food in industrialized nations is closely connected
to the increased generation of food waste from industrial sources [2]. The Food and
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Agriculture Organization reported the loss or waste of about one-third of all food produced
worldwide, equivalent to about 1.6 billion tons annually [3]. Within this volume, 54%
is lost in production, such as post-harvest handling and storage, and the other 46% is
lost throughout the supply chain (e.g., processing and distribution), and at the consumer
consumption stage. This massive volume of wasted food is not only a severe economic
concern but is also an untapped resource in our effort to tackle humanitarian problems.
Furthermore, industrial food pollution is a major concern as it involves the consumption of
an excessive amount of raw material and produces more effluents and solid waste [4].

Food industries are now moving towards a circular economy as it offers significant
economic gains in terms of reduced per-unit cost and the potential to generate additional
income streams for the industry [5]. It is also considered a step towards sustainable manu-
facturing and environmental protection by integrating valorization strategies. However,
current value addition and disposal practices include landfilling, organic fertilizer, animal
feed components, open burning, and incineration, which are costly and harmful to the
environment [6]. Therefore, there is a need to develop new techniques for recovering
valuable compounds, which can be converted or utilized in an environmentally friendly
way [7]. In this context, valorizing industrial fruit and vegetable waste (FVW) using novel
extraction techniques is a useful approach [8].

Novel technologies for the extraction of nutrients and bioactive compounds have
received considerable attention, and among these, critical fluid extraction technology
stands out due to its operational simplicity, low extraction temperature, and non-polluting
characteristics [9]. It has found broad application in the extraction of diverse nutrients
and bioactive compounds from an array of food processing byproducts. Notably, it
has been employed to extract polyunsaturated fatty acids from apple [10], avocado [11],
guava [12], plum [13], and passion fruit [14] byproducts; carotenoids from vegetable and
fruit peels [15–17]; and polyphenol antioxidant bioactive substances from fruit processing
byproducts [15,18–20]. SFE is versatile in its utility, not merely as a standalone method but
also in conjunction with other extraction technologies. Its combination with mechanical
expression has been employed to extract phenolic substances and oils from olive kernels.
This synergetic approach not only enhances extraction efficiency but also serves to preserve
the biological activity of the extracted substances [21].

Critical fluid extraction techniques (supercritical and subcritical) are good alternatives,
if ”generally recognized as safe” (GRAS) fluids are applied in the process [22]. These
techniques are environmentally friendly and provide auxiliary benefits such as solvent-free
bio-extract, no required post-extraction treatment, downstream processing, reduced extrac-
tion time, and high extraction yield [22]. Furthermore, increased fractionation and product
selectivity at the point of collection or extraction using SC-CO2 extraction significantly
eliminate the need for additional resources or energy-intensive purification stages [23].
Compared to ordinary extraction, SC-CO2 extraction is cleaner and more efficient due to the
absence of residual solvents in the extracted materials. Therefore, valorization of industrial
FVW using critical fluid extraction technologies offers a beneficial solution, compared to
low value-added practices such as dumping in landfills, using FVW fertilizer or animal
feed, or incineration [24].

In evaluating the attributes of extracts recovered through supercritical fluid (SCF) ex-
traction, it is imperative to consider not only the physical and chemical properties but also
the consequential implications for human health. This is critical as the primary goal of these
extractions is often their integration into functional foods. The efficacy of SFE technology
transcends improving extraction efficiency. It also plays a pivotal role in preserving the
bioactivity of recovered substances and enhancing the functional attributes of the extract.
Given the low-temperature extraction conditions of supercritical fluids, this technique
is highly compatible with the recovery of biologically active compounds from agri-food
byproducts, particularly thermolabile or easily oxidizable molecules [25]. Recent study
highlights the superiority of supercritical CO2 (alone) extraction for achieving high contents
of α-tocopherols and γ-tocopherols from tomato waste (seeds and skin) extract, surpassing
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SC-CO2 + ethanol-based extraction [16]. Similarly, other studies corroborate that the de-
ployment of SFE technology can augment the extraction efficiency of bioactive compounds
while concurrently preserving its antioxidant activity [26]. Other publications have also
reported the significance of this technology in extracting valuable compounds [25,27–30].

This review aimed to collect the existing knowledge and evaluate the valorization
potential of industrial FVW and the potential economic stream generation. Moreover,
the intended utilization of bio-extracts in the food and pharmaceutical industries is also
reported.

2. Wastes Generated by the Major Food Industries

Industrial food waste can be divided into two broad terms: effluents and solid waste.
Figure 1 shows the food industry’s major effluent and solid waste. Cleaning water, pits,
peels, seeds, pulp, rag (membranes and cores), and other non-edible components (discol-
ored, rotted or damaged sections, bruised and over-ripe portions) are among the waste
created by the processing of raw food commodities in the fruits and vegetables indus-
try [8]. In the grain milling industry, the industrial waste may include the water used in
the cleaning, tempering, and conditioning process, lubricants, suspended solids (husk,
broken and diseased grains), and organic matter in the wastewater [31,32]. In the dairy
industry, suspended solids and organic matter with high biological oxygen demand and
chemical oxygen demand, cleaning residues, nitrogen, and phosphorus, a huge amount of
wastewater, oil, and grease, and whey concentrate represent the main components of the
waste [4]. Used oils, cake or meal, seeds, and pomace are found in the fat and oil indus-
try [33]. Non-edible parts, wastewater, bones, and excessive fat are the major components
of waste generated in the meat industry.
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Figure 1. Effluents and solid waste generated by the food industry.

Wastewater is the major effluent in most food industries and contains suspended
solids and organic matter. Moreover, it also contains various cleaning and sterilizing agents
which are used for the cleaning of utensils and equipment. Solids or semi-solids found
in wastewater effluent may constitute rind, spent coffee and tea, spent grains (brewing
industry), bones, and pomace. The dairy and fruit and vegetable processing industry
remain the highest wastewater effluent emitter as they generate 6–10 L of wastewater per
liter of processed milk and 1–17 m3 per ton (1–17 L per kilogram) of processed fruits (citrus),
respectively [4,34,35]. Moreover, weight, size, shape, and color sorting, a requirement in
premium products, also generate a huge amount of organic waste.
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Industrial FVWs are sources of valuable compounds such as fibers, minerals, sugars,
vitamins, aromatic compounds, phenolic compounds, and carotenoids [36]. Most of these
compounds are synthesized in the secondary metabolism of plants to provide protection
against the environment [37]. In human nutrition, they are considered bioactive compounds
responsible for anti-inflammatory, antioxidant, anticancer, neurosedative, and antiviral
activities, among others [38]. The beverage processing industries produce 20–60% of
waste/byproducts [8]. From the environmental protection point of view, this generation of
waste/byproducts must be reduced by different technological approaches for the complete
utilization and extraction of valuable compounds or ingredients [8]. The processing of fruits
and vegetables generates a large amount of waste in terms of seeds, skin, and pomace, after
the removal of the pulp. The seeds contain about 15–18% proteins, 28–31% oils, 10–12%
carbohydrates, and 3.2–17% crude fiber, and all these components are exploitable [39,40].

Both the peel and the flesh of fruit and the vegetable processing waste are charac-
terized by a high content of dietary fibers (soluble and insoluble); however, the pomace
of most fruits and vegetables represents the highest content of insoluble dietary fibers.
The fruit’s pulp also contains a considerable amount (almost 78%) of dietary fibers [8].
These biomolecules in fruit and vegetable processing waste can be valorized in the forti-
fication of the fiber fraction and the production of various nutraceuticals [41]. These are
non-starch polysaccharides, including other components such as resistant dextrins, inulin,
beta-glucans, lignins, pectins, cellulose, oligosaccharides, and resistant starch [42,43]. Di-
etary fibers will also impart health-promoting benefits, such as the lowering of cholesterol
and glucose, due to their swelling and water-holding capacity [44].

Seeds and kernels as processing waste can be manipulated and used as a potential
source of unconventional oils with biologically active compounds [45]. Similarly, waste
materials can also be maneuvered to produce flavors/essential oils by applying different
treatments. They are loaded with various health benefits such as anti-inflammatory, an-
timutagenic, anticancer, antifungal, antiviral, vermicide, and antibacterial activities [46].
The valorization of important biomolecules from waste/byproducts reduces environmen-
tal pollution, generates additional income, and provides a secondary advantage for new
enterprises dealing with food processing [47].

Since ancient times, mankind has benefited from phytochemicals having bioactive
properties. These may include anti-inflammatory, antimutagenic, antioxidant, anticancer,
antithrombotic, antibacterial, antiviral, and vasodilator properties [48]. The market demand
for bioactive compounds is increasing due to changing lifestyles with customers leaning
towards functional foods because of their health benefits. The global functional foods
market was valued at USD 27 billion in 2020, and it may rise to USD 51.71 billion by
2025 [49]. Utilization of valorized compounds in different industries is summarized in
Table 1.

Table 1. Usage of valorized extracts in different industries.

Waste Material Valorized Extract Usage Reference

Custard apple seed powder Volatile and non-volatile components Flavoring industry [40]

Apple seed
Linoleic acid and phloridzin, amygdalin
absence (antinutrient), higher oxidative

stability
Pharmaceutical industry [10]

Tomato seeds and skins 205 mg per 100 g of lycopene and 75 mg per
100 g of β-carotene

Food and pharmaceutical
industries [16]

Strawberry pomace
46.8 mg/mL saturated FAs, 64.0 mg/mL
monounsaturated FAs, and 145.8 mg/mL

polyunsaturated FAs

Food and cosmetic
industries [50]

Banana peels Bioactive compounds; gallic acid, quercetin,
and β-carotene Pharmaceutical industry [51]
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Table 1. Cont.

Waste Material Valorized Extract Usage Reference

Orange peels
Citronellol, β-pinene, α-pinene, myrcene,
terpinolene, C8-aldehyde, linalool, and

d-limonene
Pharmaceutical industry [52]

Sweet potato peels β-carotene (99.8%), lutein (68.2%), and
antioxidant activity (20.7%)

Food and pharmaceutical
industries [15]

Potato peels Caffeic acid (0.75 mg/g), phenolic recovery
37%, and antioxidant activity 73%

Pharmaceutical and
nutraceutical industries [26]

Onion outer dry layers Protocatechuic acid mg/100 g and quercetin
equivalents Pharmaceutical industry [53]

Kiwifruit pomace, skin, and seeds Phenolic compounds, protocatechuic acid,
caffeic acid, catechin Pharmaceutical industry [54]

Avocado processing waste
Oleic and linoleic acid, higher phenolic and
antioxidant ability as compared to Soxhlet

extract
Pharmaceutical industry [11]

Broccoli processing waste (stems
and leaves)

β-carotene, phytosterols, chlorophylls, and
phenolic compounds Cosmetic industry [18]

Grape pruning waste Antibacterial and α-amylase inhibition
activity Pharmaceutical industry [55]

Grape skin, seeds, and pomace Antioxidants, vitamins, and polyphenols Pharmaceutical and
nutraceutical industries [19]

Guava seed Linoleic acid, oleic acid, tocopherol, and
phytosterols Dairy industry [12]

Mango kernel Polar lipids 3.38% with desirable phosphorus
content

Pharmaceutical and
nutraceutical industries [56]

Tomato cannery waste (peels and
seeds)

97% lycopene recovery, spent material
showed 64% biodegradability

Food and pharmaceutical
industries [57]

Tomato peels 91% carotenoid recovery in which 96.9% was
β-carotene, 87.9% antioxidation

Food and nutraceutical
industries [15]

Peach peels 94.2% total carotenoids of which 75.3% was
lutein and 34.1% antioxidation activity

Food and nutraceutical
industries [15]

Grape (Palomino fino) pomace 2176 mg/100 g resveratrol of dry sample Pharmaceutical and
nutraceutical industries [58]

Citrus peels
33 volatile compounds,

polymethoxyflavones, limonoids, and
phytosterols

Flavoring and
pharmaceutical industries [59]

Apple pomace Higher antioxidation, 5.63 TEA/g of extract
as compared to conventional method Nutraceutical industry [20]

Passion fruit bagasse 23.9 g oil/100 g feed, including tocols,
carotenoids, and fatty acids

Nutraceutical and
cosmetic industries [17]

3. Subcritical and Supercritical Fluid Technology in Food Processing

Supercritical fluid (SCF) is a unique state of matter that exhibits both gaseous and
liquid properties once it surpasses its critical temperature and pressure (Figure 2). This
state imbues the fluid with characteristics that are particularly advantageous for extrac-
tion purposes. Specifically, supercritical fluids demonstrate lower viscosity and higher
diffusivity compared to their liquid or gaseous states, thereby enhancing their ability to
penetrate solid matrices and consequently increasing extraction yields [60,61]. Moreover,
the density of supercritical fluids, a property integral to the extraction process, can be fine-
tuned by adjusting the pressure and temperature conditions. This adaptability allows for
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targeted extraction of specific compounds, thereby enhancing the selectivity and efficiency
of the process [62]. Among the various supercritical fluids, carbon dioxide (CO2) is the
most commonly employed in food-related applications. Its popularity is due to several
reasons, e.g., CO2 is a versatile solvent, capable of extracting a wide array of bioactive
compounds, and it is readily available, making it a practical choice. Lastly, and perhaps
most importantly from a food safety perspective, CO2 leaves no residues in the extract,
ensuring the purity of the final product [24]. In addition to the aforementioned advantages,
CO2 boasts several other qualities that make it an ideal choice for use as a supercritical
fluid. It is relatively inert, non-flammable, and non-toxic, which contributes to the safety
of the extraction process. Furthermore, CO2 is economically viable due to its inexpensive
nature and the fact that it is recyclable. From a health perspective, it is considered harmless
to humans [63]. With critical points at 31.1 ◦C and 7.38 MPa, CO2 can be used under
conditions that are particularly conducive for extracting a wide array of volatile and heat-
sensitive compounds, thereby preserving their functional and nutritional properties [64–66].
When compared to traditional solvents used in food processing, such as dichloromethane
and hexane, CO2 is significantly superior in terms of safety, toxicity, operating costs, and
regulatory compliance [64]. SCF technology has found applications in numerous waste
valorization processes (as illustrated in Table 1). SCF-CO2 has proven particularly effective
for extracting non-polar and moderately polar compounds. However, its lower polarity
does present a limitation when it comes to extracting polar compounds. This challenge can
be mitigated by optimizing the SCF extraction process with the use of a co-solvent, thereby
extending the range of compounds that can be efficiently extracted [61]. Polar compounds,
e.g., polyphenols, can be extracted using SCFs in combination with co-solvents (methanol,
ethanol, and acetone) as they enhance the solvating power, solubility, and extractability of
polar compounds [67].

Foods 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

diffusivity compared to their liquid or gaseous states, thereby enhancing their ability to 

penetrate solid matrices and consequently increasing extraction yields [60,61]. Moreover, 

the density of supercritical fluids, a property integral to the extraction process, can be fine-

tuned by adjusting the pressure and temperature conditions. This adaptability allows for 

targeted extraction of specific compounds, thereby enhancing the selectivity and effi-

ciency of the process [62]. Among the various supercritical fluids, carbon dioxide (CO2) is 

the most commonly employed in food-related applications. Its popularity is due to several 

reasons, e.g., CO2 is a versatile solvent, capable of extracting a wide array of bioactive 

compounds, and it is readily available, making it a practical choice. Lastly, and perhaps 

most importantly from a food safety perspective, CO2 leaves no residues in the extract, 

ensuring the purity of the final product [24]. In addition to the aforementioned ad-

vantages, CO2 boasts several other qualities that make it an ideal choice for use as a super-

critical fluid. It is relatively inert, non-flammable, and non-toxic, which contributes to the 

safety of the extraction process. Furthermore, CO2 is economically viable due to its inex-

pensive nature and the fact that it is recyclable. From a health perspective, it is considered 

harmless to humans [63]. With critical points at 31.1 °C and 7.38 MPa, CO2 can be used 

under conditions that are particularly conducive for extracting a wide array of volatile 

and heat-sensitive compounds, thereby preserving their functional and nutritional prop-

erties [64–66]. When compared to traditional solvents used in food processing, such as 

dichloromethane and hexane, CO2 is significantly superior in terms of safety, toxicity, op-

erating costs, and regulatory compliance [64]. SCF technology has found applications in 

numerous waste valorization processes (as illustrated in Table 1). SCF-CO2 has proven 

particularly effective for extracting non-polar and moderately polar compounds. How-

ever, its lower polarity does present a limitation when it comes to extracting polar com-

pounds. This challenge can be mitigated by optimizing the SCF extraction process with 

the use of a co-solvent, thereby extending the range of compounds that can be efficiently 

extracted [61]. Polar compounds, e.g., polyphenols, can be extracted using SCFs in com-

bination with co-solvents (methanol, ethanol, and acetone) as they enhance the solvating 

power, solubility, and extractability of polar compounds [67]. 

 

Figure 2. SCFs with both liquid and gas properties [68]. Figure 2. SCFs with both liquid and gas properties [68].

The first commercially successful application of supercritical fluid technology was
established by Hag A.G. for decaffeinating green coffee beans in Bremen, Germany, in
1978 and by Carlton and United Breweries for the extraction of hop flavor in Melbourne,
Australia, in 1980 [69]. These developments opened the door to vigorous research and
development in this newly developed processing/extraction technique. SCF technology is
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non-conventional, green, cost-effective (with down processing), and energy-efficient, with
negligible environmental effects [64]. Therefore, it is an advantageous alternative to con-
ventional extraction techniques, which require expensive solvents, a laborious procedure,
and high energy consumption and create an adverse impact on the environment [70].

Alongside supercritical fluid (SCF) technology, subcritical fluid technology (SubCF)
also presents an environmentally friendly approach for the extraction of industrially sig-
nificant bioactive compounds. In SubCF, water is predominantly used as the extraction
solvent for food-related applications. However, other solvents such as propane [71], n-
butane [72,73], ethanol [74], and methanol [75] have also been employed. Subcritical water
extraction (SWE) is a specific method within SubCF which utilizes water that is maintained
at conditions between its boiling point and critical point temperature (100–374 ◦C). Figure 3
illustrates the schematic diagram of SWE. The pressure is adjusted to ensure that the water
remains in a liquid state [76]. The temperature and pressure ranges typically used for
SWE are 100–250 ◦C and 1–8 MPa, respectively [22]. The underlying principle of SWE is
that by increasing the water’s temperature while maintaining high pressure, the water
remains in a liquid state (for instance, at 250 ◦C and 50 bar) and exhibits a reduced dielectric
constant. This change in dielectric constant effectively alters the polarity of water, thereby
enhancing its solvating power and enabling the efficient extraction of a broad range of com-
pounds. The unique behavior of subcritical water stems from its ability to weaken hydrogen
bonds and other intermolecular forces among water molecules. This weakening leads to
a substantial increase in the extraction rate under subcritical conditions. As the dielectric
constant of water drops (ε = 27) under these conditions, changes in physical properties such
as decreased viscosity and surface tension, along with increased diffusivity, occur. This
transformation results in water behaving more like an organic solvent, equipping it with
the ability to dissolve low to moderately polar analytes [77]. Further contributing to sub-
critical water’s enhanced extractability is the correlation between water temperature and
the average kinetic energy of the molecules. As water temperature increases, the average
kinetic energy of the molecules also elevates, leading to the disruption of bonds within the
water molecules. Moreover, the extraction rate and selectivity of analytes can be adjusted
by manipulating the temperature and pressure conditions of subcritical water. However, a
thorough understanding of how subcritical water’s properties change with variations in
temperature and pressure is essential for effectively applying this technology [22].
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4. Recovery of Bioactive Compounds

Subcritical and supercritical fluid (SCF) technologies have been used novel technolo-
gies in the extraction of valuable compounds from different food materials [12,19,40]. Liu
et al. [40] reported the application of supercritical CO2 to extract volatile and non-volatile
components from custard apple (Annona Squamosa) seed powder. The researchers reported
that optimized conditions for the extraction of volatile and non-volatile components were
15 MPa at 308 K with a flow rate of 1.5 mL/min and 25 MPa at 318 K temperature and
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2.5 mL/min, respectively. The extracted components can be utilized in the flavoring in-
dustry. Moreover, the antifungal and antibacterial properties of the extract have also been
reported in this study. In another study, supercritical CO2 was used to extract oleoresins
from tomato (Lycopersicon esculentum L.) waste (seeds and skins) and provided a yield
of 12.5–12.9%, while using the dichloromethane extraction method as a control. Addi-
tionally, the effect of ethanol as a co-solvent was also evaluated. The extract obtained
using supercritical CO2 (150 bar, 20 ◦C, and 5 mL/min) without ethanol possessed the
highest content of α-tocopherols (80 mg) and γ-tocopherols (575 mg/100 g oleoresin), while
lycopene and β-carotene contents were 205 and 75 mg per 100 g of extracted oleoresin,
respectively. The highest content of polyphenols (9305 mg GAE/100 g of oleoresin) was
reported using ethanol (10%) as a co-solvent. Moreover, the synergistic effect of tocopherols,
carotenoids, and polyphenols enhanced the antioxidant activity of all extracted oleoresins.
These oleoresins can also be used in various food and pharmaceutical formulations [16].

In another study, it was concluded that supercritical CO2 (380 bar, 80 ◦C, and 15 kg/h)
used with exogenous tomato oil from the co-solvent tank can be utilized to recover 99.3% of
extractable lycopene (502 µg/g of seed oil) from tomato solid waste [79]. Moreover, highly
moist (102.7 g/kg) tomato pomace allowed 97% lycopene recovery using supercritical CO2
technology [57]. Similarly, the processing waste (pomace, skin, and seeds) of kiwifruit has
been utilized for the extraction of polyphenolic compounds with antioxidant activities.
Extraction under 50 bar, 200 ◦C, and 90 min has been reported to provide the highest con-
centration of phenolic compounds (60.53 mg CaE/g DW), and chlorogenic acid, caffeic acid,
catechin, p-coumaric acid, and protocatechuic acid were the most abundant compounds in
the extract [54].

The grape (Vitis vinifera L.) winemaking industry generates a considerable amount
of solid waste (skin, seed, and pomace). It can be processed for the extraction of highly
valuable compounds, such as antioxidants, vitamins, and polyphenols, as grape skin and
seeds contain about 90–95% polyphenols [80]. SFE-CO2 has been applied to extract these
compounds (trans-resveratrol, β-sitosterol, α-tocopherol, and ascorbic acid), and a solid–
liquid extraction technique was utilized as a control [19]. It was reported that SFE-CO2
under optimized conditions (250 bar, 60 ◦C, 2 mL/min CO2, and 0.4 mL/min ethanol as
co-solvent) recovered higher concentrations of all considered analytes as compared to the
control except for α-tocopherol and β-sitosterol from seeds as these analytes might require
a second cycle of extraction. These extracted compounds found their application as an
economic component of the pharmaceutical and nutraceutical matrix [19]. SFE technology
was applied for the valorization of broccoli (Brassica oleracea var. italica) byproducts (stems
and leaves) using ethanol and CO2 as solvents [18]. The extract was rich in β-carotene,
chlorophylls, phytosterols, and phenolic compounds. The authors reported that the maxi-
mum concentration of β-carotene was extracted at 443 bar, 40 ◦C, 31 g/min flow rate, 7%
ethanol as co-solvent, and 68 min. Moreover, the extract also exhibited higher antioxidant
activity as compared to the conventional extraction and the former extract also showed a
cytoprotective effect. The extract has potential use as a cosmeceutical ingredient [18].

Viti viniculture practices generate a large amount of pruning waste, which can be
valorized for valuable compounds [55]. The potential of pruned vine shoots of two grape
varieties (Tinta Roriz and Touriga Nacional) for the extraction of phenolic compounds was
studied. The potential of SWE (40 bars, 150 ◦C, 40 min), microwave-assisted extraction
(MAE; 100 ◦C, 20 min, ethanol/water 60:40 v/v), and conventional extraction (55 ◦C, 2 h,
ethanol/water 50:50 v/v, 100 rpm) was evaluated for the extraction of bioactive compounds
and functional properties of the extract. It was reported that all extracts showed antimi-
crobial (bacteria and yeast) and enzyme inhibition (acetylcholinesterase and α-amylase)
activity, thus indicating potential in the treatment of diabetes and Alzheimer’s disease.
Tinta Roriz variety exhibited higher bioactive potential as compared to Touriga Nacional.
The highest flavonoid content (18.7 ± 1.2 mg EE/g DW) was reported in the extract ob-
tained by SWE, and antioxidant activity assessed by DPPH and FRAP assay was highest
for SWE, followed by MAE and conventional extraction. However, the highest phenolic
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content (32.1 ± 0.9 mg GAE/g DW) was recorded in MAE. The concentration of bioactive
compounds depended on several factors: age, variety, and environmental conditions [81].

Other studies have also reported the extraction of bioactive compounds from fruit and
vegetable processing waste by using subcritical and supercritical extraction technology,
such as olive leaves [82], mandarin (Citrus Unshiu) peel [83], orange peel [84,85], apple
pomace [86], apricot (Prunus mume) pits [75], passion fruit rind [87], and grape seed [88].
Table 2 summarizes the bioactive compounds extracted by critical fluids.

Table 2. Extraction of valuable bioactive using critical fluids.

Studies Using CO2 in Combination with Other Solvents

Technique Sample Treatment Condition Overall Outcomes Reference

SFE-CO2, 15.5%
ethanol as co-solvent Tomato and peach peels 350 bar, 59 ◦C, 5 g/min,

30 min

91% and 94.2% carotenoid recovery,
with considerable content of

β-carotene and lutein
[15]

SFE-CO2, 5% ethanol
as co-solvent Apple pomace 30 MPa, 45 ◦C, 2 L/h,

2 h

Higher antioxidation, 5.63 TEA/g of
extract as compared to conventional

method
[20]

SFE-CO2, 5% ethanol
as co-solvent Grape (Palomino fino) pomace 400 bar, 55 ◦C,

0.8 g/min, 3 h 2176 mg/100 g resveratrol on dry basis [58]

SFE-CO2, ethanol as
co-solvent 7%

Broccoli
(Brassica oleracea var. italica)

stem and leaves
443 bar, 40 ◦C, 31 g/min β-carotene, chlorophylls, phytosterols,

and phenolic compounds [18]

SC-CO2, ethanol as a
co-solvent 10%

Tomato
(Lycopersicon esculentum L.)

waste, seeds and skins
150 bar, 20 ◦C, and

5 mL/min

Lycopene 205 mg per 100 g and
β-carotene 75 mg per 100 g of extracted

oleoresin
[16]

SFE-CO2, ethanol as
co-solvent

Grape (Vitis vinifera L.) skin,
seeds and pomace

250 bar, 60 ◦C,
2 mL/min

Trans-resveratrol, β-sitosterol,
α-tocopherol, and ascorbic acid [19]

SC-CO2 + 1.5:1
ethanol

Avocado (Persea americana)
seeds and peels 25 MPa, 80 ◦C 6.9% oil yield, major components were

oleic and linoleic acid [11]

SC-CO2, exogenous
tomato oil as

co-solvent
Tomato solid waste 380 bar, 80 ◦C and

15 kg/h 97% lycopene recovery [57]

Studies using CO2 and water as a sole solvent

SFE Apple (Malus pumila) seed 24 MPa, 40 ◦C, 1 L/h,
and 140 min

Linoleic acid (63.76 g/100 g) and
phloridzin (2.96 µg/g of seed) [10]

SC-CO2 Strawberry pomace 300 bar, 70 ◦C, 5 h 26% essential FAs [50]

SWE
Grape (Tinta Roriz and

Touriga Nacional) pruned
shoots

40 bars, 150 ◦C, 40 min Antimicrobial and enzyme inhibition
activity [55]

SFE-CO2 Mango kernel 50 MPa, 40 ◦C, and
30 g/min

Polar lipid 3.28%, desirable
phosphorus content (91.2 mg/kg) [56]

SFE-CO2 Guava (Psidium guava) seed 35.7 MPa, 52 ◦C,
30 g/min and 150 min

Linoleic acid (78.5%), oleic acid (13.8%),
phenolics, tocopherol, and phytosterol

compounds
[12]

SC-CO2

Custard apple
(Annona Squamosa) seed

powder

15 MPa, 308 K, and
1.5 mL/min for volatile
and 25 MPa, 318 K, and

2.5 mL/min for
nonvolatile components

Volatile and non-volatile components [40]

SWE Kiwifruit waste (pomace, skin,
and seeds)

50 bar, 200 ◦C, and
90 min

Phenolic compounds (60.53 mg CaE/g
DW), protocatechuic acid, caffeic acid,

catechin
[54]

SFE-CO2 Passion fruit bagasse
17–26 MPa, 60 ◦C,

1.80 × 10−4 kg/s flow
rate

5.8 and 1.5 times more carotenoids and
tocols were extracted in sequential

process
[17]

5. Extraction of Unconventional Oils

The majority of the published literature focusing on the extraction of essential/uncon-
ventional oils from fruit and vegetable industrial waste using critical fluid extraction
techniques has reported similar or slightly higher yields as compared to conventional tech-
niques [89]. However, critical fluids provide auxiliary benefits in terms of lower extraction
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time, no residual issues, and environmental friendliness and obviate the use of dangerous
solvents, among others. Apple (Malus pumila) seed oil was also extracted by using SFE
technology. It was reported that the extract from SFE (24 MPa, 40 ◦C, 1 L/h, and 140 min)
had a higher content of linoleic acid (63.76 g/100 g of oil) as compared to the control
extraction using the Soxhlet technique (49.03 g/100 g of oil). Despite the high content of
unsaturated fatty acids, SFE extract expressed higher oxidative stability (21.4 h) than the
controlled extract (12.1 h). Additionally, the most abundant phenolic compound was phlo-
ridzin (2.96 µg/g of seed), and the extract was free from anti-nutritional compounds [10].
Similarly, the guava (Psidium guava) seed extract by supercritical CO2 (35.7 MPa, 52 ◦C,
30 g/min and 150 min) is also characterized by its higher content in linoleic acid (78.5%,
w/w) followed by oleic acid (13.8%, w/w). Additionally, the extract has also reported a
rich profile of phenolics, tocopherol, and phytosterol compounds [12]. Fractionated linoleic
acid can be used in the enrichment of various dairy products. Furthermore, SFE-CO2
has been applied to mango waste (kernel) to extract the polar lipids from its lipid ma-
trix. About 20% of the whole fruit constitutes mango kernel, and 7–11% of it contains
good-quality fat. The fat content can be further classified as 95–96% non-polar and 3–4%
polar lipids [90,91]. The highest extraction yield of polar lipid was 3.28% with desirable
phosphorus content (91.2 mg/kg) under optimized conditions of SFE-CO2, 50 MPa, 40 ◦C,
and 30 g/min CO2 [56]. These valorized lipids have wide applications in the food [90],
nutraceutical [92], and pharmaceutical [93] industries. Moreover, in the literature, mango
kernel fat has been reported as a substitute for cocoa butter [90,94].

The processing of avocado fruit (Persea americana) generates a significant amount
(21–30%) of solid waste in terms of seeds, peels, and exhausted pulp, depending on the
cultivar [95]. SC-CO2 (25 MPa, 80 ◦C, 1.5:1 ethanol) has been applied on avocado waste
(seeds and peels) of Hass cultivars in Mexico and Brazil, for the extraction of oil. Soxhlet
extraction (SE) was used as a control and ethanol was used as a solvent and co-solvent in
the case of SC-CO2. Greater oil extraction yields were recorded in SE 14% than in SC-CO2
6.9%, and the major components of the extracted oils were oleic and linoleic acid regardless
of the extraction method. The total phenolic content and antioxidant activity of extracted
oil from the seeds and peels of Mexican origin were higher as compared to Brazilian origin,
regardless of the extraction method applied. Generally, higher extraction yields were
recorded in SE than SC-CO2 due to the longer extraction times and higher number of
solvents used, thus greater solvent and energy consumption. SC-CO2, on the other hand, is
more advantageous in terms of lower capital cost and minimal environmental impact [11].
Similarly, Prunus domestica L. is a widely cultivated fruit in Europe and is often regarded
as the European plum. Its processing generates a considerable amount of solid waste
(plum kernel), thus creating an opportunity to convert the waste stream into an economic
stream. Cold pressing (20 Hz, 40 ◦C) and SC-CO2 (300 bar, 40 ◦C, 2 kg/h flow rate) have
been applied to extract unconventional oil, which is characterized by essential FAs and
tocopherols. Both extracts were rich in oleic acid content; however, the highest content was
reported in the SC-CO2 extract (68.66%), and linoleic acid was the second most abundant
content (22.24%). SC-CO2 extract also leads to 4–5.8 times higher tocopherol content than
cold-pressing extract. This alternative oil source found its potential application in the food
and pharmaceutical industries due to low saturated FAs and amygdalin content [13].

Campalani et al. [50] reported SC-CO2 (300 bar, 70 ◦C, 5 h) extraction of purer lipophilic
compounds from the peels and seeds of blueberry, wild strawberry, pomegranate, raspberry,
blackcurrant, and blackberry. Strawberry pomace extract was 26% by weight; the extract
was rich in essential FAs, of which 46.8 mg/mL was saturated FAs, 64.0 mg/mL monoun-
saturated FAs, and 145.8 mg/mL polyunsaturated FAs. The percentage of extracted FAs
was greater than when using conventional solvent (hexane), which is toxic and restricts the
usage of the extracted FAs in the cosmetic and food industry. In addition, extra purification
unit operations are required. Similarly, SC-CO2 (47 MPa, 53 ◦C, 75 min) together with
pressurized liquid extraction (PLE, 10.3 MPa, 50–90 ◦C, 15–45 min) yielded 73.6 g of rich
extract from 100 g of lingonberry (Vaccinium vitis-idaea L.) pomace, of which 84% was of
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polar nature. The lipophilic fraction was rich in linoleic (37.4%) and α-linolenic (43.3%)
FAs, with other constituents including anthocyanins and pro-anthocyanidins, 231 mg and
15.9 g per 100 g, respectively, and a significant number of antioxidants [96]. Higher per-
centages of unsaturated (85.62%) and polyunsaturated (57.90%) FAs have been recovered
from Berberis dasystachya seeds using the SC-CO2 (25 MPa, 59.03 ◦C, 2.25 SL/min flow rate)
extraction method as compared to ether (80 ◦C, 7 h) extraction in a Soxhlet extractor [97].
The major content of the extract was linoleic and linolenic acid, resembling the study of [96].

Pumpkin seed oil expresses a significant number of antioxidants in terms of phenolics
and tocopherols; thus, in order to protect the thermally unstable components in the extract,
SC-CO2 has been applied for the extraction of pumpkin seed oil. The highest extraction
yield was 30.7% under optimized conditions: 32,140 kPa, 68.1 ◦C, and 94.6 min; these three
variables showed a synergistic effect in the extraction of pumpkin seed oil [98]. Subcriti-
cal fluid extraction technology has been applied to yellow passion fruit (Passiflora edulis
var. flavicarpa) waste (seed) for oil extraction. SubFE using compressed propane under
optimized conditions (8 MPa and 30 ◦C) gave a 24.68% extraction yield. However, higher
content of essential linoleic acid (68.99%) was reported at 30 ◦C and 2 MPa and tocopherol
(5.98 mg/100 g of oil) at 60 ◦C and 2 MPa. Extracted oil also presented an antioxidant
activity of 75.12%, determined by the DPPH method [14]. The study indicated that the
organic waste of yellow passion fruit can be exploited for the development of functional
food ingredients.

6. Utilization of Spent Material in Biorefinery and Biorefining Process

The concern surrounding the depletion of fossil fuels has driven the search for alter-
native and renewable energy sources. The conversion of lignocellulosic biomass, such as
fruit and vegetable industrial waste/residues, has emerged as an attractive alternative to
the production of fuels to replace fossil fuels. In this context, [99] reported that apple seeds
degrade at a lower temperature (lower heating value) in the thermochemical conversion
process, after the extraction of valuable compounds by using SC-CO2. Thus, the spent
apple seeds can later be valorized in a biorefinery. Similarly, biomass (tomato pomace) from
tomato cannery can be used in a biorefinery to produce bioenergy. After the extraction of
significant oil content (rich in lycopene) from the tomato pomace by using SC-CO2, the
spent material is then used as feedstock for the biorefinery. The exhausted tomato pomace
showed a 64% higher biodegradability than the raw tomato pomace, thus generating an
additional income stream [57]. After the recovery of ginger oil using SC-CO2 (350 bar, 35 ◦C,
15 g/min CO2, 10% ethanol) from the industrial ginger (Zingiber officinale) waste (e.g., herbal
medicine and beverages), the spent material was further unitized in a microwave-based
biorefinery to produce hydrochar (20–24.5 MJ/kg) and chemically rich bio-oils [100].

A multistep biorefining strategy was applied to blackberry (Rubus fruticosus L.) po-
mace for the recovery of nutritionally and industrially valuable components (Figure 4).
Response surface methodology was applied to optimize the isolation potential of SFE-CO2
and pressurized liquid extraction (PLE) techniques. SC-CO2 under optimized conditions
(54.8 MPa, 64 ◦C, 171 min) recovered 9.9 g/100 g of a lipophilic fraction rich in healthy
polyunsaturated FA (linoleic 64.1%, α-linolenic 12.9%) and monounsaturated FA (oleic
14.5%). Consecutively, the spent residues of SFE-CO2 were treated with PLE (10.3 MPa,
90–130 ◦C, 30–45 min) and recovered ethanol (23.3 g) and water-soluble constituents (5.1 g)
under different treatment conditions. Thus, 41.3 g of various useful compounds were recov-
ered from 100 g of blackberry pomace, and 76% of it was polar constituents. This refining
strategy reduced the 93% antioxidant capacity of the starting material, showing its efficiency
in recovering antioxidants from blackberry pomace. The major anthocyanin was cyanidin-
3-glucoside detected in both the starting material and the PLE extract (4.8–551 mg/100 g).
Green technologies surpass the efficiency of conventional extraction techniques in terms of
solvent consumption, extraction time, total yields, maceration, in vitro antioxidant capacity,
and phytochemical composition [101].
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A similar biorefining approach utilizing SC-CO2 and PLE was utilized for the recovery
of lipophilic and polar fractions in blackcurrant (Ribes nigrum) pomace [102] and cranberry
(Vaccinium oxycoccos) pomace [103]. The lipophilic fraction obtained from SC-CO2 was rich
in polyunsaturated FA in both the fruit pomace and the blackcurrant pomace extract; it was
also rich in tocopherols (vitamin E). However, the polar fraction obtained from PLE (and
enzyme-assisted extraction in blackcurrant pomace) in each pomace was characterized
by its antioxidant capacity. Thus, based on these three studies, it can be concluded that a
multi-step biorefining process based on SC-CO2 and PLE can be utilized in the “zero waste”
processing of blackberry, blackcurrant, and cranberry pomace at the industrial scale.

7. Economic Evaluation/Estimations and Impediments in the Valorization Process

Several research studies have delved into the economic potential of supercritical
CO2 extraction facilities specifically designed for the valorization of industrial fruit and
vegetable waste. Among these, the work of Kayathi and colleagues [56] stands out. They
meticulously calculated the comprehensive costs involved in establishing a facility intended
for the extraction of extra virgin mango kernel oil. According to their analysis, the capital
expenditure to set up a plant with a processing capacity of 3000 tons of mango kernels
annually would amount to approximately USD 4953,225. When combined with the yearly
operational expenses of around USD 3999,440, the total investment required to kickstart
such an industrial-scale extraction venture totals nearly USD 8952,665. While this figure
may seem daunting, Kayathi et al. [56] estimate that the initial investment would be
recouped within a span of just four years. Further, they project that the net present value
of mango kernel oil would be five times higher than the initial investment after a decade
of operation. The economic implications of this venture extend beyond the extraction
plant itself. It would also open up a valuable revenue stream for mango producers and
processors who could sell their residual waste at a rate of USD 3.00 per ton, as factored into
the cost analysis of the extraction plant. This innovative approach to waste valorization
thus presents an exciting avenue for sustainable and profitable business practices within
the fruit and vegetable industry.

Another example comes from the processing of tomato cannery waste, specifically
tomato pomace, after lycopene extraction. By integrating supercritical CO2 extraction
with an anaerobic digestion-based biorefinery, the pomace was further transformed into
bioenergy and fertilizers. This ingenious process gave the spent tomato pomace, previously
valued at EUR 10/ton, a new worth, generating an additional income of EUR 787.9/ton [57].
One of the most effective strategies for reducing the extraction costs of valuable compounds
from fruit and vegetable waste is to enhance downstream processing and modify the nature
of the feedstock. For instance, the extraction cost of wax from milled date palm leaves using
supercritical CO2 was estimated to be EUR 13.62/kg [104]. However, a simple change
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in the feedstock format, using pelletized leaves, reduced the cost significantly to EUR
8.55/kg. This reduction was due to the increased density and loading amount of biomass.
Further cost reduction was achieved by utilizing the post-extraction material for energy
generation, specifically burning it for electricity production. This step dropped the cost even
further to EUR 3.78/kg. Although burning the post-extraction material is considered a low
value-added step compared to more advanced processes such as hydrolysis, fermentation,
and pyrolysis, it is a testament to the potential of waste valorization. In addition, the
extraction time, which correlates directly with labor and operating costs, can be managed
more efficiently by reusing or recycling utilities [22]. This reflects the intricate balance
between process optimization, resource management, and economic viability in utilizing
supercritical fluids for waste valorization.

While SFE technology is still in its developmental stages, and real-time applications on
an industrial scale are relatively rare, researchers are turning to software tools such as Su-
perPro Designer to estimate manufacturing costs and other economic parameters [105–107].
One such study by Restrepo-Serna and Alzate [108] employed such a model to evaluate the
economic feasibility of extracting oil from yellow passion fruit seeds using SFE. According
to their model, this process could achieve an impressive profit margin of 86.94% with a
flow rate of 100 kg/h, a production cost of 2.09 USD/kg, and a payback period as short as
0.45 years. The capital cost, inclusive of the equipment, was estimated at USD 0.34 million.
Economic evaluation indicated that manufacturing costs could be significantly reduced
by scaling up production [109]. In this regard, another study reported the extraction of
polyphenols and capsiate-rich oleoresin from biquinho pepper at a 500 L scale using a
combination of supercritical fluid and pressurized liquid extractions (SFE + PLE). The study
found that the combined process yielded a lower cost of manufacturing (5316.41 USD/kg)
compared to executing the processes separately (7422.20 USD/kg) [105]. These studies
suggest that with strategic planning, economic modeling, and scale optimization, SFE
can become a cost-effective solution for extracting valuable compounds from plant-based
materials.

Despite the promising potential of SFE, it is important to note that not all product
opportunities have been industrially exploited. In fact, there is a distinct lag between
research advancements and their translation into industrial applications. This delay arises
primarily due to the numerous validations that are necessary before a new technology can
be industrially adopted. Firstly, the efficiency of the technology needs to be convincingly
demonstrated. This is not a trivial task, as it involves not just proving that the technology
works in a laboratory setting but that it can also perform reliably and cost-effectively at
an industrial scale. After that, products derived from SFE must be included in novel food
regulations. This often involves rigorous testing and lengthy regulatory processes to ensure
that the products are safe for human consumption. Moreover, the extraction process itself
and the resultant products must be validated for their nutritional profile, toxicity, allergenic
potential, and the presence of contaminants. These checks are crucial to ensuring the safety
and quality of the products, but they can be time-consuming and costly [110].

Certain other obstacles currently limit the widespread commercial acceptance of su-
percritical fluid extraction technology. A key issue is that supercritical CO2 extraction is
typically a batch process and lacks the necessary standardization for broader industrial
applications [111]. However, many companies are investigating the feasibility of trans-
forming it into a continuous process, a shift that would significantly broaden its potential
applications. The perception of high costs associated with this technology is another sig-
nificant barrier. This perception is fueled by the necessity of maintaining high-pressure
conditions to achieve a supercritical state and the substantial initial investment and integra-
tion costs [23]. However, recent cost analyses of supercritical CO2 technology have shown
promising economic viability for recovering nutritionally, pharmaceutically, and indus-
trially valuable compounds from fruit and vegetable industrial waste, provided certain
conditions are met [56]. These conditions include the physical state of the waste (whether it
is moist, dried, milled, or pelletized), the specific material chosen for extraction (such as
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pomace, seeds, and peel), and the intended use of the extracted compounds. While the
high capital costs can deter smaller processing companies from adopting this technology,
continuous engineering improvements and innovative uses of spent material can further
mitigate these costs. For instance, utilizing the post-extraction waste in a biorefinery to
produce biofuel or generate electricity can contribute to cost reduction [57]. Thus, with
the right strategies and a focus on resource optimization, supercritical fluid extraction
technology holds considerable promise for sustainable and economically viable industrial
applications.

8. Concluding Remarks

This review demonstrated the tremendous potential of critical-fluid-based extraction
technologies for the efficient extraction of bioactive chemicals from a variety of natural
matrices. There is nevertheless room for development. One potential improvement is
linked to a precise understanding of the nature of the component and its quantity, which
aids in increasing the extraction process efficiency. Non-SCF extraction processes rely
primarily on organic solvents, resulting in waste that must be burnt using fossil fuels, a
method that is unsustainable in the long run. Not only is critical fluid extraction a viable
alternative approach for collecting valuable chemicals from waste biomass, but it also has
the potential to improve the remaining biomass’s downstream processing. Furthermore,
the purity of the extract, as well as the time it took to extract it, had a significant impact
on the process’s cost and profit. The impact of process parameters on product yield and
composition can help in choosing the ideal extraction conditions. These data are critical for
optimization, modeling, and scale-up efforts. Extracted chemicals from waste materials
can be utilized as food additives or dietary supplements, or they can be employed in
the pharmaceutical sector, for example, in molecular imaging in cancer therapy or the
manufacturing of antidiabetic medicines such as phloridzin from apples or α-amylase from
grapes.

Despite the reported benefits of SCFs in extracting bioactive molecules from agricul-
tural food processing byproducts, several challenges persist. First, optimizing the scalability
of this technology and understanding the kinetics of the extraction process is important to
enhance bioactive compound yield. Second, a comprehensive evaluation of these molecules’
interaction with food components, their bioavailability, and their primary health benefit
mechanisms requires further research. Third, the standard solvent (CO2) primarily targets
non-polar components; thus, efficient pairing with entrainers for polar substance extraction
remains a relevant subject for discussion. Lastly, the fluid’s density limits extraction of
macromolecular substances, such as proteins. Consequently, the feasibility of extracting
large molecular mass substances using SCF poses a future challenge.
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