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Abstract: Spent Gromwell root-based multifunctional carbon dots (g-CDs) and sulfur-functionalized
g-CDs (g-SCDs) were synthesized using a hydrothermal method. The mean particle size of g-CDs
was confirmed to be 9.1 nm by TEM (transmission electron microscopy) analysis. The zeta potentials
of g-CDs and g-SCDs were mostly negative with a value of −12.5 mV, indicating their stability
in colloidal dispersion. Antioxidant activities were 76.9 ± 1.6% and 58.9 ± 0.8% for g-CDs, and
99.0 ± 0.1% and 62.5 ± 0.5% for g-SCDs by 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging tests, respectively. In addition,
the bathochromic shift of g-CDs is observed when their emission peaks appear at a higher wavelength
than the excitation peaks. The prepared g-CDs and g-SCDs solutions were used as a coating agent
for potato slices. The browning index of the control potato slices increased significantly from 5.0 to
33.5% during 24 to 72 h storage. However, the sample potato slices coated with g-CDs or g-SCDs
suppressed the increase in the browning index. In particular, the browning index of the potato slices
coated with g-SCDs ranged from 1.4 to 5.5%, whereas the potato slices coated with g-CDs had a
browning index ranging from 3.5 to 26.1%. The g-SCDs were more effective in delaying oxidation
or browning in foods. The g-CDs and g-SCDs also played a catalytic role in the Rhodamine B dye
degradation activity. This activity will be useful in the future to break down toxins and adulterants in
food commodities.

Keywords: gromwell roots; carbon dots; antioxidant; edible coating; dye degradation

1. Introduction

Carbon quantum dots or carbon dots (CDs), a new emerging star in the carbon family,
have gotten much attention because of their outstanding and tunable photoluminescence
(PL), high quantum yield (QY), low cytotoxicity, small size, good biocompatibility, abun-
dant, and low-cost. CDs have been applied in various fields, such as biomedical science,
catalysis, optoelectronic devices, and anti-counterfeiting [1,2]. Biomass, particularly waste
biomass, has numerous advantages over molecular carbon sources [3]. Many forms of
biomasses, such as walnut peel [4], papaya [5], goose feather [6], bee pollen [7], and hibis-
cus [8], have been used as carbon sources to synthesize CDs in recent researches, and they
have been used to various fields. Both carbonaceous core and surface functional groups
give CDs their complicated chemical structure [9]. The synthesis process and the carbon
sources used as raw materials affect the basic structure of CDs.

On the other hand, surface functional groups are often produced from a carbon source.
The characteristics of CDs are controlled by their core and surface groups. For instance, the
toxicity of CDs is determined by the former and how the latter disperses or interacts with
other substances. However, CDs’ core and surface groups can be modified to improve their
functionality during or after synthesis. The carboxyl, amino, hydroxyl, and other functional
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groups found in CDs are generally abundant and affect the surface properties of the
CDs [10]. Surface passivating CDs with different chemicals can alter these surface functional
groups. The development of applications in biological and imaging technologies is aided
by surface functionalization, which increases the fluorescence production of CDs [11].
However, adding specific functional groups to surfaces also affects how CDs interact with
biological surfaces and other crucial molecules found in living things, including DNA. For
instance, the positive surface potential of polyethyleneimine (PEI)-modified CDs enables
them to adsorb negatively charged DNA for applications involving gene transfer. Folate-
modified N-doped CDs were specifically endocytic tumor cells with a specific cellular
uptake of 93.40% [12], which further supports the use of surface-modified CDs in tumor
therapy. Another investigation demonstrated CDs’ strong antimicrobial action. It exhibits
remarkable antibacterial activity against E. coli when combined with other functional
groups, including CDs with amine surface groups [13].

The emission spectra of CDs can be modified by doping with certain elements such
as nitrogen (N), sulfur (S), phosphorus (P), boron (B), or their mixtures. Heteroatom
functionalization is the most used technique for changing CDs. Reactants containing
heteroatoms such as nitrogen, sulfur, and boron make it simple to incorporate them into
CDs [14]. This CD functionalization with heteroatoms lessens toxicity and enhances
functional qualities, including antioxidant and antibacterial capabilities. There have been
claims that heteroatomic CDs are a more effective electrocatalyst for oxygen reduction than
homoatomic CDs [15,16]. Additionally, heteroatomic CDs are believed to have a stronger
bactericidal action.

Current research aims to create an environmentally friendly “green” method to manu-
facture CDs from natural precursors of medicinal plant Gromwell root biowastes. Gromwell
root (Lithospermum erythrorhizon) has been used for dermatitis, autoimmune illnesses, neu-
roprotective effects, and chemotherapeutics [17]. Besides biomedical applications, only
very few reports are available on active food packaging applications, such as pH indicator
films with the shikonin colorant extracted from Gromwell root [18,19]. Shikonin-added
cellulose nanofibers (CNF) film exhibited unique color changes depending on pHs ranging
from 2 to 12 and improved mechanical strength and UV blocking capability without any
sacrificing other properties such as transparency and thermal stability [20]. In this current
study, spent Gromwell root, which is a waste of Gromwell root by shikonin extraction, was
used to make CDs as a new functional material. As per our knowledge, there is no report
on the study of plant root biowaste-based CDs. This study synthesized g-CDs and g-SCDs
using a hydrothermal method using spent Gromwell root. Their functional properties were
investigated by measuring antioxidant, antibacterial, and dye degradation activities. Our
motivation is to develop active agents such as antibrowning or antimicrobial agents for
food applications using natural precursor biowaste-based carbon dots.

2. Materials and Methods
2.1. Materials

Dried Gromwell roots (Lithospermum erythrorhizon) were purchased from the local mar-
ket in Seoul, Republic of Korea. Moreover, 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and potassium persulfate were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Listeria monocytogenes (ATCC 15313)
and Escherichia coli O157: H7 (ATCC 43895) were acquired from the Korean Collection for
Type Culture (KCTC, Seoul, Republic of Korea). Spent Gromwell root was obtained as
a byproduct from the extraction process of shikonin, which is the functional colorant in
Gromwell root. Shikonin was first extracted from Gromwell root powder using ethanol as
following the previous study [18]. Gromwell roots were first processed into a fine powder
using a blender. Further, 100 g of pulverized Gromwell powder was combined with 500 mL
of 95% ethanol, gently mixed for one hour in the dark, and then subjected to one hour of
sonication using an ultrasonicator with a water bath (FS 140H, Ultrasonic Cleaner, Fisher
Scientific, Pittsburg, PA, USA). The brilliant red extracted solution was concentrated at
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50 ◦C using a rotary vacuum evaporator, filtered to remove insoluble components, freeze-
dried to produce the shikonin powder, and then kept in the dark at 4 ◦C until needed. The
residue after extraction of shikonin is dried at room temperature to obtain spent Gromwell
root powder.

2.2. Synthesis of g-CDs and g-SCDs

In a one-pot hydrothermal technique, spent Gromwell root was used to prepare carbon
quantum dots (CDs). Dried spent Gromwell root (1 g) was added to 50 mL of distilled
water in a Teflon-lined stainless-steel reactor (100 mL) and heated in an oil bath with
varying temperatures at 200–250 ◦C for 6 h. After cooling, the solid part was separated
by centrifugation at 8000 rpm for 30 min. The recovered supernatant was filtered via a
Whatman membrane filter with a 25 mm diameter and pore size of 0.22 µm (Whatman
International Ltd., Maidstone, UK) to remove the impurities. Sulfur-doped g-CDs (g-SCDs)
were simultaneously prepared by adding 0.1 g of ammonium persulfate before hydrother-
mal synthesis at 200 ◦C for 6 h. The pristine g-CDs formed at 200 ◦C were used to prepare
the g-SCDs because they had better optical properties than the ones formed at 225 ◦C
and 250 ◦C. The recovered supernatant was filtered using a Whatman membrane filter to
remove the impurities (Figure 1).
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Figure 1. Schematic diagram of g-CDs and g-SCDs synthesis.

2.3. Optical and Physicochemical Properties

A morphological study, including the size and shape of g-CDs, was carried out using
a transmission electron microscope (TEM, Tecnai F20 G2, FEI Co., Hillsboro, OR, USA).
Zeta potential was analyzed using a zeta potential analyzer (ELSZ-2000, Otsuka Electronics
Co., Osaka, Japan). The light absorbance of the g-CDs was measured using a UV-Vis
spectrophotometer (Mecasys Optizen POP Series UV/Vis, Seoul, Republic of Korea) with a
wavelength range of 200–800 nm. Fluorescence of the g-CDs and g-SCDs was measured us-
ing a fluorescence spectrophotometer equipped with a quartz cuvette (FluoroMax, Horiba,
Piscataway, NJ, USA). The emission intensity was adjusted for excitation power to compare
intensities. Excitation increments of 20 nm were used for the excitation-emission scans.

2.4. Antioxidant Activity of g-CDs and g-SCDs

The antioxidant activity of g-CDs and g-SCDs at various concentrations (25, 50, 75,
and 100 µg/mL) was evaluated using 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
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acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. For the
ABTS assay, ABTS solution (7 mM) and potassium persulfate (2.45 mM) was mixed in a
ratio of 1:1 and incubated for 16 h. The mixture was diluted with distilled water to produce
an absorbance of 1.00 at 734 nm. For the DPPH assay, 4 mg of DPPH was dissolved in
100 mL of methanol. The different concentrations of g-CDs and g-SCDs were added to the
10 mL of ABTS and DPPH solution. The reaction was conducted at room temperature in
the dark for 30 min, and the absorbance was measured at 734 nm and 517 nm, respectively.
The radical scavenging activity was calculated using the following equation:

Radical scavenging activity (%) = (Ac − As)/Ac × 100 (1)

where Ac and As were the absorbances of ABTS and DPPH solutions of the control and test
solutions, respectively.

2.5. Antibacterial Activity of g-CDs and g-SCDs

The antibacterial activity of the g-CDs and the g-SCDs was evaluated using the well-
diffusion method against Listeria monocytogenes. Six Log CFU/mL of bacterial broth was
applied on the surface of TSB/BHI plates using a sterilized swab. Then, 8 mm-diameter
wells were punched on agar, filled with 100 µL of g-CDs and g-SCDs (6.4 mg/mL), and
incubated at 37 ◦C for 24 h. Then, the diameter of the inhibitory zone was determined.

2.6. Catalytic Activity

The catalytic activity of g-CDs and g-SCDs was assessed for the degradation of
Rhodamine-B (Rh-B) in the presence of sodium borohydride (NaBH4) using a UV-Vis
spectrophotometer [21]. The concentration of the reactants and catalyst was determined
using the modified procedure [21]. A 3 mL complete solution was created by filling
two cuvettes with 0.2 mL of freshly made NaBH4 (0.50 M), 1 mL of Rh-B (0.01 M), and
1.8 mL of water. Then, 20 µL (0.2 mg/mL) of the CD samples were introduced to one of the
cuvettes mentioned above, while the other acted as the control. The degradation of Rh-B
was investigated using UV-visible spectroscopy to record the time-dependent absorbance
of the reaction mixture at 554 nm wavelength every two min.

Degradation (%) = (A0 − At)/A0 × 100 (2)

where At denotes the absorbance at the reaction time (t) and A0 denotes the initial ab-
sorbance at t = 0.

2.7. Visual Appearance and Image Analysis of Potato Slices

Browning of potato slices after coating with g-CDs and g-SCDs solutions was observed
for 72 h. The sliced potatoes were dipped in g-CDs and g-SCDs solutions, and dried at
room temperature. The dipping and drying process was repeated three times to make
a complete coating layer. The control was prepared by dipping and drying the sliced
potatoes in distilled water three times. The percentage of browning over storage time was
analyzed by Image J software, slightly modifying the work of Carpentier et al. [22] and
Lunadei et al. [23]. This method uses the distribution of the image histogram to calculate
the threshold level. In our case, the pictures of the coated potato slices were captured
and analyzed offline in Image J software. Initial segmentation methods used to separate
samples from the background included the Otsu approach.

2.8. Statistical Analysis

All measurements were made in triplicate using freshly made samples, and the results
were presented as means and standard deviations (mean ± SD). One-way analysis of
variance (ANOVA) was used to run statistics on a completely randomized design using
SPSS software (SPSS Inc., Chicago, IL, USA). Duncan’s multiple range test (p < 0.05) was
used to separate the difference between the test groups.
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3. Results and Discussion
3.1. Optical Properties of g-CDs and g-SCDs

The g-CDs solution exhibits a yellowish-brown color that vividly changes to blue
in ultraviolet light due to the quantum confinement effect, as shown in Figure 2a,b. The
observed phenomena are comparable with previously reported carbon dots produced by
curcumin precursor [24]. The high intensity and, consequently, a high amount of CDs at
200 ◦C were produced by the concentration of 1 g of the plant root sample in 50 mL of
distilled water. Then, using a concentration of 1 g/50 mL, CD preparation was assessed
at various calcination temperatures. At 200 ◦C, the maximum efficiency was attained. At
greater temperatures, no increase in efficiency was seen.
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Figure 2c shows the UV-Vis spectra of g-CDs prepared at 200 to 250 ◦C. The g-CDs
prepared at 200 ◦C were chosen as their intensity was highest among the three g-CDs.
UV-Vis spectra were utilized to observe the visual and optical characteristics of water-
soluble g-CDs. Due to the n–* transition of CO or the C–OH bond, the g-CDs peak at
about 290 nm, demonstrating the successful synthesis of carbon dots via carbonization
of Gromwell root biowastes (Figure 2c). A prominent emission peak in the blue light
area was visible in the photoluminescence spectra of the CD solution at the excitation
wavelength, and the emission could be adjusted using an incoming excitation wavelength
range of 350–650 nm (Figure 2c,d). As the excitation energy rose from 305 to 385 nm, the
emission peak underwent a strong bathochromic (red) shift with reduced intensity. Surface
imperfections, which provide tunable emissions with various energy levels, are one of the
most plausible reasons for this coordinated emission. Photoluminescence emission peak
was observed at 385 nm for the g-CDs. Whereas this may be due to high concentration, the
photoluminescence is observed at low intensity in the case of g-SCDs.
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3.2. TEM Images and Zeta Potential of g-CDs

Figure 3a shows the TEM image of the g-CDs. The shape of the g-CDs was truncated
triangular nanoparticles with diameters less than 10 nm. In some cases, particle sizes
of CDs larger than 10 nm have been reported, which is attributed to the aggregation of
CDs [24–26]. The cluster of CDs in the solid state was due to their small size. The g-CDs
were mostly negatively charged and tended to attain stability in colloidal solution as their
zeta potential of −12.5 mV, as shown in Figure 3b.
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3.3. Antioxidant Activity of g-CDs and g-SCDs

Figure 4a,b show the antioxidant activity by ABTS and DPPH radical scavenging as-
say of the g-CDs and the g-SCDs as a function of concentration. The antioxidant activ-
ities of the g-CDs at 75 and 100 µg/mL concentrations were 64.6 ± 1.9~76.9 ± 1.6% and
43.4 ± 0.3~58.9 ± 0.5% by ABTS and DPPH assay, respectively. On the other hand, the antiox-
idant activities of the g-SCDs at 75 and 100µg/mL concentrations were 96.8 ± 0.3~98.9 ± 0.1%
and 54.6 ± 0.3~62.5 ± 0.5% by ABTS and DPPH assay, respectively. The antioxidant ac-
tivity of the g-CDs and the g-SCDs was significantly increased with the concentrations
of the g-CDs and the g-SCDs. ABTS radical scavenging activity of both CDs was higher
than DPPH because the g-CDs are highly soluble in an aqueous ABTS solution than in a
methanol DPPH solution. Stronger antioxidant activity in the ABTS approach is mostly due
to hydrophilicity and greater g-CDs dispersion in an aqueous solution, which is consistent
with the findings indicating decreased the free radicals scavenging capacity in the DPPH
method. The reduced interaction of g-CDs and DPPH free radicals in methanol solution
is the cause of the DPPH method’s lower antioxidant activity. The hydroxyl group of
the surface functional group is believed to be the source of g-SCDs antioxidant activity.
As the hydroxyl group is transformed into hydrogen ions (H+), it is known that ABTS
and DPPH radicals are quenched. The production of more hydroxyl (OH−) radicals is
the cause of the decreased free radical scavenging activity of the g-CDs compared to the
g-SCDs. The ability to quench free radicals using ABTS or DPPH is prevented by stability
restoration and binding of the radicals. The existence of surface functional groups on the
g-CDs may explain their remarkable antioxidant activity, similar to Roy et al. [24]. The
antioxidant activity of roots-based carbon dots has greater radical scavenging activity than
other aerial parts of the plant. Nasseri and co-workers [27] observed a comparative study
of carbon dots from various parts such as roots, flowers, and aerial parts of the medicinal
plant Echinops persicus. Additionally, 50% radical scavenging activity was observed from
the concentration of 6 g/75 mL of root-based CDs. Moualek et al. [28] observed that a
methanol extract of Arbutus unedo could exhibit DPPH radical scavenging activity of nearly
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30~40% at a concentration of 7.5 µg/mL. Therefore, g-CDs and g-SCDs were less effective
than methanol extract of medicinal plants in radical scavenging activity, but superior to
other CDs.
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3.4. Antibacterial Activity of g-CDs and g-SCDs

Figure 5 shows the antibacterial activity of the g-CDs and the g-SCDs against Listeria
monocytogenes and Escherichia coli by the inhibition zone method. The g-CDs showed
20 mm and 0 mm inhibition zone against L. monocytogenes and E. coli. The g-SCDs did not
show any inhibition zone. The inhibition zone is the observed circular patch marked on
the Petri dish and no bacterial colonies have grown in that zone. This is an area of the
medium where bacteria cannot thrive because there are carbon dots that hinder bacterial
growth [18]. As most CDs are smaller than bacteria, they readily penetrate bacterial cells
and internalize into cells, increasing oxidative capacity and triggering enzyme inhibition,
causing cells to rupture and triggering mechanisms of oxidative stress leading to cell
lysis, causing death [24]. Our results contradict Roy et al. [24] as their functionalized CDs
were antibacterial compared to pristine carbon dots from turmeric (Curcumin rhizhome)
precursors. The g-CDs exhibit excellent antibacterial action against bacterial strains may
be due to their high singlet oxygen generation levels. The doping of the g-CDs with
ammonium persulfate heteroatom decreases the antibacterial capability of these CDs.
Compared to E. coli, L. monocytogenes was more sensitive to the g-CDs. This outcome
might result from the more complicated structure of E. coli. Cytoplasmic membrane,
peptidoglycan, and outer membrane comprise its three envelope layers. This may prevent
weak singlet oxygen-potent g-CDs or g-SCDs from degrading the E. coli membranes. A
similar report is observed in the case of fluorine-doped and chlorine-doped CDs, which
failed to show promising antibacterial effects may be due to reduced reactive oxygen
species [26]. The antibacterial efficacy of methanolic leaf extract was reported in a study [29]
against various microorganisms including Pseudomonas aeruginosa, Escherichia coli, Klebsiella
pneumoniae, Salmonella typhimurium, and Staphylococcus aureus. The extract showed the
most significant inhibition zone at 160 mg/mL concentration against E. coli (19 mm), P.
aeruginosa (18 mm), and K. pneumoniae (17 mm). Therefore, it can be said that the g-CDs
and g-SCDs of this study showed improved antibacterial efficacy against bacteria even at a
low concentration of 6 mg/mL.
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3.5. Rhodamine Dye Degradation Activity of g-CDs and g-SCDs

The g-SCDs result in an approximately 57.4% quicker degradation of Rhodamine-B
dye after 25 min, as shown in Figure 6. The catalytic effect is due to its tiny size and high
surface volume ratio, making it an effective dye degradation substrate. The oxidation of
aqueous sodium borohydride solution with a concentration of the g-CDs and g-SCDs as
catalysts liberates hydrogen bubbles in the reaction mechanism. Metaboric ions (BO2

−)
and protonated hydrogen atoms are formed when borate ions (BH4) adsorb on the surface
of catalysts oxidized with water molecules. Due to its nucleophilic and electrophilic
natures, the catalyst reduces the reductive potential of NaBH4 while increasing the reductive
potential of Rh-B dye. Furthermore, the Rh-B dye and borate ion (BH4) is attributed to
the adsorption of the g-CDs and the g-SCDs, serving as a mediator (electron relay system)
to accept an electron from borate ions and transfer it to Rh-B via its surface. During this
reduction process, constant H2 gas bubbles are produced, breaking the central core in the
molecule and lowering the barrier between reactants and the products. The pink colors
of Rh-B faded to lighter as the dye’s chromophore structure was broken down into less
harmful forms. As a result, the vast interfacial ratio due to the reduced size and the efficient
electron-accepting capability owing to sulfur doping could cause the high catalytic activity
of the g-CDs. The reaction mechanism is somewhat similar to Pandey et al. [30]. Figure 6a,b
represent the visual appearance of color change and dye degradation percentage of Rh-B
dye by the g-CDs and the g-SCDs. The control used in the experiment is the dye itself
without incorporating any additive such as pristine functionalized CDs. Despite limited
reports on medicinal plant-derived carbon dots and their dye degradation applications,
Mejing et al. [31] synthesized carbon dots from the Chinese herbal Alisma rhizome. The
researchers observed CDs’ photodegradation catalytic activity of malachite green dye with
a concentration of 0.6 mg/mL over time. The photodegradation activity of the CDs was
76% after 1 h, and increased to 88 to 100% after 2 h and 4.5 h, respectively [27]. They used
a high volume of CDs (2 mL) and a longer time to show good photodegradation activity.
However, in this study, 57.4% photodegradation activity was obtained after 25 min using
0.2 µL of CDs. It can be assumed that our CDs catalytic activity is better in response to
Mejing et al. [31]. Therefore, g-SCDs can be used to degrade toxic substances or additives
to achieve the purpose of detecting contaminants in food.
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Figure 6. Visual appearance of Ph-B dye color change (a) and (b) dye degradation percentage of
control, g-CDs, and g-SCDs.

3.6. Visual Appearance of Potato Slice after Coating with g-CDs and g-SCDs

The browning index of the potato slices after coating with distilled water (control),
g-CDs, and g-SCDs was compared at intervals of 24, 48, and 72 h (Figure 7). The browning
index for the white part of the image was calculated, the average value was obtained, and
the standard deviation was calculated using Image J software. The browning index of the
control was significantly increased from 5.0 to 33.5% at 24 h to 72 h storage. However,
coating with the g-CDs and g-SCDs retarded the increasing browning index of potato slices.
The potato slices coated with g-CDs ranged the browning index from 3.5 to 26.1%, whereas
the sample coated with g-SCDs ranged from 1.4 to 5.5%. All these findings supported the
potential of the suggested method for classifying fresh-cut potatoes according to their state
of browning. This method could be a potential criterion for determining the shelf life for
fresh-cut potato slices stored at room temperature with or without additional inhibitory
treatments. Thus, the image analysis results also tally with the antioxidant mechanism,
which denotes the g-SCDs’ exceptional antioxidant ability by their power to scavenge free
radicals. Figure 8a,b represent the camera and analytical images of the coated potato slices
over storage time using Image J software, respectively.
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Figure 8. (a) Appearance images and (b) image analysis by Image J software of potatoes dipped in
distilled water (control), g-CDs, and g-SCDs at 24, 48, and 72 h.

To the best of our knowledge, there are limited or no reports of carbon dots as anti-
browning agents. Researchers in the current study found several established reports of ap-
plying nanocoatings to extend the shelf life of cut fruits and vegetables. Gvozdenko et al. [32]
synthesized copper oxide (CuO) nanoparticles and observed their efficacy in the storage of
strawberries and tomatoes. During the experiment, they observed that untreated control
samples of strawberries showed signs of rotting on day 4, whereas tomatoes started to rot
on day 7. However, no corrosion or discoloration was observed in the samples treated with
CuO nanoparticles. In another study by Zambrano-Zaragoza et al. [33], freshly cut apples
were dip-coated with xanthan gum, nanoemulsion, nanocapsule, nanosphere, and their
mixture. There was no significant difference in the browning index between xanthan gum
and xanthan gum/nanoemulsion, while the sample coated with nanosphere/nanoemulsion
showed a potential in lowering the browning index. The results indicate that the submicron-
size coating agent helps extend the product’s shelf life compared to the control and xanthan
gum coating. In this study, g-CDs-coated potatoes and g-SCDs-coated potatoes showed no
fungal or bacterial growth during storage at 25 ◦C for 72 h. Only the surface was dry and
the potatoes lost some moisture over time and became soggy after 72 h.

4. Conclusions

CDs were prepared with 1 g/50 mL of spent gromwell root powder extract at 200
◦C using a hydrothermal method. The g-CDs have an average diameter of 9.1 nm, with
a surface charge of −12.5 mV. The g-CDs also exhibited a bathochromic shift, indicating
a redshift confirming the formation of CDs. The g-CDs showed high efficacy in radical
scavenging activities when promising antioxidant properties were revealed in DPPH and
ABTS assay. This antioxidant characteristic can be utilized in the food industry to inhibit or
delay browning in cut vegetables, even at room temperature. The browning index of potato
slices coated with g-CDs ranged from 3.5 to 26.1%, whereas the sample coated with g-SCDs
ranged from 1.4 to 5.5%. The sulfur-functionalized g-CDs (g-SCDs) enhanced antioxidant



Foods 2023, 12, 2165 11 of 12

activity in DPPH and ABTS assay. ABTS and DPPH radical scavenging activities of the
g-SCDs at 100 µg/mL were 98.9 ± 0.1% and 62.5 ± 0.5%, respectively. It was observed
that the g-SCDs improved the catalytic activity of g-CDs, which will effectively determine
toxicants and additive colorants, dyes, and pesticides. Thus, the g-CDs and g-SCDs can
be used as fillers for bioactive food packaging, extending the shelf life and quality of
food materials.
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