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Abstract: The quality of food, considering increasing consumer demands and competition among
producers, is a highly important issue. Quality concerns are also applicable to the odor quality of
herbs and spices (HSs). Meanwhile, HSs commonly are graded based on their essential oils (EOs)
content and analysis; but does the instrumental analysis really provide general information about the
HSs sensory quality? Three chemotypes of Mentha spp. were used in the present study. From samples
diversified by convective drying at different temperatures, EOs were hydrodistillated and analyzed
by enantioselective GC-MS; moreover, the source plant material’s volatile profile was analyzed by
the HS-SPME technique. The instrumental analysis was confronted with the results of the sensory
panel. Changes in enantiomeric composition were observed during the drying process, although no
clear correlations or trends could be found for individual chiral components. Furthermore, even with
significant differences in particular volatiles’ contribution to plants’ EOs and their volatile profiles,
judges were not able to match the sample EOs and plant samples with sufficient effectiveness (~40%).
Based on those results, we suggest that volatile enantiomeric distribution does not have an actual
influence on odor quality and that the sensory analysis should not be replaced with instrumental
analysis, which cannot predict general sensory quality.

Keywords: VOCs; mint; gas chromatography mass spectrometry; medicinal and aromatic plants;
HS-SPME; enantiomeric distribution

1. Introduction

Medicinal and aromatic plants (MAPs) are a large group of plant families (e.g., Lamia-
cae, Astereace), which have a considerable place in the pharmaceutical, cosmetics, and food
industries [1]. Among MAPs, a special place is held for herbs and spices (HSs), which
despite their properties beneficial for health, possess unique flavoring features [2]. Due to
those flavoring features, the quality assessment of HSs has a crucial role for companies dur-
ing raw-material purchases, for technologists during processing, and finally, for consumers
during usage.

The flavoring features of HSs are mainly caused by significant amounts of essential
oils (EOs) present in the plant tissue, which are responsible for the characteristic aroma
of HSs [3]. In general, the EOs yield was considered the most important factor for the
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determination of HSs sensory quality and origin [4,5], however, actual studies prove that
this factor was overrated [6–8]. The very first stage of this perspective change was the
determination that more relevant than the EOs yield is its composition and mutual volatile
organic compounds (VOCs) ratio [8]. Moreover, the latest data show that not only the
VOCs ratio should be considered, but also the influence of plant tissue presence, which
limits the emission of VOCs composing plant EOs [6]. The further steps may consider
a more in-depth investigation of the enantiomeric distribution of HSs volatiles in the
plant’s headspace.

The most measurable method for HSs sensory quality determination is its assessment
by a trained panel. Sensory analysis is nonetheless time-consuming and expensive, due to
the need for panel judges’ training and senses calibration each time when specific material
is evaluated. Therefore, the seeking of trends between sensory quality evaluation and
chemical analyses is highly in demand. For this reason, the study focused on looking
for the connection between instrumental and sensory analysis, considering the VOCs
enantiomeric composition design. The chemical analysis of the enantiomeric composition
of EOs by GC-MS and the emission of VOCs enantiomers to plant headspace by HS-SPME
was confronted with the results of sensory quality assessment of whole plants and obtained
from the EOs. The study was performed on the example of three Mentha spp. chemotypes
(carvone pathway, menthol pathway, and linalool pathway). The Mentha spp. plants were
chosen as an object of the present research because of their wide availability in Poland,
which ensured the required amount of material for experiment purposes. Furthermore,
several Mentha spp. plants were identified in previous research as those abundant in
enantiomeric VOCs [5,9].

2. Materials and Methods
2.1. Chemicals

For chemical analyses, EOs were diluted in cyclohexane MS SupraSolv® for gas
chromatography (Sigma-Aldrich, Steinheim, Germany). For enantiomers identification,
the analytical standards of (−)-menthol, (+)-menthol, (−)-menthone, (+)-menthone, (−)-α-
terpineol, (+)-α-terpineol, (−)-limonene, (+)-limonene, (−)-terpinen-4-ol, (+)-terpinen-4-ol,
(−)-trans-caryophyllene, (−)-carvone, (+)-carvone, (−)-linalool, (±)-linalool, (−)-menthyl
acetate, (+)-menthyl acetate, (−)-dihydrocarvone, (+)-dihydrocarvone, (−)-borneol, and
undecane-2-one (all Sigma-Aldrich, Steinheim, Germany) were used.

2.2. Plant Material

Mint samples of cultivars were obtained from the Garden of Cosmetic Plants and
Raw Materials, Research and Science Innovation Centre (Lublin, Poland) and cultivated
at Wrocław University of Environmental and Life Sciences research station Swojczyce
(Wrocław, Poland). The field was classified as arable soils of average quality, better soil
(Class IVa according to the Polish bonitation class) that was slightly acidic (pH 6.3). The
harvesting was performed in July 2021, when the plants reached the flower bud phase
(BBCH 54). Mint cultivars are classified according to particular chemotypes due to the
presence of specific enzymes in the plant’s metabolic pathways. For all mint samples,
the biosynthesis of characteristic VOCs (menthol, carvone, or linalool) is related to the
mevalonate pathway. The starting point of all three chemotypes is geranyl PP followed by
linalyl PP. From this step, the pathway branches out in two ways: linalool and limonene.
Then, limonene as an intermediate may be converted into pulegone and further reduced
to menthol. In addition, limonene branches out the pathway to carvone via conversion
to carveole.

After the harvesting, the plant material within the cultivars was precisely mixed and
subjected to different post-harvest treatments: vacuum packaging and storing at −18 ◦C as
reference material; convective drying at 40 ◦C; convective drying at 55 ◦C; convective drying
at 70 ◦C. The drying process was introduced into the experiment design to differentiate the
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material to increase the objects for trends observation. The list of samples is presented in
Table 1.

Table 1. Sample list and codes.

Cultivar and Chemotype Type of Treatment Sample Code

Mentha × piperita L. ‘Multimentha’
(menthol pathway)

frozen M1_F
dried at 40 ◦C M1_40
dried at 55 ◦C M1_55
dried at 70 ◦C M1_70

Mentha × piperita L. ‘Swiss’
(menthol pathway)

frozen M2_F
dried at 40 ◦C M2_40
dried at 55 ◦C M2_55
dried at 70 ◦C M2_70

Mentha spicata L. ‘Moroccan’
(carvone pathway)

frozen K1_F
dried at 40 ◦C K1_40
dried at 55 ◦C K1_55
dried at 70 ◦C K1_70

Mentha spicata L. ‘Crispa’
(carvone pathway)

frozen K2_F
dried at 40 ◦C K2_40
dried at 55 ◦C K2_55
dried at 70 ◦C K2_70

Mentha × piperita L. ‘Grapefruit’
(linalool pathway)

frozen L1_F
dried at 40 ◦C L1_40
dried at 55 ◦C L1_55
dried at 70 ◦C L1_70

Mentha × piperita L. ‘Granada’
(linalool pathway)

frozen L2_F
dried at 40 ◦C L2_40
dried at 55 ◦C L2_55
dried at 70 ◦C L2_70

2.3. EOs Hydrodistillation and Sample Preparation

Hydrodistillation of EOs was conducted with the Deryng-type apparatus. Briefly,
100 ± 0.05 g of shredded frozen material or 10 ± 0.05 g of dried material was placed in a
round bottom flask. Then, the material was suspended in 250 mL or 150 mL of distilled
water, respectively. The distillation was performed for 45 min after the start of boiling.
After the process, the EOs were collected and measured with 0.05 mL accuracy. The EOs
yield was calculated as % of dry weight [v/w]. The samples were stored at −18 ◦C before
analysis. All samples were distilled with three replications.

For GC-MS analysis, 5 µL of EOs with 25 µg of undecane-2-one as internal standard
was diluted up to 1 mL with cyclohexane and placed into a 1.5 mL chromatographical vial.
Samples obtained by drying at 70 ◦C, due to significantly lower amounts of EOs obtained,
were not included in further chemical analyses.

2.4. HS-SPME Arrow Extraction

Extraction of VOCs was performed with 1.10 mm DVB/C-WR/PDMS SPME Arrow
fiber (Shimadzu, Kyoto, Japan). Briefly, 1 ± 0.005 g of frozen or 0.1 ± 0.005 g of dried
material was used for VOCs extraction from plant material. The extraction was performed
in 20 mL headspace vials for 30 min at 45 ◦C with the addition of 25 µg of undecane-2-one
as the internal standard. The extraction proceeded with incubation for 10 min at the same
temperature. The analytes were desorbed at the conditions of the GC injection port for
3 min.

2.5. GC-MS Analysis

Enantiomeric analysis of mint EOs and VOCs was performed with Shimadzu GCMS
QP 2020 Plus (Shimadzu, Kyoto, Japan) equipped with a Cydex-B capillary column
(50 m × 0.25 mm × 0.25 µm; Trajan Scientific Europe Ltd., Milton Keynes, UK). GC
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operational conditions were as follows: injection port 220 ◦C; temperature program started
with 60 ◦C held for 2 min, then at the of rate 3 ◦C·min−1 to 150 ◦C, then at the rate of
25 ◦C·min−1 to 220 ◦C; helium as carrier gas with flow 0.9 mL·min−1; split 75 (liquid
injection) or 100 (HS-SPME Arrow analysis). MS operational conditions were as follows:
interface temperature 210 ◦C; ion source temperature 250 ◦C; scan 35–350 m/z.

The identification of enantiomers was performed by simultaneous analysis of the
analytical standards and in reference to Alvarez-Rosas et al. (2022) [10] study. The quantifi-
cation was based on the peak area normalization performed against the internal standard
peak area.

2.6. Sensory Analysis

Ten trained panelists from the Food Quality and Safety Group (Escuela Politécnica
Superior de Orihuela) of the Universidad Miguel Hernández de Elche (Orihuela, Alicante,
Spain), selected according to ISO standard 8586-1 [11,12], performed the sensory analyses.
Before the actual panel, the panelists were trained with the pure compounds’ standards. The
sensory panel was performed under controlled environmental conditions (light 70–90 fc,
temperature 22 ± 1 ◦C) in individual booths. For sensory evaluation, 5 µL of EOs were
dissolved in 995 µL of distilled water; before the sensory evaluation, the mixture was
thoroughly shaken. It should be highlighted that dissolving EOs in water is not optimal in
terms of sensory evaluation. This option was used since one of the aims of our research
was to compare the instrumental analysis approach (HS-SPME-GC-MS) and the human-
involving approach; however, the HS-SPME technique is strongly sensitive to organic
solvent presence—as a result of its low boiling points, the molecules of EtOH, MeOH, or
other organic solvents would, with high efficiency, saturate the fiber and limit the actual
extraction of VOCs. Therefore, to maintain the convergence of analytical approaches, water
was used as a solvent for both instrumental and sensory analyses. During sensory analysis
four tests were performed: (A) pairing the EOs with plant source material; (B) pairing
the EOs with plant chemotype; (C) pairing the EOs with pure enantiomers standards of
VOCs; and (D) pairing the plant material with pure enantiomeric standards of VOCs. This
experimental design allowed us to check how representative the EOs were from the dried
plants, the plant chemotype, and even pure enantiomer standards, and whether the use of
instrumental analysis can fully replace the human senses.

2.7. Statistical Analysis

For statistical analysis, 13.3 Statistica software (StatSoft, Kraków, Poland) was used.
For EOs yields and VOCs contribution statistical differences, one-way ANOVA was applied,
including previous verification of normality and homogeneous variance by Levene’s test.
For all relevant cases, standard deviation (SD) was applied. The hierarchical cluster
analysis (HCA) with Ward’s linkage and Euclidean distance was applied and the strict
(33%) Sneath’s criterium was used to highlight the sensory evaluation results. The analyses
were made with a completely randomized design.

3. Results and Discussion

To investigate the relationship between plants’ VOCs enantiomeric distribution and
its influence on the odor sensory quality of plants a comprehensive study with multiple
approaches was performed. The quantity of EOs was determined by hydrodistillation with
Deryng’s apparatus. Thereafter, the enantiomeric composition of EOs was determined
with enantioselective GC-MS analysis. Parallelly, the enantioselective analysis of VOCs
enantiomers emitted to plants’ headspace with the HS-SPME technique was performed.
Finally, the sensory panel was carried out with the purpose to verify the ability of judges to
match the EOs with the source plant material or pure VOCs enantiomers standards.
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3.1. Essential Oil Yield

Hydrodistillation carried out with Deryng’s apparatus resulted in various amounts
of obtained EOs (Figure 1). Except for K1 and K2 samples, the EOs yields did not differ
significantly between F samples and those dried at 40 ◦C. For all samples, except K1 and L1,
drying at 55 ◦C caused a significant decrease in EOs content, while drying at 70 ◦C for all
samples was the most destructive. Such phenomena should relate to the sensitivity of plant
tissue since higher temperatures possibly disintegrate the glandular trichomes structure.
The trend of VOCs emission differentiation due to glandular trichomes disintegration was
observed by Vallino et al. (2021) [13]. Additionally, the VOCs emission differentiation
was confirmed by us in our earlier study [6]. The last to be discussed is the issue of EOs
yielding considerable increase for K1 sample dried at 40 ◦C which was also reported before
for coriander [14], laurel [15], and even mint [16], and may relate to the morphology of
a particular mint variety or may be caused with partial degradation/polymerization of
compounds during freeing process.
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Figure 1. Essential oils yield: hydrodistillation resulted in various amounts of obtained EOs. Except
K1 and K2 samples, the EOs yields did not differ significantly between F samples and those dried at
40 ◦C. For all samples, except K1 and L1, drying at 55 ◦C caused a significant decrease in EOs content,
while drying at 70 ◦C for all samples was the one with the strongest EOs content decrease. Values
followed with the same letters are not statistically different in Tukey’s test and one-way analysis
of variance.

3.2. Enantioselective Analysis

All mint samples were analyzed by qualitative and quantitative, enantioselective
(Cydex-B column) GC-MS with two approaches: EOs GC-MS analysis by liquid injection
and VOCs emission pattern by HS-SPME (the examples of chromatograms may be found
in Supplementary Materials File S1: TIC chromatograms). Tables 2–7 present the identified
VOCs enantiomers and their contribution to all samples (the details of identification results
may be found in Supplementary Materials File S2: Table S1—Qualitative analysis of mint
VOCs enantiomers). The most characteristic of mint compounds such as (−)-menthol,
(+)-piperitone, (−)-menthone, and (+)-isomenthone was found with 100% of enantiomeric
excess which agrees with earlier studies [17,18]; contrarily, (+)-menthyl acetate was found
in the present study for mint K2 and L1. Moreover, the L1 mint sample, which was expected
to be a linalool pathway mint, has presented a profile more characteristic of the carvone
pathway. The reason for this issue may be linked to the cultivation conditions, which may
be responsible for the plant metabolism change [1]. Unfortunately, it was impossible to
separate carvone enantiomers with the applied capillary column since its stationary phase
presented too low-resolution effectiveness [17].
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Table 2. Contribution of volatile enantiomeric compounds in M1 mint EOs and headspace
(HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene * 0.45 a 0.05 b 0.54 a tr 2 0.49 a tr
α-(+)-pinene * 0.33 a 0.07 b 0.58 a tr 0.53 a tr
(+)-sabinene * 0.48 a 0.18 b 0.86 a 0.09 b 0.76 a 0.08 b

(−)-sabinene * 0.16 a 0.05 b 0.28 a tr 0.24 a tr
β-(+)-pinene * 0.54 a 0.19 b 0.87 a tr 0.81 a tr
β-(−)-pinene * 0.52 a 0.20 b 0.89 a 0.06 b 0.83 a 0.05 b

(−)-limonene * 4.69 a 3.84 a 5.88 a 1.07 b 5.33 a 0.88 b

(+)-limonene * 0.16 b 1.18 a 0.18 b 0.06 c 0.18 b 0.05 c

(−)-linalool * 0.26 b 0.35 ab 0.25 b 0.40 a 0.27 b 0.39 a

(−)-menthone * 33.87 b 41.56 a 34.47 b 16.10 c 32.14 b 11.10 d

(+)-isomenthone * 3.45 ab 4.72 a 3.00 ab 2.29 b 3.02 ab 3.15 ab

(+)-terpinen-4-ol NS 0.20 0.18 0.16 0.25 0.22 0.28
(−)-terpinen-4-ol NS 4.08 4.51 3.39 4.33 3.54 4.60

(−)-menthol * 42.39 bc 37.81 c 41.56 bc 64.14 a 45.24 b 69.28 a

(−)-menthyl acetate * 4.60 a 1.18 b 3.44 a 3.11 a 2.56 ab 2.60 ab

α-(+)-terpineol NS 0.12 0.09 0.11 0.24 0.11 0.21
α-(−)-terpineol NS 0.13 0.07 0.11 0.24 0.12 0.21
(+)-piperitone * 3.40 b 3.78 b 3.27 b 7.35 a 3.47 b 6.86 a

(−)-trans-caryophyllene NS 0.20 tr 0.15 0.14 0.13 0.13

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 tr—presence < 0.05%.

Table 3. Contribution of volatile enantiomeric compounds in M2 mint EOs and headspace
(HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene * 0.39 a tr 3 0.48 a 0.10 b 0.44 a 0.05 b

α-(+)-pinene * 0.36 a 0.10 b 0.45 a 0.08 b 0.42 a 0.05 b

(+)-sabinene * 0.52 a 0.20 b 0.66 a 0.20 b 0.52 a 0.12 b

(−)-sabinene * 0.20 ab 0.29 a 0.25 a 0.06 c 0.19 b tr
β-(+)-pinene * 0.60 a tr 0.72 a 0.12 b 0.67 a 0.07 b

β-(−)-pinene * 0.50 a 0.26 b 0.62 a 0.15 b 0.57 a 0.07 c

(−)-limonene * 0.86 a tr 0.44 b 0.81 a 0.39 b 0.41 b

(+)-limonene * 0.06 b 2.47 a tr 0.11 b tr 0.08 b

(−)-linalool * 0.39 c 0.32 c 0.38 c 0.65 b 0.40 c 0.81 a

(−)-menthone * 64.40 a 30.64 c 67.28 a 39.56 b 67.74 a 32.77 c

(+)-isomenthone * 5.14 a 4.38 ab 4.74 ab 4.34 b 5.08 ab 5.07 ab

(+)-terpinen-4-ol * 0.43 b 6.61 a 0.25 b 0.31 b 0.36 b 0.43 b

(−)-terpinen-4-ol * 4.10 b 6.12 a 1.82 d 2.68 c 1.75 d 3.20 c

(−)-menthol * 15.43 c 41.47 a 14.87 c 29.04 b 15.55 c 39.02 a

(−)-menthyl acetate NS 3.55 3.00 3.17 7.35 2.58 4.61
(±)-carvone 2 * 0.16 b 0.43 b 0.68 b 6.19 a 0.04 b 4.02 a

(+)-piperitone * 2.49 c 3.67 b 2.76 c 7.89 a 2.87 c 8.35 a

(−)-trans-caryophyllene * 0.42 b tr 0.42 b 0.35 c 0.39 bc 0.76 a

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 since carvone enantiomers were not
separated it was not possible to clearly define if the samples contained enantiomers mixture or one enantiomer
with 100% of enantiomeric excess; 3 tr—presence < 0.05%.
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Table 4. Contribution of volatile enantiomeric compounds in K1 mint EOs and headspace (HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene * 0.54 a tr 3 0.53 a 0.05 b 0.42 a 0.05 b

α-(+)-pinene * 0.31 a tr 0.31 a 0.03 b 0.23 a tr
(+)-sabinene * 0.49 a tr 0.41 a 0.06 b 0.34 a tr
(−)-sabinene * 0.28 b 2.62 a 0.24 b tr 0.20 b tr
β-(+)-pinene * 0.57 b 0.71 a 0.52 b 0.05 d 0.45 c 0.05 d

β-(−)-pinene * 0.61 a tr 0.55 ab 0.06 c 0.48 b 0.06 c

(−)-limonene * 6.79 a 2.02 bc 5.13 ab 1.12 c 4.10 ab 0.45 c

(−)-linalool NS 0.31 tr 0.20 0.23 0.22 0.24
(−)-menthone * 0.23 c tr 0.18 c 0.70 b 0.17 c 1.48 a

(+)-terpinen-4-ol NS 0.12 0.16 0.05 tr 0.05 tr
(−)-terpinen-4-ol NS 0.09 0.17 tr 0.05 tr 0.09

(+)-cis-dihydrocarvone * 8.35 b 48.38 a 6.14 c 4.24 c 4.10 c 1.13 d

(−)-menthol NS 0.14 tr 0.12 0.11 0.12 0.19
(+)-dihydrocarveol * 1.72 b 2.96 a 0.41 b 0.22 b 0.30 b 0.46 b

(±)-carvone 2 * 79.11 c 44.44 d 84.73 bc 92.88 a 88.26 ab 95.38 a

(−)-dihydrocarveol * 0.21 a tr 0.14 b tr 0.11 bc 0.08 c

(−)-trans-caryophyllene * 0.16 d 0.50 a 0.30 c 0.10 d 0.41 b 0.26 cd

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 since carvone enantiomers were not
separated it was not possible to clearly define if the samples contained enantiomers mixture or one enantiomer
with 100% of enantiomeric excess; 3 tr—presence < 0.05%.

Table 5. Contribution of volatile enantiomeric compounds in K2 mint EOs and headspace (HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene * 0.89 a tr 3 1.00 a 0.08 b 0.93 a 0.07 b

α-(+)-pinene * 1.19 b tr 1.42 a 0.10 c 1.30 ab 0.10 c

(+)-sabinene * 1.84 c 3.48 a 2.05 b 0.25 d 2.00 b 0.21 d

(−)-sabinene * 0.48 bc 3.52 a 0.54 b 0.05 c 0.51 b 0.05 c

β-(+)-pinene * 1.57 a tr 1.87 a 0.14 b 1.84 a 0.12 b

β-(−)-pinene * 2.02 a tr 2.41 a 0.20 b 2.39 a 0.19 b

(−)-limonene * 9.57 a tr 7.16 b 1.44 c 6.26 b 0.95 cd

(−)-linalool * 1.29 b 1.21 b 1.45 ab 0.97 c 1.58 a 1.27 b

(−)-menthone * 12.84 b 24.67 a 14.23 b 6.89 c 14.02 b 7.94 c

(+)-terpinen-4-ol NS 0.37 0.27 0.24 0.18 0.25 0.18
(−)-terpinen-4-ol * 1.55 a 1.21 ab 1.38 ab 1.04 b 1.42 ab 1.21 ab

(+)-cis-dihydrocarvone * 0.19 b 13.53 a 0.15 b 15.32 a 0.22 b 0.56 b

(−)-cis-dihydrocarvone NS 0.07 tr 0.15 tr 0.14 0.06
(−)-menthol * 4.27 bc 3.68 c 4.72 abc 5.53 ab 5.08 abc 5.82 a

(−)-menthyl acetate * 1.47 b 0.62 b 2.81 a 0.75 b 3.12 a 1.30 b

(+)-menthyl acetate NS 0.45 tr 0.44 0.69 0.51 0.67
(+)-dihydrocarveol NS 0.12 tr 0.11 tr 0.13 tr

(±)-carvone 2 * 55.90 c 45.65 d 52.83 c 62.49 b 52.98 c 74.80 a

(+)-piperitone * 1.87 bc 1.46 c 2.09 bc 2.89 a 2.08 bc 2.45 ab

(−)-dihydrocarveol * 0.81 ab 0.31 b 1.13 a 0.49 b 0.94 ab 0.96 ab

(−)-trans-caryophyllene * 1.26 b 0.39 c 1.82 ab 0.51 c 2.28 a 1.06 b

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 since carvone enantiomers were not
separated it was not possible to clearly define if the samples contained enantiomers mixture or one enantiomer
with 100% of enantiomeric excess; 3 tr—presence < 0.05%.
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Table 6. Contribution of volatile enantiomeric compounds in L1 mint EOs and headspace (HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene NS 0.52 0.44 0.66 tr 3 0.62 tr
α-(+)-pinene NS 0.39 0.32 0.48 tr 0.47 tr
(+)-sabinene NS 0.73 0.71 0.83 tr 0.77 tr
(−)-sabinene NS 0.23 0.22 0.27 tr 0.24 tr
β-(+)-pinene NS 0.62 0.49 0.71 tr 0.70 tr
β-(−)-pinene * 0.75 b 0.50 c 0.87 a tr 0.84 a 0.06 d

(−)-limonene * 5.79 a 6.11 a 4.60 ab 0.24 c 3.63 b 0.22 c

(+)-terpinen-4-ol * 0.27 a 0.06 b 0.09 b 0.06 b 0.09 b 0.07 b

(−)-terpinen-4-ol NS 0.16 tr 0.07 0.08 0.06 0.07
(+)-cis-dihydrocarvone * 0.74 b 17.08 a 1.09 b 0.09 b 1.26 b 0.11 b

(−)-menthol NS 0.29 0.28 0.25 0.37 0.28 0.38
(−)-menthyl acetate NS 0.36 0.44 0.37 0.27 0.36 0.38
(+)-menthyl acetate NS tr tr tr 0.29 tr 0.31
(+)-dihydrocarveol * 0.67 a tr 0.26 c tr 0.53 b 0.07 d

(−)-borneol * 0.78 b 1.99 a 0.72 bc 0.57 c 0.85 b 0.52 c

(±)-carvone 2 * 87.60 ab 71.23 b 88.53 ab 97.70 a 89.08 ab 97.46 a

(−)-trans-caryophyllene NS 0.12 0.11 0.18 0.17 0.22 0.13

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 since carvone enantiomers were not
separated it was not possible to clearly define if the samples contained enantiomers mixture or one enantiomer
with 100% of enantiomeric excess; 3 tr—presence < 0.05%.

Table 7. Contribution of volatile enantiomeric compounds in L2 mint EOs and headspace (HS-SPME).

Compound ANOVA 1

[%]

F 40 55

EOs SPME EOs SPME EOs SPME

α-(−)-pinene NS 0.05 tr 2 0.09 0.05 0.06 0.05
α-(+)-pinene * 0.26 c 0.08 d 0.62 a 0.07 d 0.41 b 0.11 d

(+)-sabinene * 0.40 bc 0.25 d 0.94 a 0.28 cd 0.65 b 0.35 c

(−)-sabinene NS 0.05 tr 0.14 tr 0.09 0.06
β-(+)-pinene * 0.35 c 0.12 d 0.76 a 0.08 d 0.55 b 0.12 d

β-(−)-pinene * 0.45 c 0.16 d 0.99 a 0.10 d 0.70 b 0.15 d

(−)-limonene * 0.21 b 0.14 b 0.16 b 0.58 a 0.13 b 0.56 a

(+)-limonene NS 0.39 0.28 0.39 0.39 0.34 0.37
(−)-linalool * 77.68 d 96.31 a 81.26 c 92.53 ab 79.22 cd 92.16 b

(+)-linalool * 9.93 a 1.26 c 7.25 b 2.38 c 10.12 a 2.81 c

α-(+)-terpineol NS 2.73 0.62 2.08 1.38 2.16 1.26
α-(−)-terpineol * 7.50 a 0.78 c 5.31 b 2.15 c 5.57 b 2.02 c

Values followed by the same letters within a row are not statistically different in Tukey’s test and one-way analysis
of variance. 1 NS—not statistically different; * Significant at p < 0.05; 2 tr—presence < 0.05%.

Significant differences in the distribution of VOC enantiomers (≥0.05%) were observed
between EO and HS-SPME analysis in most cases, but no clear overall patterns were ob-
served, as presented in Figure 2. Nevertheless, some interesting observations were made for
samples within a particular mint chemotype. For menthol pathway samples, M1 (Table 2)
and M2 (Table 3), during SPME analysis, the plant matrix significantly influenced the
emission of monoterpenes enantiomers (both), namely α-pinene, sabinene, β-pinene, and
limonene. Such observation may suggest that the plant tissue of the menthol pathway mint
promotes the emission of molecules whose structure includes oxygen atoms. Contrarily,
carvone pathway mint (Tables 4 and 5) was not so predictable.
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Figure 2. The comparison between EOs and SPME analysis illustrated in the example of most
abundant VOCs enantiomers for each mint chemotype: even if the significant differences between
major VOCs were observed, no clear patterns may be pointed out; * (+)-cis-dihydrocarvone; F
EOs, 40 EOs, 55 Eos—refers to the GC-MS analysis of EOs by liquid injection; F SPME, 40 SPME,
55 SPME—refers to the analysis of source plant material by HS-SPME technique.

Plant tissue contains chiral compounds, such as carbohydrates present in cellulose and
hemicellulose or some lignans, which may influence the distribution in mint headspace of
particular VOCs enantiomers; nonetheless, no pattern was observed in general. Therefore,
we suggest that the VOCs enantiomers emission is more linked with the changes in the plant
tissue, forced by drying and/or other factors, which agrees with our earlier research [6].
Therefore, the enantiomeric distribution should not be applicable for sensory quality
prediction of HSs in general, but the object must be investigated separately.

3.3. Sensory Analysis

The aim of the sensory analysis was to investigate, in-depth, the relationships among
enantiomeric VOCs emission—plant matter-sensory quality. Thus, four sensory tests have
been applied to reveal that the chemistry of plants and EOs fragrance is a complex issue.
Ten panelists, with very poor results, were able to pair the EOs with their source plant
materials (test A). Meanwhile, the results of the rest of the sensory tests were significantly
better, but still not optimal (Figure 3). The overall effectiveness of all pairing tests was lower
than 50% (Figure 4I). Figure 4II presents the HCA results which show that sensory test B,
C, and D effectiveness present the same homogeneous group, with accuracy oscillating
at 40%, while test A effectiveness is significantly lower with an accuracy of 15%. Those
results prove that the differences found during the instrumental approach in our previous
research [6], have a reflection in human-involving approaches. Despite the significant
differences in the samples’ volatile profile, the judges were not able to match the samples
with sufficient effectiveness.
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Figure 3. The effectiveness of pairing the samples during sensory panel: (A)—pairing EOs with
source plants; (B)—pairing EOs with plant chemotypes; (C)—pairing EOs with pure enantiomers
standards; (D)—pairing plant material with pure enantiomers standards. Ten panelists, with very
poor results, were able to pair the EOs with their source plant materials (test A), while the results
of the rest of the sensory tests for pairing the EOs with plant chemotype (test B), EOs with pure
enantiomer standards (test C), and plant material with pure enantiomers standards (test D) gave a
significantly better result.
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Figure 4. (I) Average results of pairing the samples during sensory tests; (II) HCA results for results of
sensory tests. A—pairing EOs with source plants; B—pairing EOs with plant chemotypes; C—pairing
EOs with pure enantiomers standards; D—pairing plant. The overall effectiveness of all pairing tests
was lower than 50% (Figure 4I). Figure 4II presents the HCA results which show that sensory test
B, C, and D effectiveness present the same homogeneous group, with accuracy oscillating at 40%,
while test A effectiveness is significantly lower with an accuracy of 15%. Values followed by the same
letters within a row are not statistically different in Tukey’s test and one-way analysis of variance
(p < 0.05).

Observations similar to ours were reported by Kosakowska et al. (2019) [19] regarding
the study with ‘Greek oregano’; even significant differences in EOs yield for oregano cul-
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tivated in different conditions, did not result in considerable differences during sensory
analysis. Comparatively, the research conducted by Baczek et al. (2019) [20] with sweet basil
resulted in opposite results—despite no considerable differences in EOs yield, the sensory
analysis resulted in significant differences for part of notes, namely basilic, anisic, and spicy
ones. In both cases, herbs have been recognized as ‘high-quality material’. Nevertheless,
referred works of Kosakowska et al. (2019) [19], and Baczek et al. (2019) [20] aforemen-
tioned works, are rare regarding the evaluation of herbs aroma quality by applying the
sensory evaluation approach. Contrarily, numerous scientific papers, found in prestigious
journals, base the prediction of HSs quality on the EOs composition [14,21–24]. Asekun
et al. (2006) [21] evaluated the quality of dried M. longifolia L. subsp. Capensis based on the
reduction of potentially toxic pulegone content and advised to use for culinary purposes
only and products with decreased amounts of pulegone, without any reflection on the sen-
sory quality of the material. Similarly, Mohammed et al. (2020) [22] evaluated the rosemary
EOs, referring to their antioxidant activity, and determined that the highest quality for meat
processing are those with the best results during DPPH-method measurements, while no
sensory quality was considered. There is no doubt that arguments raised by Asekun et al.
(2006) [21] and Mohammed et al. (2020) [22] are important issues, however, they do not
justify the categorical quality judgment.

The influence of particular VOCs enantiomers’ distribution on the aroma perception
of food products intuitively is of great matter; thus, the differences between particular
enantiomers’ smells have been clearly shown [25]. Nonetheless, in most cases of HSs,
or obtained from EOs, the VOCs enantiomeric distribution is applied for authenticity or
adulteration investigations, and not for sensory quality assessment [26–29]. This matter
may be linked to the distribution of naturally volatile enantiomers, which seems to be
characteristic for particular plant species, with stabilized enantiomeric excess which was
perfectly shown for citrus EOs [27], goldenrod EOs [30], Madagascar plants EOs [31], and
mint [18]. In terms of the present research, the most significant is VOCs enantiomeric
distribution for mint, which according to Castillo et al. (2004) [18], despite the plant origin,
in the majority of cases reach 100% of enantiomeric excess in favor of particular volatile
enantiomer. Furthermore, as was proven in the current research, the plant tissue does not
clearly affect the VOCs enantiomers emission, despite the presence of chiral compounds
in the plant cell wall. That means that the VOCs enantiomers emission pattern is more
related to the overall condition of plant tissue and may be variable due to applied post-
harvest treatment, such as drying. Therefore, sensory quality should not be replaced with
instrumental analysis, even if the sensory analysis is much more cost- and time-consuming.
The reasons for that are multiple factors such as VOCs (including enantiomeric distribution)
mutual ratio, and changes forced in plant tissue by post-harvest treatment.

4. Conclusions

The quality of herbs and spices is a complex issue that should be analyzed with
respect to the purpose of the plant material. For odor sensory quality, the essential oils
content in plant material is not crucial, but rather the distribution and emission of volatiles.
The present study shows that despite the chiral character of Mentha spp. in plant tissue,
the emission of volatile enantiomers is more dependent on the essential oil composition
and the condition of the plant tissue than on its chiral composition. Therefore, the enan-
tiomeric distribution of volatile organic compounds, even if used as the only chemical
fingerprint for quality and adulteration measurements, should not be used as an odor
quality marker. Moreover, the comparison of instrumental analysis (essential oils—GC-MS;
source plants—HS-SPME-GC-MS) and the sensory panel are not interchangeable, since
significant differences in the contribution of volatile enantiomers were not a factor that
differentiated the odor quality of the panelists. The present study was performed based
on the example of Mentha spp. plants, which differ in terms of essential oils composition
and leaf morphological features. This may suggest that the trends may also be relevant for
other plant species; however, further research on this issue should be considered.
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