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Abstract: The fruit and vegetable industry produces millions of tons of residues, which can cause
large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioac-
tive substances with functional ingredients that have antioxidant, antibacterial, and other properties.
Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food
bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry
includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction
(SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biore-
finery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion
(AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are
described. This study provides strategies for the processing of fruit and vegetable wastes using
eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste
and by-products in a sustainable system.
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1. Introduction
1.1. Global Situation

Owing to imbalances in the growth of the human population and the rapid develop-
ment of urbanization, natural resources are under severe stress. In particular, the amount
of waste has increased significantly. Meanwhile, the United Nations has predicted that the
global demand for food may increase by 70%, which would take place mostly in develop-
ing countries. The present population of the whole world, 8 billion people, may increase
to as much as 9.7 billion by 2050 [1]. The world population is expected to continue to
grow by as many as 90 million people annually over the next 30 years [2]. The growing
population of developing countries makes it necessary to meet the challenge of adequate
food supply. This means we must produce more food to meet human needs with limited
global resources (minerals, forests, fertile land, and water). In addition, climate change
may cause further stress on human agriculture, as more droughts and floods challenge
agricultural productivity all over the globe.

As population growth may be unavoidable, reducing food waste has far-reaching
implications for alleviating global resource pressures. According to the Food and Agri-
culture Organization of the United Nations (FAO), nearly 14% of food produced in the
world was lost or wasted post-harvest in 2019 [3]. This survey estimated that if the amount
of food lost and wasted were reduced by half, the whole world would still need about
1314 trillion kilocalories per year by 2050 [4]. Food loss and food waste will have many
important global consequences [5]. Economically, the waste can reduce the incomes of
farmers, as well as increase the expense to consumers. Environmentally, food loss and
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waste have many negative impacts on the environment, which may include unnecessary
emissions of greenhouse gases that cause global warming and lower utilization of land and
water resources, which may lead to a reduction in natural ecosystems and their services.
According to these data, our global resources continue to be subjected to depletion as a
result of efforts to supply food, and this may impact economies and be impacted by global
climate change.

The terms “food loss” and “food waste” refer to the edible parts of plants and animals
that are removed during production or processing. These losses and wastes are produced
during agricultural processing, screening, production, storage, transportation, and con-
sumption. Traditional food loss refers to edible portions of food materials that are spilled,
or lost due to spoilage, in storage. The current study’s emphasis on food waste is also
related to the quality of food for human consumption and does not necessarily mean that
food has been discarded by the consumer; the decision to throw food away can also be
taken by food processors and handlers [6]. About 1.3 billion tons of food is lost or wasted
every year during production and processing before consumption at the table; one-third
of food loss or waste occurs while it is being consumed, which directly results in food
loss or waste of about $680 billion in industrialized and developed countries, and about
$310 billion in developing countries [7,8]. Data suggest that food loss and waste data in
the United States, from farm to table, is higher than 150 million metric tons (MMT), which
includes an estimated 70 MMT of edible food each year [9]. Similar data from European
households show that vegetable and fruit wastes account for more than 50% of European
food waste [10,11]. These data were collected across all European countries and contain
both avoidable and unavoidable waste generated as a result of individual behaviors (re-
lated to lifestyle, eating habits, and consumption). In particular, the FAO estimate that
the highest wastage is from fruits and vegetables, including roots and tubers, at nearly
45–50%. These food wastes included cereals (30%), oilseeds, meat and dairy (20%), and fish
(35%) [7]. Figure 1 illustrates global food loss and waste, calculated by both weight and
caloric content [5]. A variety of calculations and statistical tests have been performed on
these data. However, one result of such analysis is worth emphasizing: there is a greater
correlation between greenhouse gas emissions, land utilization, and water consumption
with meat waste than with other types of food waste. It is worth noting that although meat
waste has a lower calorie loss, it still causes huge economic and environmental losses. Based
on the caloric calculation, global cereal food waste accounts for a relatively high proportion
of total food waste. In terms of weight, the proportion of global fruit and vegetable loss is
relatively high, as shown in Figure 1. These observations are related to the water content of
different food materials, the water content of fruits and vegetables being the highest. Even
so, we should not waste too many vegetables and fruits. Food loss by individuals from
different regions of the world is shown in Figure 2. North America and European countries
are the regions with the greatest personal amounts of food waste. North America ranks
first in the world, with food waste above 1500 kilocalories per capita/day, followed by
Europe, with 748 kilocalories. These total amounts of food waste are 4–5 times more than
that of South and Southeast Asia (414 kcal) and Latin America (453 Kcal), the lowest per
capita food waste region [5]. More than a third of the food in the United States is wasted
annually, and most of this food waste is disposed of in landfills [12]. The larger categories,
as estimated by the USDA in 2010, are fruit and vegetables (43.6 billion pounds, BP), dairy
products (25.4 BP), and grains (18.5 BP) [13]. Attempts have been made to identify where,
from farm to table, food waste occurs. Generally speaking, for developing countries, most
of the food waste is a result of the inefficiency of processing, harvesting, transporting,
storage, and production equipment, which indicates that food waste generally occurs
before reaching the market. In developing countries, fruit and vegetable waste accounts
for between 15% and 50% of all fruits and vegetables after harvest [14,15]. In addition,
the processing of fruits and vegetables is closely related to geographical location, harvest
season, and processing methods [16]. For example, cassava and yam waste levels can reach
between 45% and 50% [17,18]. In South and Southeast Asia, papaya waste ranges from 30%
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to 60% [19]. Because of the ripening characteristics of fruits and vegetables, they account
for around 18% to 40% of food losses in India per year due to a lack of effective cold storage
during transportation [20]. In contrast, in developed countries such as the United States,
the processing stage is much better than that of developing countries.
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Among the many factors that have caused the global environmental burden in recent
years, the impact of fruit and vegetable waste has been identified as a major problem. For
example, the proportion of waste materials produced in most fruit and vegetable processing
is usually high [21]. Because of the characteristics of fruits and vegetables, it is natural to
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generate losses during the process of selecting, washing, cleaning, peeling, and nucleating
in the industrialized production and handling of fruits and vegetables. In addition, fruits
and vegetables are rich in enzymes and have the characteristics of enzymatic browning.
Therefore, waste during processing is inevitable [22]. Due to the high water content of fruits
and vegetables, if storage conditions are poor, then they are vulnerable to spoilage, which
increases total food loss. Some potential fruit and vegetable wastes across the world are
shown in Table 1. According to Table 1, the waste of fruits and vegetables in North America
and Europe per capita was twice as much as in South Africa per year [1]. Therefore, it
is necessary to vigorously advocate reducing and preventing food waste by improving
storage conditions or reducing storage time.

Table 1. The selected potential fruit and vegetable loss and waste in the world.

Area Type Quantity (MT/Year)

North America
Corn stover 80–100 (dry basis)
Vegetable crop residue 1 (dry basis)
Tomato pomace 6 × 10−3 (California)
Nutshell and hull 4 × 10−2

Starch 8

Europe

Tomato pomace 4
Post-manufacture food waste 34
Citrus waste 0.6 (Spain)
Olive mill residue 30 (Mediterranean Basin)
Cocoa pods 20

Africa
Citrus waste 0.14 (South Africa)
Palm oil residue 15.8 (Indonesia)

Asia
Food waste 1.2 (Hong Kong)
Citrus residues 9.4

South America-Brazil Apple pomace 3–4.2

World

Kiwi residue 0.3
Grape pomace 5–9
Banana peels 9
Citrus peel waste 15.6

1.2. Sustainable Development

The Agenda for Change of Our World: “Sustainable Development 2030” was unani-
mously adopted in September 2015 by the United Nations [23]. The agenda covers 17 sus-
tainable development goals and 169 specific goals, providing a grand blueprint for global
development. The external environment facing developing countries has deteriorated
dramatically, and global development is facing serious challenges [24]. The sustainable
development agenda of 2030 provides a golden key to global development issues regarding
poverty eradication, employment promotion, social protection, and climate change.

The present work aims to review the current literature regarding the utilization and
technologies to reduce fruit and vegetable loss/waste and utilize by-products in a sustain-
able system. This will review potential functional ingredients in feeding nutrition, food
processing, bioconversion processes, and current limitations. This can lay a foundation
to reduce fruit and vegetable loss/waste and improve the utilization of by-products in a
sustainable system in Figure 3.
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2. Utilization and Technologies to Reduce Fruit and Vegetable Wastes
2.1. Fruit and Vegetable Wastes as an Ingredient in Animal Feed and Food Nutrition

If the world population reaches 9.7 billion by 2050, the demand for meat and milk
may increase. Animal feed is a growth point that cannot be ignored. Due to the limitations
of natural resources such as water and arable land, the best way to ensure a sustainable
feed production system is to improve the quality and characteristics of animal feed [25].
Thus, a reduction of waste, expanding feed resources, and their utilization, should be a
focus, which will not compete with human foods. In addition, consumers require the
production of “clean”, “natural”, and “environmentally friendly/eco-friendly” labeled
foods, regardless of the expense [26,27]. Natural ingredients can be added to feed and
food, and they must be safe and healthy. Last but not least, additives can also directly or
indirectly affect modern food quality, shelf life, and nutritional value [28].

For fruit and vegetable production, around 30% of wastage can be used in the global
market as an ingredient for feed and food [29]. For example, nearly 20–30% of grape
pomace is a waste by-product from grapes during wine production. The total waste
produced during fruit and vegetable juice processing can amount to as much as 30–50%.
These waste by-products contain two types of waste: (1) solid waste, such as the peel,
skin, and pomace, and (2) liquid waste, such as juice and wash water [30]. Another
example, from sugar beet processing, results in 40–70% vegetable pomace and 85% sugar
beet residue during processing [31]. These fruit and vegetable wastes and by-products
are potential sources of feed additives for animals and food additives for humans and
often contain bioactive compounds. These bioactive compounds can be divided into two
categories according to the demand for nutrition: (1) vitamins and (2) minerals, which
are essential materials for preventing diseases, and maintaining the basic needs of the
body. Additionally, non-essential metabolites may be found in food by-products, which
can maintain cell metabolism and extend longevity, such as phenolics and carotenoids [32].
The composition of a wide variety of fruit and vegetable wastes and by-products can be
quite different. Their specific applications are not limited to the animal feed processing
industry but are also closely related to food processing for human consumption. Table 2
shows the efficacy and application of valuable bioactive substances in fruit and vegetable
waste in both feed and food processing. The demand for natural antioxidants extracted
from low-cost waste and by-products has been summarized.
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Table 2. Bioactive substance ingredients from fruit and vegetable wastes.

Bioactive Substance By-Products Function Reference

Sulforaphane Broccoli seeds Against carcinogens and inflammation [33]

Caffeic acid Coffee shells Antioxidant; Anti-bacterial [34]

Polyphenols

Apple peels Anti-microbial activity [35]
Artichoke [36]

[37]
Cauliflower [38]
Date [39]
Persimmon by-products [40]
Banana peels [41]
Mango kernel [42]
Orange (peels, pulp) [43]
Onion and carrot peel Antioxidant [44]

Eugenol Allspice
Bacteriostatic

[45]
Alfalfa [46]

Carotenoids

Tomato (seeds, skins)

Pigment, Radical scavenger

[47]
Grape pomace [48]
Olive
Pomegranate pomace
Persimmon peels [49]
Carrot pomace [50]
Guava, orange, and passion fruit
by-products [51]

Lemon peels [52]

Flavonoids

Satsuma peels
Orange/Lemon (peels, pulp)
Banana (peels, roots)
Grape (seeds, skin)

Antibacterial, Antioxidant; [53]
[54]

Anti-parasitic, Antioxidant, [55]
Food color additives (such as
Anthocyanidins) [56]

[57]

Pectins

Citrus peels

Thickening agent and emulsification,
Food additives

[58]
Pistachio green hull [59]
Pumpkin peels and pulp [60]
Tomato wastes [61]
Sugar beet (pomace) [62]

Dietary Fiber

Grapefruit peels, sweet oranges peels,
lemon peels Binders, Texturizers [63]

Watermelon rinds, tamarind seed Low-calorie bulking ingredient [64]
Pumpkin by-products [65]
Carrot pomace [66]
Potato peel [67]

Unsaturated fatty acids Tomato seeds
Antioxidant

[68]
Pistachio pomace [69]

Saponins Sapota seeds Antibacterial [70]

Amino acids and proteins Kinnow mandarin waste, pineapple
peels, papaya peels, Protein supplementation [71]

Glycosides Banana stem, apple peels Anti-cancer, Antioxidant [72]

It is a sustainable system for feed and food circulation using fruit and vegetable wastes,
including two parts: (i) the primary loss of fruit and vegetable leaves (olive), the hulls
are collected before processing in the fields; (ii) food processing: the pomaces, skins, or
residues of fruits and vegetables. For one thing, these wastes can be used directly for
animal feed. There are still some limitations to waste as an alternative ingredient in animal
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nutrition. Yáñez-Ruiz and Molina-Alcaide [73] reported that adding olive cakes caused a
heavy burden on the intestine and stomachs of sheep and goats, which is not conducive to
growth. Therefore, the extraction technologies and utilization of these fruit and vegetable
wastes as nutritional additives become particularly important.

2.2. Current Technologies Used for Fruit and Vegetable Wastes in Food Engineering

Fruit and vegetable waste/residues contain a variety of bioactive compounds, as
shown in Table 2. However, the extractions of these bioactive compounds may require
various processing techniques, and some novel technologies have been applied. These
processing techniques are important when attempting to extract these bioactive compounds
from fruit and vegetable waste [74]. The methods used to efficiently extract different
bioactive substances may depend on the plant parts being processed, such as stems, leaves,
peels, or pomace. However, the extraction can be classified into two methods: (1) traditional
methods and (2) novel techniques.

A traditional technique may be a classical method that has been used for years. The
disadvantages of traditional methods may be due to large solvent consumption and long
extraction times, which may lead to high energy consumption. At present, there are several
types of extraction solvents that influence sensory characteristics and quality. For example,
alcohol is an important solvent, compared to water, because alcohol has a lower boiling
point and heat of vaporization, and thus is easier to remove and recover for re-use. Alcohol
has already been regarded as “safe” for use as a food additive extraction solvent [75]. To
deal with the limitations of traditional extraction methods, emerging technology has been
developed. Novel-assisted extraction has the advantages of large extraction capacity and
short-time treatment. There are some “green” extraction solvents. Some of these technically
assisted extractions are described below.

2.2.1. Microwave-Assisted Extraction (MAE)

MAE uses a magnetic field, electric field, and microwave heating to directly affect
polar materials. It transforms into heat through dipole rotation and an ion conduction
mechanism. With the increase in pressure and temperature, solute molecules are separated
from the sample matrix, and then the solvent is diffused and released. In the study of
Pan et al. [76], caffeine and polyphenols extracted from leaves (green tea) by the MAE
method had a higher extraction yield and only took 4 min. MAE can be applied for 10 min
under acidic conditions (low temperature, moderate pressure) to obtain high molecular
weight and moderate viscosity of beet pectin and orange peel [77,78]. In terms of extraction
yield, microwave-assisted extraction of antioxidants from mango peel is 1.5–6 times as
much as the traditional method [79].

2.2.2. Supercritical Fluid Extraction (SFE)

SFE utilizes its lower viscosity and higher diffusivity, which can diffuse relatively
easily in solid materials and improve the extraction yield. The main solvent of SFE is
carbon dioxide, which has a relatively low critical temperature and pressure (31.1 ◦C and
7.4 MPa). On the other hand, carbon dioxide can achieve food-grade purity and safety [80].
Hassas–Roudsari et al. [81] showed that the total phenol content and antioxidant ability of
canola seed meal extracted by SFE were the highest at 160 ◦C. Some studies have shown
that SFE can extract lycopene and β-carotene from tomato peel and seeds [82,83]. Apricot
pomace, carrot pulp, and tomato (skins, seeds, and tomato paste waste) are extracted by
SFE for their β-carotene, polyphenols, and lycopene [80].

2.2.3. Ultrasonic-Assisted Extraction (UAE)

UAE is used to accelerate the release of active ingredients and promote extraction
by utilizing the cavitation effect of ultrasound. The high-frequency sound wave of UAE
is strong enough, and the cavitation can easily get to the cell walls. UAE can lead to
cell expansion and improve extraction efficiency. Various studies have focused on the
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extraction of bioactive compounds of by-products, such as flavanones hesperidin, catechins,
and carotenoids [80,84]. In comparison to conventional, microwave- and ultrasound-
assisted extraction methods, intermittent sonication has a higher extraction of pectin from
grapefruit [85]. In addition, the extraction of lycopene by combining the MAE–UAE
methods is 8% higher than that by a single UAE [86].

2.2.4. Pressurized Liquid Extraction (PLE)

PLE is a method whereby pressure is applied, causing the temperature to be higher
than the normal solvent boiling point temperature [87]. The advantage of PLE is that it
consumes less time and requires less solvent. The temperature for efficient extraction of
procyanidin from red grape pomace by PLE using organic solvent should be controlled
above 80 ◦C [88].

2.2.5. High Hydrostatic Pressure Technique (HHP)

HHP can increase cell permeability and secondary metabolites diffusion through
high-pressure cavitation to promote the release of bioactive substances. Xing et al. [33]
extracted sulforaphane from raw broccoli by HHP. It showed that the sulforaphane content
that was extracted using 10 mM phosphate-buffered saline (PBS) solution at 5000 psi was
three times better than the previous extraction yield. According to Guo et al. [89], the
extraction of pectin from the peels of pomelo by HHP using ethanol has a high viscosity
compared with the traditional extraction method.

2.2.6. Pulsed Electric Field (PEF)

PEF is a potential non-thermal processing technique for food. It induces the critical
potential on the cell membranes by an external electric field, which affects pore develop-
ment, ruptures, and increases cell membrane permeability [90]. PEF can enhance mass
transfer and has already been widely used to improve the extraction of phenols, betalains
(pigments), and pectin from grape seed, red beetroot, and apple pomace [91,92]. This
method could also result in inactive microorganisms and enhance food safety [93].

2.2.7. Enzyme-Assisted Extraction (EAE)

EAE is a pre-treatment by enzyme and is considered an eco-friendly way to extract
both bioactive substances and oils. EAE still has some factors (catalyst, molecular size,
materials, etc.) worthy of further study. Gaur et al. [94] used EAE to extract oils from
mango kernels, soybean, and rice bran. The extraction rates were as follows: 98%, 86%, and
79%. EAE has also made outstanding contributions to the extraction efficiency of lycopene,
bay leaves essential oils, and 6-Gingerol, which contain antioxidants, anti-inflammatory
and anti-cancer agents, and other biologically active ingredients [95–97].

2.2.8. Ionic Liquids Extraction (ILE)

ILE is an extraction method that utilizes an organic liquid as a solvent. These liquids
are good ion conductors that result in a high boiling point system and easy solubility [98].
The greatest advantage of ionic liquids as solvents lie in the fact that the extraction process
can be done at room temperature to dissolve hydrophilic/hydrophobic molecules [99].
Ionic liquids such as 1-alkyl-3methylimidazolium-based ILs and N, N-dimethylammonium
N, and N-dimethyl carbamate have been studied in the extraction of polyphenols and
catechin tannins [100,101].

2.3. Industry Examples of Utilization in Food Processing

The technologies and utilization of fruit and vegetable by-products have significant
potential to assist the whole world. Table 3 illustrates the current study for the utilization
of fruit and vegetable by-products in food processing [102–105]. By-products extracted
from fruit and vegetable losses and wastes have great developmental prospects. This
application contains significant high-value bioactive suspensions for such by-products as
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carbohydrates, hemicellulose, and lignin. These bioactive compounds are reintroduced
into the food supply chain, resulting in a significant reduction in environmental and
economic losses. It can also enhance the acceptance of the flavor and sensory aspects of
foods. However, most current studies lack effective in vivo and toxicological experiments
to assure the safety and efficacy of a new product.

Table 3. The current study for application on fruit and vegetable by-products in food processing.

Category Product Modified By-Products Storage Conditions Key Findings

Animal Products

Beef meatballs, Sausages
Pomegranate peels 8 days (4 ◦C) Antioxidant;

Anti-bacterial;

Antibacterial

6 months (−18 ◦C)
2 months (−18 ◦C)

Mosambi peels 2 months (−18 ◦C)

Lamb meat, Patties

Tomato pomace
Grape pomace
Olive pomace
Tomato pamace
Pomegranate pomace

7 days (2 ◦C) Antioxidant;
Anti-bacterial

Chicken meat,
Patties,
Chickens thigh

Grape pomace,
Grapefruit peels, lemon peels
Orange and grapefruit peels

14 days (4 ◦C)
3 months (−18 ◦C)
NA

Antioxidant;
Anti-bacteria;
Meat qualities and
microflora

Pork ground, Meatballs,
Sausages

Persimmon seeds
Mango peels
Grape seeds

12 days (3 ◦C)
10 days (4 ◦C)
12 days (4 ◦C)

Antioxidant

Shrimp Pomegranate peels 10 days (4 ◦C)
Antioxidant;
Anti-bacterial; Meat flavor;
Color

Tuna Pomegranate peels 10 days (4 ◦C, 12 ◦C) Antibacterial

Dairy Products

Butter Tomato peel and seeds 2 months (4 ◦C)
Antioxidant;
Anti-bacterial;
Flavor; Texture

Curd Pomegranate peels 15 days (5 ◦C)
Antioxidant;
Anti-bacterial;
Flavor; Texture

Cheese Tomato peels and grape
pomace NA Antioxidant; Texture

Fermented milk
Grape pomace
Olive pomace
Grape pomace

28 days (4 ◦C);
50 days (5 ◦C)

Antioxidant;
Anti-bacterial; Flavor

Yogurt
Apricot and apple pomace
Orange peels
Pineapple peels

2 months (−20 ◦C)
21 days (4 ◦C)
28 days (4 ◦C)

Antibacterial;
Flavor; Texture;
Shorten fermentation time

Beverages

Apple juice Pomegranate peel NA Antioxidant; Antibacterial,
Color; Flavor

Carrot juice Orange pulp and peels NA NA

Orange juice Banana peels 30 days (5 ◦C) Antioxidant; Color; Flavor

Bakery Products

Cookies
Grape pomace
Pineapple central axis
Defatted mango kernel

NA Antioxidant; Color; Flavor,
Taste; Texture

Biscuits
Grape leaves
Rowanberry, Blackcurrant,
Elderberry pomace

2 months Antioxidant; Color; Flavor,
Taste; Texture

Bread
Mango peels
Pumpkin pomace
Grape pomace

NA Antioxidant; Color; Flavor;
Taste; Texture

Muffins
Raspberry pomace
Cranberry pomace
Grape peels

NA Color; Flavor; Taste;
Texture

Cakes

Orange peels
Guava seeds
Guava pomace
Peach palm peels

8 days (25 ◦C) Antioxidant; Color; Flavor;
Taste; Texture
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2.4. Current Technologies for Fruit and Vegetable Wastes in Biorefinery

The expanding population of the whole world results in great demand for energy
security; about four-fifths of the world’s population relies on fossil fuels [106]. The concept
of “reduce, re-use, recycle, and regenerate” has been introduced to promote environmental
sustainability [107]. This sustainable system concept will transform the available economic
value of raw material from single-type several products to circular-type, and improve the
resulting “yield” from the original raw material. This will improve the comprehensive
utilization of raw material resources and eliminate the economic, environmental, and social
burdens brought about by a single use of resources. Fruit and vegetable waste is a resource
from field to folk, which reduces waste in the environment (land, water, and labor). Most
fruit and vegetable waste is currently used as animal feed and compost. The rest may be
disposed of in landfills, which can cause emissions of methane; unless this methane can be
captured in an anaerobic digester and used as renewable natural gas (RNG) to displace
fossil natural gas. It is suggested that the carbon footprint of fruit and vegetable wastes
may be associated with green house gas (GHG) emissions [108] if they are not otherwise
utilized as RNG. Therefore, fruit and vegetable wastes could be utilized in a biorefinery,
where biomass-to-energy technologies could convert these wastes into renewable fuels.

The current use of fruit and vegetable waste-to-energy review focuses on the following
processes: biological technology, anaerobic digestion (AD) to produce biogas and bio-
methane; fermentation to produce bio-ethanol; thermal/thermochemical technologies such
as incineration to produce heat and electricity; pyrolysis and gasification to produce syngas
and bio-oil/char; hydrothermal to produce carbonization-hydro-char/gas.

2.4.1. Anaerobic Digestion (AD)

AD of fruit and vegetable wastes in landfills produces biogas, bio-methane, and
carbon dioxide, with some other gas such as nitrogen, oxygen, and hydrogen sulfide,
which may escape and pollute the atmosphere. However, without oxygen, it seems to be
a useful circulation on potential biofuels. Considering the high moisture content of fruit
and vegetable wastes, together with some biodegradability contents, it includes 75% sugar
and hemicellulose, 9% cellulose, and 5% lignin [109]. The AD of fruit and vegetable wastes
is carried out through a series of biochemical reactions, where anaerobic microorganisms
hydrolyze cellulose, hemicellulose, pectin, and other wastes of fruits and vegetables to
form soluble organic matter and then convert them into organic acids, ethanol, hydrogen,
and carbon dioxide by acid-producing bacteria, and finally methane by methanogens [110].
The biogas consists of methane (50–70%), which can be used to supply heat for cooking,
electrical power generation, and vehicle fuel. Vegetable wastes and by-products present
a high methane yield because of hemicellulose. For example, the methane yield of onion
waste, potato waste, and carrot pomace are 390 mL, 320 mL, and 198 mL of CH4/g of
volatile solid (VS), respectively. The methane yield of fruit waste and by-products may
be more variable because of the variety of biomass compositions (peel and pomace are
different). The highest is pineapple waste, up to 413 mL of CH4/g of VS, followed by
kiwi waste, which is 317 mL of CH4/g of VS [111]. For fruit waste and by-products, the
existence of husks could increase lignin concentrations, which can use some pre-treatment.
For example, after alkali pre-treatment, the saponification of cellulose and lignin is easy
to be biologically hydrolyzed. For vegetable waste and by-products, some have low pH
values, which could cause acidification of the AD. For this reason, fruit and vegetable wastes
are suitable for co-digestion with some swine feces and urine, which contain high levels
of nitrogen and reduce the number of inhibitory acids. The major systems of bioreactors
commonly used are the bath, continuous one-stage, and continuous two-stage reactors with
methanation apparatus. In Linke’s [112] research, the solid wastes during potato processing
for anaerobic biogas production are continuously stirred in a tank reactor at 55 ◦C. The results
showed that with the organic loading rates (OLR) range of 0.8–3.4 gl−1 d−1, biogas yields
showed a reduction from 0.851 to 0.651 g−1, and the methane composition was 58–50%.
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Overall, AD converted fruit and vegetable wastes into methane and carbon dioxide and
digested the residues as a conditioner, amendment, and nutrient source for the land.

2.4.2. Fermentation

Bioethanol is usually derived from a feedstock, such as corn or wheat. However, this
may result in food competition with human beings. Thus, fruit and vegetable wastes such
as banana peels, potato peels, citrus wastes, and cafeteria food wastes have been used to
produce bio-ethanol [113] and do not compete with human food. It is also an approach for
waste-to-energy circulation. To improve the digestibility of lignocellulose, the production
of bio-ethanol is produced by a different method, such as acid, alkali, or enzymatic pre-
treatment. Saccharomyces cerevisiae was the culture usually used in fermentation, which
can only use hexose sugars. Together with other fermentative organisms, pentose sugars can
be used for ethanol processing. The fermentation production of acetone–butanol–ethanol
from pineapple peel can be increased significantly by drying pre-treatment [114]. Both AD
and fermentation can increase the digestion of fruit and vegetable wastes to energy.

2.4.3. Incineration

Incineration is a relatively mature technique used to convert fruit and vegetable waste
via combustion into heat and energy. By incineration, the volume of waste can be directly
reduced by up to four-fifths. However, incineration may result in the accumulation of
harmful substances, such as dioxins (due to incomplete combustion) and some gases
containing heavy metals. The development of the incineration industry, the improvement
and monitoring of air emission control systems, and the application of waste materials in
heat recovery and power generation have effectively reduced the dependence on fossil
fuels. Because of the high moisture content and non-combustible characteristics of fruit
and vegetable waste, it is often discarded into the general domestic waste stream and then
converted into heat energy by incineration. A positive result came from Korea, which
indicated that a dryer-incineration system is a better way to recover energy from organic
wastes and support the “waste-to-energy economy” [115].

2.4.4. Pyrolysis and Gasification

Pyrolysis is one thermal process with temperature ranges from 400 to 800 ◦C and
converts fruit and vegetable wastes into bio-oil (major) and gas (syngas) in a non-oxygen
environment. Gasification partially oxidizes organic wastes at a relatively high-temperature
range of 800 to 900 ◦C to produce a combustible gas mixture [116]. Due to the reaction
temperatures of catalytic pyrolysis and gasification, the products vary due to different
reactor types. Pyrolysis degrades the fruit and vegetable wastes into char, bio-oil, tar, and
syngas [117]. Gasification degrades hydrogenated syngas, which has some advantages by
decreasing the dioxins formed from traditional incineration. However, both gasification
and pyrolysis work on carbon-based fruit and vegetable wastes. Nutshells (almond shells,
pistachio shells, and oil palm shells) have already been investigated in the production of
activated carbons by pyrolysis and gasification [118–120]. Wang et al. [121] investigated
soybean co-pyrolysis using microwave power for maintaining the temperature at 350 ◦C
and indicated that a catalyst could improve the hydrocarbon production of bio-oil. This
means that fruit and vegetable wastes are suitable for thermal treatment to produce low
calorific value gas, which can be directly used as fuel for gas turbines.

2.4.5. Hydrothermal Carbonization (HTC)

HTC is a thermal process that can deal with high moisture content wastes (80–90%),
especially fruit and vegetable wastes. HTC is wet processing that uses a relatively low-
temperature range from 180 to 350 ◦C under pressure and process duration (0.2–120 hours).
HTC is now a hot spot for increased attention from many researchers. HTC can convert
precipitated fruit and vegetable wastes into bio-energy at relatively low temperatures and
treat large amounts of waste in a relatively short time (several hours) without producing
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odor. Niksiar and Nasernejad [119] studied the adsorption capacity of copper ions in
composting water after HTC with rice husk, citrus waste, and olive pomace at different
temperatures, which could greatly shorten the reaction time. At the same time, HTC can
also recover nutrients from nitrogen-containing liquids and use them as fertilizers, which
is conducive to the biological cycle and improves the sustainable economy [108]. The
existence of carbon in fruit and vegetable waste, after AD or fermentation, is converted into
carbon dioxide and goes into the atmosphere. However, the original carbon of fruit and
vegetable wastes remains in the hydrochar product by HTC without gas emissions.

3. Final Remarks and Future Directions

Fruit and vegetable waste recycling are necessary for sustainable human develop-
ment. The current techniques and utilization of fruit and vegetable wastes as biorefinery
feedstock have been discussed. The high value-added components, such as sulforaphane,
polyphenols, and pectin, using “green” extraction methods, show large extraction capacity
and short-time treatment and indicate a great potential for the food industry. For biofuels,
anaerobic digestion and hydrothermal carbonization are promising utilization methods to
be considered. As opportunities and challenges both coexist, there are still many issues to
be studied, such as catalyst types, dosage, and processing conditions. Overall, to reduce
and utilize fruit and vegetable waste, the most important issue to be addressed is active
public support and participation and continued effort to expand these ideas to viable,
industrial-scale renewable businesses.
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