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Abstract: Spectroscopic methods deliver a valuable non-destructive analytical tool that provides
simultaneous qualitative and quantitative characterization of various samples. Apples belong to
the world’s most consumed crops and with the current challenges of climate change and human
impacts on the environment, maintaining high-quality apple production has become critical. This
review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible
(Vis) regions, which not only show particular potential in evaluating the quality parameters of apples
but also in optimizing their production and supply routines. This includes the assessment of the
external and internal characteristics such as color, size, shape, surface defects, soluble solids content
(SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration
(DM), and nutritional value. The review also summarizes various techniques and approaches used
in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality
control. Optical sensors and associated methods offer a wide suite of solutions readily addressing
the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of
apples based on sweetness and other quality parameters, facilitating quality control throughout
the production and supply chain. This review also evaluates ongoing development trends in the
application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions
for apple quality control. The use of these technologies can enhance apple crop quality, maintain
competitiveness, and meet the demands of consumers, making them a crucial topic in the apple
industry. The focal point of this review is placed on the literature published in the last five years, with
the exceptions of seminal works that have played a critical role in shaping the field or representative
studies that highlight the progress made in specific areas.

Keywords: apple; quality control; Vis/NIR spectroscopy; NIR spectroscopy; portable/handheld
spectrometers; external and internal quality parameters

1. Introduction

Apples are one of the most widely produced and consumed crops in the world
(Figure 1), with China being the largest producer followed by the United States and
Poland [1]. In recent years, there has been a growing interest in the nutritional value of
apples and their health benefits, which has driven up demand for this fruit. Furthermore,
advances in storage techniques, such as the use of 1-methylcyclopropene (1-MCP) [2], have
allowed apples to be stored for months at low temperatures, thereby extending their shelf
life and increasing their availability throughout the year. However, despite these advances,
the apple industry continues to face challenges due to climate change and the need for
quantitative control of production.

The changing climate and local weather conditions have made it increasingly difficult
for apple orchards to maintain consistent production levels [3]. As a result, farmers are
forced to adapt to these changing conditions by implementing new controlled methods
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that take into account various parameters, such as temperature, sunlight, and chlorophyll
concentration. This quantitative control not only improves the quality of the apples but also
helps farmers to reduce waste by throwing away bad or low-quality apples early on. In
addition, the use of optical methods, such as spectroscopy and computer vision, can further
aid in the detection of diseases and other quality issues during storage and transportation.
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To maintain their profits, apple farmers must employ various strategies, including
producing high-quality apples, reducing waste, and reducing production costs. Optical
methods are a powerful analytical tool that can support all of these strategies. For example,
optical sensors can be used to sort fruits by the quality and detect any diseases early on,
enabling farmers to pick off infected fruits and protect the remaining ones. Additionally, the
use of handheld instruments and smartphone applications can make these methods more
accessible to farmers and consumers alike [4]. Finally, given the increasing competition
within the apple industry, it is crucial to sell high-quality apples at a low price, which can
be achieved through the use of optical methods to improve grading and sorting processes.

To meet the requirements of the apple industry, an analytical technique should possess
a set of advantageous characteristics [5–10]. The analytical technique should be able to
support the quantitative control of apple production and aid in the detection of diseases
and other quality issues, helping farmers to produce high-quality apples, reduce waste, and
sell their products at a competitive price. Most of those requirements can be satisfied by
applying optical sensors operating in near-infrared (NIR) and Visible/NIR (i.e., Vis/NIR)
wavelength regions [5–10].

NIR spectroscopy has been widely used to analyze various food products, including
fruits such as apples, for their quality evaluation and quantification. In apple analysis, NIR
spectroscopy has been used to measure various quality parameters [11–15]. This technique
has the potential to provide rapid, accurate, and non-destructive analysis of apples and
could be used in quality control and sorting operations in the fruit industry [16–19]. The
first report on NIR in postharvest biology was by the founder of the NIR discipline, Karl
Norris who demonstrated the use for apple internal rot detection in the early 1960s [20].
NIR spectroscopy is considered one of the most potent analytical techniques and is widely
used as a non-destructive method in analyzing various properties of raw materials and
products in several fields [21]. Often NIR spectroscopy is combined with the chemometrics
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method to evaluate the quality of the food [22]. Several studies have shown the potential
application of NIR spectroscopy to measure the internal and external quality of fruit [23–25].

The main emphasis of this review is centered on the scholarly works that have been
published within the last five years. Nevertheless, earlier seminal papers that have played
an instrumental role in shaping the course of the respective methods and applications,
as well as studies that were pioneering or representative of challenges and problems
encountered in specific areas, are included as well in this review.

2. NIR Spectroscopy
2.1. Analytical Framework of NIR Spectroscopy

NIR spectroscopy is a non-destructive analytical technique that has gained widespread
acceptance in various fields due to its ability to provide a qualitative and quantitative
characterization of a broad range of samples [26–33]. In the applications reviewed here,
particularly useful are sensors operating in the wavelengths belonging to the “conventional
NIR” region, corresponding to wavelengths between 800–2500 nm (12,500–4000 cm−1).
In particular, the spectra in conventional NIR can provide valuable information on the
molecular composition, structure, and dynamics of samples without requiring any prior
treatment or labeling. On the other hand, the Vis/NIR region usually refers to the range of
wavelengths where the visible spectrum (400–700 nm) and the NIR region (700–2500 nm)
overlap. Furthermore, often distinguished is also the SW-NIR region that refers to the
short wavelength end of the NIR spectrum, typically between approximately 800–1100 nm
(9000–12,500 cm−1); however, this division is rather arbitrary and depends on the source.
In addition to these conventional definitions of the spectral regions, noted should be the
increasingly popular instruments that operate over a broad wavelength window that ex-
tends over these commonly accepted boundaries. Mentioned here should be, e.g., portable
multi-band spectrometers equipped with multiple detectors enabling them to acquire
spectra over the entire Vis and NIR regions, and even include a narrow fragment of UV
region, such as the ASD QualitySpec Trek Portable Spectrometer that operates over the
350–2500 nm window.

This non-destructive method measures the absorption of light by molecules at specific
wavelengths characteristic of their chemical bonds, which in itself is a quantitative process.
However, for effective accessibility to this information in the analysis, a trained chemometric
model is required to formally describe the relationship between the spectral intensity
acquired from the sample and its property of interest, such as the concentration of a
specific chemical constituent. Therefore, the analytical framework of NIR spectroscopy
requires knowledgeable development of a robust data science method based on a properly
calibrated, validated, and maintained model (Figure 2) [34,35]. Calibration (i.e., training) of
a chemometric model involves measuring the spectra of a set of known samples and creating
a calibration model that relates the spectral data to the sample’s chemical composition;
in this process, reference (i.e., known) values associated with calibration and validation
samples are needed. The calibration model is then used to predict the chemical composition
of unknown samples based on their spectral data. Chemometric analysis can either be
directed at the quantification of a selected compound or group of compounds of interest
(e.g., proteins, fats, or moisture) or classifying samples based on their arbitrary property
(e.g., authenticity, variety, or geographical origin), making it useful for quality control and
process monitoring. NIR spectroscopy coupled with chemometric analysis can also analyze
multiple components and perform multiple classifications from the sample spectral data
simultaneously by using different calibration models.

Quantitative prediction of chemical constituents is achieved by fitting a multivariate re-
gression model that describes the relationship between spectral data (i.e., multiple spectral
points) and a set of reference values [34,35]. In principle, when the data set is sufficiently
simple, this can be achieved even by a basic multiple linear regression (MLR), a simple
linear method that relates the spectral data to the reference values using a matrix linear
equation. Although fairly popular in the earlier applications of spectroscopy in the agri-
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food sector, often MLR and PCR can only be applied reliably when spectra are sampled at a
few uncorrelated discrete points, which matched the capabilities of early spectrometers [36].
In more modern practice, high-resolution spectra often manifest strong collinearity (i.e.,
highly correlated two or more spectral variables carrying redundant information), and
more advanced regression methods are recommended. Nowadays commonly used chemo-
metric methods for solving the linear multi-variate regression problem include principal
component regression (PCR) and partial least squares regression (PLSR); both approaches
reduce the dimensionality of the spectral data by extracting new variables used to model
the relationship between the spectral data and the reference values. This transformation
can reduce the effects of collinearity on the regression coefficients. However, if collinearity
is severe, PCR and PLSR can still suffer from instability or unreliable coefficients.
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Figure 2. Scheme of the analytical framework in NIR spectroscopy on the example of quantitative
analysis. A qualitative approach (i.e., classification) is analogous; however, reference data might
be arbitrary in that case (e.g., “authentic” vs. “non-authentic” product; “bad” vs. “good” quality
product, etc.). The ultimate outcome is the prediction of the property of the “unknown sample”
(i.e., for which the inefficient reference analysis was deliberately skipped) towards which the model
was calibrated.

On the other hand, non-linear relationships between variables and samples can be
described by, e.g., support vector machines (SVM), in which a hyperplane or set of hyper-
planes is constructed in high-dimensional space; the SVM method can be used both for
classification and regression. A separate family of non-linear methods is artificial neural
networks (ANN) often used when the relationship between the spectral data is complex;
however, these methods require extensive supervision and rich data sets for reliable use.

Classification methods aim to predict the class or category of a sample based on its
spectral data [34,35]. One commonly used classification method is k-nearest neighbor
(k-NN), which calculates the distance between a new sample and a set of training samples
to assign it to the nearest class (i.e., category). Another widely used classification method is
linear discriminant analysis (LDA), which finds a linear combination of spectral data that
maximizes the separation between classes. Other classification methods include decision
trees, random forests, and SVM. When applied to solve classification problems, SVM
constructs a hyperplane or set of hyperplanes in a high-dimensional space, which can be
used to separate sample classes. These methods can be enhanced through feature selection
or extraction techniques to improve the accuracy of the classification model. Overall, the
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choice of classification method depends on the nature of the data, the number of classes,
and the desired level of accuracy.

Among the most common set of data science tools applied in analytical NIR also
PCA (principal component analysis), a dimensionality reduction method, should be men-
tioned. It is commonly used in exploratory data analysis to reduce the complexity of
high-dimensional data sets by transforming the original variables into a smaller set of
new variables, called principal components, which explain most of the variation in the
data [34,35]. PCA is often used as a pre-processing step before applying other meth-
ods, such as regression or classification. On the other hand, clustering methods are also
frequently employed in exploratory data analysis in analytical NIR, as they enable the
grouping of samples based on similarities and the identification of potential outliers or
clusters of interest [34,35].

Prior to solving the regression and classification problems in NIR spectroscopy, spectral
pretreatment methods are commonly applied to reduce the detrimental effects present in
experimental data sets that are not correlated with the property of interest of the sample (i.e.,
to improve the effective data quality), such as spectral noise or light scattering effects. These
methods, including standard normal variate (SNV), multiplicative scatter correction (MSC),
and derivatives, aim to preprocess the spectral data to improve the performance of the
subsequent modeling methods. SNV and MSC are used to correct for variations in sample
thickness and scattering effects, while derivatives can enhance the apparent resolution and
highlight subtle features of the spectral data. The choice of spectral pretreatment method
depends on the specific properties of the spectral data and the goal of the analysis [34,35].

A brief note should be given to the data fusion (i.e., sensor fusion, also in the litera-
ture referred to as multi-sensor fusion, MDF). It is the process of combining information
from multiple sources to create a more complete and accurate picture of a system or
phenomenon [37–39]. In the context of Vis/NIR spectroscopy, data fusion refers to the
combination of spectral data obtained from different instruments or measurement tech-
niques. The benefits of data fusion in Vis/NIR spectroscopy include improved accuracy
and robustness of predictions, enhanced feature extraction, and increased flexibility in
instrument selection and data acquisition. The recent literature demonstrates a growing
interest in the application of this concept in the analysis of the vital properties of apples as
well [40–42].

2.2. NIR Spectrometers and Miniaturization

The spectrometer typically consists of a light source, a sample holder, a monochromator
or interferometer, and a detector [43]. The light source emits NIR radiation that passes
through a monochromator or interferometer to isolate the specific wavelength range of
interest. The radiation then interacts with the sample in the sample holder, and the
transmitted or reflected radiation is detected by a detector. The most practical way of
acquiring a NIR spectrum is by measuring the radiation diffusively reflected from the
surface of the sample; contactless measurement is viable in such an approach. In some
cases, the light source and detector can be integrated into a single device, such as a fiber
optic probe. This probe can be inserted directly into a sample or used to collect reflected
radiation from a sample surface.

In recent years, novel technology led to the introduction of affordable miniaturized
NIR spectrometers that can be easily operated by non-experts and offered as portable or
handheld devices [44,45]. A number of competing engineering solutions exist in this area,
for example, instruments based on a digital micromirror device (DMD) (Figure 3A). The
DMD-based design uses a micro-electromechanical system (MEMS) device to select specific
wavelengths and encode the signal that can be effectively measured by a single-element
detector. On the other hand, a linear variable filter (LVF) coupled with an array detector, is a
potent design of a multi-channel microspectrometer (Figure 3B). The LVF-based design uses
a filter with a continuously varying transmission profile to isolate different wavelengths
of light. Both designs are compact and offer good quality spectra, making them ideal for
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a wide range of on-site applications. This setup is used in the VIAVI MicroNIR 1700 ES
spectrometer and enables collecting a high number of scans (i.e., integration time of 7.5 ns
yielding spectrum in the region of 900–1600 nm; enabling the default measurement time
consisting of 1000 averaged spectra in the total time of 7.5 s).

Foods 2023, 12, x FOR PEER REVIEW 6 of 49 
 

 

based design uses a filter with a continuously varying transmission profile to isolate dif-
ferent wavelengths of light. Both designs are compact and offer good quality spectra, mak-
ing them ideal for a wide range of on-site applications. This setup is used in the VIAVI 
MicroNIR 1700 ES spectrometer and enables collecting a high number of scans (i.e., inte-
gration time of 7.5 ns yielding spectrum in the region of 900–1600 nm; enabling the default 
measurement time consisting of 1000 averaged spectra in the total time of 7.5 s). 

 
Figure 3. Examples of miniaturized NIR spectrometers; functional schemes of a design using digital 
micromirror device (DMD) (A) and a multi-channel spectrometer based on a linear variable filter 
(LVF) coupled with an array detector (B). 

With the increasing miniaturization and portability of NIR spectrometers, it has be-
come possible to perform analysis on-site, in the field, or even in remote locations, opening 
up new possibilities for applications such as environmental monitoring and agricultural 
analysis [46,47]. Designed to be lightweight, compact, and easy to use, making them ideal 
for field use, these instruments are becoming increasingly popular in many scenarios, par-
ticularly in the agri-food sector (Figure 3). Being suited for direct on-site operation, those 
instruments are particularly useful for food producers, processors, and quality control 
professionals who need to analyze samples in real-time to ensure product quality and 

Figure 3. Examples of miniaturized NIR spectrometers; functional schemes of a design using digital
micromirror device (DMD) (A) and a multi-channel spectrometer based on a linear variable filter
(LVF) coupled with an array detector (B).

With the increasing miniaturization and portability of NIR spectrometers, it has be-
come possible to perform analysis on-site, in the field, or even in remote locations, opening
up new possibilities for applications such as environmental monitoring and agricultural
analysis [46,47]. Designed to be lightweight, compact, and easy to use, making them ideal
for field use, these instruments are becoming increasingly popular in many scenarios,
particularly in the agri-food sector (Figure 3). Being suited for direct on-site operation,
those instruments are particularly useful for food producers, processors, and quality control
professionals who need to analyze samples in real-time to ensure product quality and safety.
The examples of major step-ups in the applicability of NIR spectroscopy through handheld
spectrometers include the measurement of the nutritional content of crops directly in the
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field, allowing for more accurate and timely decision-making regarding crop management
and harvest [48]. On the other hand, these sensors can also be used to assess food quality
during transportation and storage, reducing the risk of spoilage and waste.

2.3. Image-Based Methods

Briefly introduced should be image-based (i.e., spatially resolved) techniques are
increasingly important in the reviewed area of applications, as they provide remarkable
potential in delivering various essential quality parameters of fruits. Sketching the technical
background of these diverse techniques extends beyond the capacity of this review, and
the interested reader is pointed to focused monographies and articles devoted to these
topics [49–51]. Here, only a brief summary of the relevant techniques will be provided to
better expose the applications discussed in the following sections.

Hyperspectral imaging and multispectral imaging are two spatially resolved tech-
niques commonly used in apple analysis and quality control. Hyperspectral imaging
involves capturing images at narrow wavelength intervals (i.e., at a relatively high spectral
resolution; Figure 4). Multispectral imaging, on the other hand, captures images at a
few selected wavelengths. Although not as detailed as hyperspectral imaging, multispec-
tral imaging is faster and more cost-effective, making it a practical choice for industrial
applications [49–51].

The spectral dimension of such images fundamentally contains the same information
that is provided by point spectroscopy (Figure 4). This information can be incorporated
into the analytical framework as described in Section 2.2, with an additional note that in
this case also pixel-to-pixel or multi-pixel information in hyperspectral images is available
for the analysis [52]. Hence, imaging in Vis and NIR regions is particularly suitable for the
applications reviewed herein. These techniques can therefore provide information about
the chemical composition of the sample, while also being suited to detect surface defects,
bruises, and other forms of damage to the fruit. In addition, despite imaging instrumenta-
tion necessarily tending to be more complex than the practicality and advantages of the
detectors, sources, and optics remain the same as for point spectrometers; factors which are
also favorable in Vis/NIR wavelength window [53]. NIR hyperspectral imaging has been
increasingly used in the food industry to study the chemical composition of various food
products [54–56].

On the other hand, computer vision and machine vision are two related fields that
involve the use of algorithms and software to analyze images and extract useful information.
Most often this is performed for RGB (i.e., red–green–blue) images. Noteworthily, a four-
band image RGB + NIR is often used, where the detector additionally captures a NIR band
(i.e., most commonly, a single wavelength from the NIR region). The addition of the NIR
band can provide additional information about the object being imaged, such as its moisture
content or chemical composition (e.g., protein content which is not well manifested in RGB
bands alone), which can be useful in quality control applications of fruits.

In the context of apple analysis and quality control, computer vision and machine
vision techniques can be used to automatically classify and grade apples based on their
appearance, size, and other physical characteristics. These methods can also be used to
detect surface defects and other forms of damage to the fruit [57–59].



Foods 2023, 12, 1946 8 of 48
Foods 2023, 12, x FOR PEER REVIEW 8 of 49 
 

 

 
Figure 4. Simplified scheme presenting fundamental principles of a spectral data hypercube and 
visualization based on the most straightforward spectral information available, spectral intensity. 
Reprinted with permission from Ref. [56]. 2021, Elsevier. 

3. Analyzing the Quality Parameters of Apples; Internal and External Characteristics 
The quality of apples can be assessed in terms of both external and internal charac-

teristics [60] (Table 1). External quality refers to the physical appearance of the fruit, in-
cluding factors such as color, size, shape, and surface defects [61]. Apples with bright and 
uniform color, free of blemishes, and desirable shape and size are considered to have high 
external quality, which can indicate freshness and potential for spoilage. In contrast, in-
ternal quality refers to the chemical and physical characteristics of the fruit’s flesh, such 
as taste (sweetness, sourness), texture (firmness, mealiness, crispiness, juiciness), aroma, 
and nutritional value (carbohydrates, proteins, vitamins) or internal defects (water core, 
frost damage, rotten). Factors that can affect internal quality include soluble solids content 
(SSC), sugar profile, total titratable acidity (TA), starch pattern index (SPI), phenolic com-
pounds, and total dry matter concentration (DM). High internal quality apples typically 
have a balance of sweetness and acidity, a crisp texture, and a pleasant aroma [61,62]. 

To ensure that apples meet consumer expectations and are suitable for various appli-
cations, growers and producers must consider both external and internal quality param-
eters. For instance, fresh apples are expected to have high external quality and desirable 
internal characteristics, such as sweetness, acidity, and firmness. On the other hand, 

Figure 4. Simplified scheme presenting fundamental principles of a spectral data hypercube and
visualization based on the most straightforward spectral information available, spectral intensity.
Reprinted with permission from Ref. [56]. 2021, Elsevier.

3. Analyzing the Quality Parameters of Apples; Internal and External Characteristics

The quality of apples can be assessed in terms of both external and internal char-
acteristics [60] (Table 1). External quality refers to the physical appearance of the fruit,
including factors such as color, size, shape, and surface defects [61]. Apples with bright
and uniform color, free of blemishes, and desirable shape and size are considered to have
high external quality, which can indicate freshness and potential for spoilage. In contrast,
internal quality refers to the chemical and physical characteristics of the fruit’s flesh, such as
taste (sweetness, sourness), texture (firmness, mealiness, crispiness, juiciness), aroma, and
nutritional value (carbohydrates, proteins, vitamins) or internal defects (water core, frost
damage, rotten). Factors that can affect internal quality include soluble solids content (SSC),
sugar profile, total titratable acidity (TA), starch pattern index (SPI), phenolic compounds,
and total dry matter concentration (DM). High internal quality apples typically have a
balance of sweetness and acidity, a crisp texture, and a pleasant aroma [61,62].
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Table 1. General overview and categorization of the quality parameters of apples commonly analyzed
in practical scenarios.

Quality Parameters

Internal External

Color Taste
Shape Texture
Size Aroma

Surface defect Nutritional value
Internal defect

To ensure that apples meet consumer expectations and are suitable for various applica-
tions, growers and producers must consider both external and internal quality parameters.
For instance, fresh apples are expected to have high external quality and desirable internal
characteristics, such as sweetness, acidity, and firmness. On the other hand, apples used for
processing into juice, cider, or sauce may have lower external quality standards but must
have high internal quality to maintain the desired taste, aroma, and texture. Therefore, a
thorough evaluation of both external and internal quality parameters is critical for growers
and producers to produce high-quality apples that meet different market demands [63].

3.1. Internal Quality Parameters

Internal quality parameters, e.g., taste, aroma, texture, and nutritional content are
essential in determining the overall value of apples [61,62,64]. Factors that can impact
internal quality, such as soluble solids content (SSC), total titratable acidity (TA), firmness,
ripeness, starch pattern index (SPI), and total dry matter concentration (DM), have a
direct effect on these sensory characteristics. The SSC, also known as the sugar content,
typically measured as a percentage of the fruit’s weight, determines the sweetness of the
fruit, which is a key factor in its taste. A higher SSC results in a sweeter taste, while a
lower SSC leads to a tarter flavor. The TA, on the other hand, affects the fruit’s acidity,
which is important for balancing out the sweetness and providing a pleasing taste. The
natural acidity contributes to flavor and varies depending on the variety and growing
conditions. The firmness of the flesh contributes to the texture and mouthfeel, with firmer
flesh providing a crunchier texture. The ripeness and aroma of the fruit also play a role in
its texture and freshness [61,62].

SPI measures the fruit’s starch content and can affect its texture, with a higher SPI
indicating a firmer texture. Finally, DM concentration impacts the nutritional content of the
fruit, with a higher concentration indicating a more nutrient-dense fruit. Proper growing
conditions can ensure that the fruit develops its full flavor potential, while proper storage
conditions can help preserve its sensory characteristics over time. Lastly, apples are a good
source of nutrients such as vitamin C, fiber, and potassium, whose content varies based on
the variety, growing conditions, and storage conditions.

Several factors can impact the internal quality of an apple, including genetics, environ-
mental factors, and post-harvest handling practices [65–67]. Genetics plays a critical role
in determining the natural sugar and acid content of the apple, as well as its texture and
aroma. Environmental factors such as temperature, sunlight exposure, and soil quality can
also affect the internal quality of the fruit by influencing the rate of sugar accumulation and
other biochemical processes. Post-harvest handling practices, such as storage conditions
and handling techniques, can also significantly impact the fruit’s internal quality. Proper
handling practices are crucial to ensure that the fruit reaches consumers with optimal
internal quality and flavor.

3.1.1. Taste

Taste is one of the most important factors that influence consumer preferences [68,69].
Taste is a complex sensation that involves a combination of sweet, sour, bitter, salty, and
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umami (savory) flavors; in the case of apples, it results from various internal quality
parameters, such as sugar content, acidity, and aroma, which can vary depending on the
variety, growing conditions, and storage conditions [70–74]. The study of taste in apples is
a crucial area of research for apple growers and processors. By understanding the factors
that influence taste, they can develop strategies to optimize the internal quality parameters
of the fruit, such as sugar content and acidity, to meet consumer preferences [68,75].

To better understand the taste of apples, several studies have been conducted using
NIR spectroscopy, to correlate changes in the chemical composition of the fruit with taste
attributes [76,77]. NIR spectroscopy has been used to measure the levels of various chemical
compounds in apples, including sugars, organic acids, and volatile compounds, which can
affect the fruit’s taste. Quantitative analysis of these compounds with NIR spectroscopy
enables the prediction of the sweetness, acidity, and overall taste profile of the fruit [78–81].
For instance, Abu-Khalaf et al. [82] found that NIR can predict SSC and acidity, classify
different varieties of apples based on taste characteristics with reasonable accuracy (>81%),
and detect different varieties even when they had the same ratio of SSC and acidity.
Instrumental methods such as penetrometry, double compression, and NIR spectroscopy,
as well as sensory analysis, were used to predict the texture and taste of three apple
cultivars [83].

3.1.2. Aroma

Aroma is a quality parameter associated with the presence of volatile organic com-
pounds (VOCs) in the fruit. Apples are known to contain over 350 volatile compounds [84],
but only a small number of these have been identified as contributing to the fruit’s
aroma [85]. The relevant VOC content, and the resulting aroma profile, can vary de-
pending on the cultivar, ripeness stage, and storage conditions [85–87]. The majority of
these volatiles are esters (78–92% of total volatiles), followed by alcohols (6–16%), aldehy-
des, ketones, and ethers, with varying amounts depending on the cultivar. Esters are the
primary compounds responsible for the characteristic apple scent, and their concentration
in both fresh and stored apples is determined by the number of ester precursors, such as
lipids. These precursors are influenced by several factors, including the cultivar, growing
conditions, harvest maturity, and storage conditions [88].

Aroma is an important quality parameter of apples that is closely related to taste.
Apples with higher levels of SSC and lower levels of TA tend to have a sweeter aroma due
to the presence of more volatile esters, while apples with higher levels of TA and lower
levels of SSC tend to have a sourer aroma due to the presence of more volatile acids. The
aroma of apples can change during storage, with some volatile compounds increasing in
concentration and others decreasing. Overall, the aroma of an apple greatly influences
consumer satisfaction and perceived freshness [89,90]. Therefore, monitoring changes
in aroma during fruit development, maturity, and postharvest storage is important to
maintain fruit quality and extend shelf life.

Conventional approaches include gas chromatography–mass spectrometry (GC-MS),
solid-phase microextraction (SPME), and sensory evaluation are among the analytical tech-
niques used to study apple aroma [91–96]. It should be noted that while NIR spectroscopy
can provide useful information about the chemical composition of apples, it is not a per-
fect technique and may not be able to detect all aroma compounds or accurately predict
the aroma characteristics of all apple varieties. Therefore, it is often used in conjunction
with other analytical techniques and sensory evaluation to provide a more comprehensive
understanding of apple aroma [83,97]. Nonetheless, NIR spectroscopy has been shown
to predict the concentration of volatile compounds in apples that are responsible for the
aroma [98]. The prediction models developed using NIR spectroscopy are reliable and
accurate. The study by Ye et al. [99] showed that NIR spectroscopy is a useful method for
determining volatile compounds in apple wines quickly and easily, without the need for
costly and difficult chemical analysis. The results of this technique are comparable to those
of the traditional GC-MS method and have the added benefits of being non-destructive and
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non-contaminating. However, spectroscopic methods may see competition from the GC in
head-space mode (i.e., Flash GC) in this area of applications. The technique also offers a
non-destructive and non-contaminating manner of analysis, while delivering a molecular
fingerprint of volatiles by applying chemometrics to process the chromatograms; it has
been successfully applied in the analysis of agri-food items including apples [100,101]. On
the other hand, Zhu et al. [102] explored the use of hyperspectral imaging in a 400–1000 nm
wavelength window (i.e., in Vis and Vis/NIR regions) for evaluating the aroma components
of hybrid apple offspring. While the spectra-based model performed well in predicting
chemical classes, it was less reliable in predicting individual chemicals. The study identified
characteristic spectra for different chemical groups, with alcohol and ester being the most
reliable (Figure 5).
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3.1.3. Texture

The texture is an essential quality attribute in apples well-exposed to the consumer.
Texture analysis can provide information about the mechanical properties of apples, includ-
ing hardness, chewiness, mealiness, and crispness [103–105]. The properties are mainly
determined by cell wall structure and composition, which can change during the develop-
ment, ripening, and storage processes of the fruit [106,107]. Various techniques have been
used to study the texture of apples. Conventional mechanical testing and sensory analysis
suffer from key limitations; the former being subjective to human judgments. The latter,
while objectively assessing texture properties such as hardness and elasticity, may not fully
reflect the sensory perception of texture. Imaging methods, such as X-ray and magnetic
resonance imaging (MRI), deliver appreciable advantages here and can provide detailed
information on the internal structure of apples and their texture; however, these techniques
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remain very costly, time-consuming, and limited to in-lab use [105,108–115]. In contrast,
NIR sensors can be deployed on-site to perform highly efficient and rapid analysis of the
chemical composition of apples, such as water, sugar, and starch content, which are closely
related to texture. Several studies have shown that NIR can predict the texture of apples
with high accuracy and the majority of the focus was directed at the assessment of firmness
and mealiness, as discussed below in the Firmness section and Mealiness section. NIR
spectroscopy can also predict the mechanical properties of apples, such as hardness, based
on their chemical composition [116].

Firmness

Firmness (i.e., hardness) is a crucial indicator of the maturity, storability, and eating
quality of apples. It is determined by the mechanical and structural properties of fruit
tissue, and its measurement provides information about the texture, ripeness, and ability of
the fruit to withstand handling and shipping [117]. It is affected by factors such as cultivar,
storage conditions, and maturity level. The standard method for measuring apple firmness
is the Magness–Taylor (MT) method, which involves the use of a penetrometer to measure
the force required to penetrate the fruit flesh to a predetermined depth [118,119]. However,
this method is time-consuming and requires a large number of samples to obtain accurate
measurements [120]. The ripening process of the fruit is also an important parameter that
affects its quality and shelf life [121].

Studies have shown that NIR spectra can be used to predict firmness values with high
accuracy and the technique has the potential to be used for monitoring of apple firmness
during processing and storage. The NIR spectra can be used to extract information about
the chemical composition of the fruit, which is related to its firmness. Specifically, the ratio
of absorbance values at specific wavelengths has been found to be strongly correlated with
apple firmness [122–127].

Despite firmness not being directly expressed in spectral data, the suitability of NIR
spectroscopy to deliver information that reliably correlate with this quality parameter
of apples is evidenced in the literature. For instance, Vis/SW-NIR (460–1100 nm in this
case) and hyperspectral scattering imaging (prototype online system) technique in the
450–1050 nm wavelength window were used to sort “Delicious”, “Golden Delicious” and
“Jonagold” apples (sample set of n = 8491) into two quality grades based on firmness, SSC
or the combination of both attributes [128]. In the classification performance of firmness,
Vis/SW-NIR technique generally outperformed in that study. Good results in sorting
with high consistency for firmness (ranging between 77.9% and 98.2%) and slightly less
satisfactory sorting results for SSC (ranging between 62.0% and 91.7%) were obtained in
that case.

A recent study by Mareckova et al. also confirmed the general suitability of NIR
spectroscopy to deliver a useful analysis of firmness [129]. In that case, the relationship
between the flesh firmness of apples and their chemical composition, specifically the
content of water, pectins, and carbohydrates such as starch, was investigated. An excellent
correlation was determined between flesh firmness measured using NIR spectroscopy
and the classical invasive method, with accurate prediction values for varieties such as
“Gala”, “Red Jonaprince” and “Jonagored”. It was concluded that the changes in firmness
during storage were likely a result of variations in the analyzed components. However, the
fruit quality was also found to be affected by a number of variables, including seasonal
variations, tree age, the position of the fruit within the tree, light effects, location of the tree,
and weather conditions. In a practical aspect, the method is suitable for use in automated
commercial sorting lines, as it is non-destructive and highly cost-effective [129].

Osienko et al. [130] proposed a new method, based on a handheld Vis/NIR instrument
for predicting the risk of disorder in Braeburn apples in relation to weather conditions and
orchard management treatments. Noteworthily, the study involved a broad time window
of three years for gathering data. Classification models were developed to assess internal
browning, cavities, and fruit firmness after long-term controlled atmosphere storage. The
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results show a high success rate for predicting internal browning disorder and fruit firmness,
with a 90% agreement between two separate years for internal browning disorder.

On the other hand, unorthodox approaches such as aquaphotomics that utilizes the
water spectral pattern show potential as a valuable tool for investigating the texture sensory
profiles of apple fruit. This is because water structures undergo changes in response
to texture characteristics, regardless of the apple cultivar. Additionally, it is possible to
differentiate apples with distinct texture sensory properties in a non-destructive manner.
However, further research is necessary to fully comprehend the correlation between the
water spectral pattern and pectin metabolism, as well as with the sensory profiles [131].

Noteworthily, NIR spectroscopy is readily suitable for designing cost-effective imaging
instruments intended for the assessment of apple firmness, in which remote sampling is
implemented via fiber probes. For example, a multifiber-based Vis/NIR spatially resolved
(i.e., imaging) system was designed for simultaneous evaluation of SSC and firmness in
apples [132]. The system uses 30 silica fibers connected to a Vis/NIR hyperspectral imaging
camera to acquire spectral data and a light reference-free approach to calculate reflectance
ratio spectra. The best-performing calibration models had coefficients of determination of
approximately 0.97 for SSC and 0.96 for firmness, with root mean square errors of 0.20%
and 0.37 Newtons (N), respectively. The method offers low-cost and portable detection of
SSC and firmness for postharvest fruit evaluation.

Mealiness

Mealiness is a textural defect caused by the breakdown of cell walls in the fruit, which
results in the release of excess juice and a loss of structural integrity. Several factors can
contribute to the development of mealiness in apples, including cultivars, storage con-
ditions, and postharvest treatments [133,134]. A better understanding of the factors that
contribute to mealiness in apples could help growers and processors to minimize the
incidence of this textural defect and improve the overall quality of apple products. To
evaluate mealiness in apples, a range of techniques have been used, including sensory
evaluation, ultrasonic, imaging, MRI, and NMR, as well as instrumental analysis of texture
and water content [135–142]. The hyperspectral scattering technique is potentially useful
for nondestructive detection of apple mealiness; however, improvements in classification
accuracy are needed [143]. So far, the studies on the application of Vis/NIR spectroscopy
show the potential of this technique when used in combination with other approaches. For
example, Mehinagic et al. [144] analyzed the texture and taste of three different apple culti-
vars after prolonged storage using sensory and instrumental analysis including Vis/NIR
spectroscopy. The aim was to predict the sensory perception of apple texture by instrumen-
tally measured parameters. Penetrometry and compression were highly correlated with
sensory textural attributes. A stepwise multilinear regression was performed on averaged
penetrometry, compression, and Vis/NIR data for six sensory attributes. Spectroscopic
data combined with physical parameters were successful in predicting complex sensations
such as juiciness and mealiness in the mouth. At the same time, penetrometry was found
to be more suitable for predicting sensory parameters corresponding to the quality of the
fruit after harvest, while compression was more effective for predicting characteristics
developed during storage.

3.1.4. Nutrient Content

The nutrient content of apples has been the subject of many studies due to the fruit’s
high nutritional value and health benefits [145,146]. Apples are a rich source of dietary
fiber, vitamins, and minerals, including vitamin C, potassium, and various antioxidants.
Numerous studies have investigated the nutrient content of apples using different analytical
techniques, such as high-performance liquid chromatography (HPLC) and inductively
coupled plasma (ICP) atomic emission spectroscopy [147–151]. These methods, however,
can be time-consuming, labor-intensive, and may require sample preparation, making them
less ideal for high-throughput analysis.
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In contrast, NIR spectroscopy appears as a promising alternative for a rapid and
non-destructive assessment of apple nutrient content. The technique has been found to be
a reliable approach to quantifying the levels of nutritional compounds in apples [152,153].
For example, Pisaard et al. [153] investigated the use of NIR to determine the vitamin C
and polyphenol content of apples in a breeding program focused on developing apples
with high antioxidant content, scab tolerance, and high fruit quality. The study found
that NIR could accurately determine sugar, acidity, and total polyphenol content, but the
performance was less precise for maturity, firmness, and vitamin C content. The quality of
the prediction and the determined ratio of prediction to deviation (RPD) values achieved
in that study confirmed the suitability of NIR spectroscopy to perform the classification
of the cultivars according to a range of concentrations. However, the potential for further
improvement was deemed obvious for the quality of the prediction of vitamin C.

Accordingly, in another study, NIR with least squares support machine (LS-SVM)
multivariate calibration was employed for the assessment of the quality of apples [154].
The models developed for vitamin C, total polyphenol, and sugar content showed good
to very good prediction performance, with particularly high precision for sugar content.
The low standard error prediction (SEP) values and relatively high RPD values indicate
that NIR could allow for fine classification of apples according to their levels of vitamin C,
total polyphenol, or sugar content (Figure 6). This could be especially useful in breeding
programs where breeders are interested in classifying varieties according to a range of
concentrations.
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Successful determination of the properties of dried apple samples, including total phe-
nolic matter, antioxidant activity, ascorbic acid, color characteristics, and spectral reflectance
values was demonstrated by Cetin et al. [155]. These properties were determined from
Vis/NIR spectra measured by a handheld instrument, alongside chromatic analysis, and
biochemical properties as well. Different chemometric algorithms, such as ANN, k-nearest
neighbor, random forest, Gaussian processes, and support vector regression, were used to
estimate total phenolic matter, DPPH, FRAP, and ascorbic acid in that case.
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Moreover, NIR spectroscopy has also been used to determine the mineral content of
apples, including potassium and calcium. In this context, the bitter pit is a physiological
disorder that affects apple fruit quality and causes significant postharvest losses, which
are associated with a deficiency in minerals, mainly calcium. It is characterized by the
appearance of brown spots on the fruit’s skin, which can lead to a bitter taste. Several studies
have investigated the link between bitter pit and mineral nutrition in apple trees, with a
particular focus on calcium. However, the mechanisms behind the disorder’s development
and the factors that contribute to its severity remain unclear. Vis/NIR spectroscopy offers
some potential in this area; however, studies so far point out certain limitations yet to
be addressed.

Shoffe et al. [156] compared non-mineral and mineral-based methods for predicting
bitter pit in susceptible apple cultivars, particularly “Honeycrisp”. Fruits were harvested
three weeks before anticipated commercial harvest and at commercial harvest, and mineral
contents in the peel were measured. In years 1 and 2, fruit were subjected to different
treatments and stored at different temperatures, while in year 3 only the passive method was
used. The passive and ethylene methods for fruit harvested three weeks before anticipated
harvest showed higher or similar correlations with actual bitter pits after cold storage
than mineral-based methods. The passive method was found to be more straightforward
for commercial applications. In another study [157] Mogollon et al. demonstrated the
feasibility of using NIR spectrometry for the early detection of bitter pit in “Fuji” apples,
with accuracies between 60–70% for bitter pit (BP) severity <8 pits per fruit after only
10 days of storage, and between 80–90% for BP severity 8–9 pits per fruit. The models also
show the possibility of detecting fruit prone to developing >8 pits during later storage.
These results can help the apple industry to monitor the apple’s susceptibility to bitter
pits soon after harvest, reducing postharvest losses and assuring quality for consumers.
On the other hand, Kafle et al. [158] evaluated the use of NIR spectroscopy to detect
bitter pits in Honeycrisp apples. Spectral reflectance data were collected from healthy and
bitter pitted apples stored for different periods. Nine spectral bands were identified as
associated with the bitter pit in Honeycrisp apples. The study found that both quadratic
discriminant analysis (QDA) and SVM classifiers could be used to discriminate between
healthy and bitter pitted apples with an average accuracy of 78–87%. These results suggest
the feasibility of using NIR spectroscopy for detecting bitter pits in apples and further
studies are underway to develop a portable device for apple bitter pit detection.

However, extracting information correlated with the elemental composition of the sam-
ple remains a challenging application of Vis/NIR spectroscopy. For instance,
Bonomelli et al. [159] aimed to investigate the relationship between mineral composi-
tion and bitter pit symptoms in “Fuji” apples. Results showed that bitter pit-affected fruit
had lower calcium concentrations and higher macronutrient ratios compared to healthy
fruit. The study also found a correlation between the B/Ca ratio and BP incidence. How-
ever, the researchers concluded that it is not feasible to determine calcium concentration in
apple fruit using Vis/NIR due to the lack of correlation observed between the reflectance
spectrum and calcium concentration. Further research is needed to determine the role of
boron in bitter pit disorder.

3.1.5. Factors That Affect Internal Quality
Phenolic Compounds

Phenolic compounds are secondary metabolites widely found in plant tissues that
play important roles in plant growth, development, and defense against environmental
stresses [160]. Apples are known to contain a diverse range of phenolic compounds,
including flavonoids, phenolic acids, and proanthocyanidins, which contribute to the fruit’s
color, flavor, aroma, and nutritional value [161]. Phenolic compounds can significantly
impact the taste, aroma, and texture of apples, with flavonoids contributing to bitterness and
astringency, and procyanidins linked to astringency and hardness. Phenolic compounds in
apples primarily exist in the peel and pulp and vary depending on cultivar, environmental
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factors, and post-harvest handling. Numerous studies have investigated the phenolic
content and antioxidant capacity of different apple cultivars [162–166].

NIR spectroscopy has also been employed as a non-destructive and rapid method for
determining the phenolic content of apples. For instance, a study by Pissard et al. [152]
combined NIR with LS-SVM multivariate calibration to measure the phenolic content of
apples. The models showed good to very good prediction performance, with particularly
high precision. The low SEP values and relatively high RPD values suggested that NIR
could allow for the accurate classification of apples based on their levels of total polyphenol
content. Pissard et al. [167] also demonstrated the usefulness of NIR to measure the
phenolic compounds and DM in apple peel and flesh separately, which could be helpful
for improving fruit quality and storability. It was shown that the concentration of these
compounds can vary greatly among apple cultivars and between the peel and pulp, making
it difficult to predict their intake accurately. Specific apple varieties with a higher level of
bioactive compounds in the flesh could be selected for breeding programs, and DM is an
important characteristic related to fruit flavor and texture.

On the other hand, Beghi et al. [168] utilized a portable Vis/NIR system with PLSR to
predict the total phenolic content in two apple varieties. The prediction accuracy differed be-
tween the two varieties, with better PLSR model parameters (R2 = 0.56;
RMSECV = 0.06 mg catechin·g−1) obtained for “Stark Red Delicious” than “Golden Delicious”
(R2 = 0.09; RMSECV = 0.10 mg catechin·g−1) due to the latter’s low phenolic concentration.

These exemplary studies highlight the potential of NIR spectroscopy as a tool for eval-
uating the phenolic content of apples, which can aid in the selection of cultivars with high
levels of these beneficial compounds and in the development of healthier food products.

Soluble Solid Content (SSC)

The soluble solid content (SSC), also known as total soluble solids (TSS) content, is one
of the most critical parameters to assess the quality of apple fruits. The sugars and acids,
together with small amounts of dissolved vitamins, fructans, proteins, pigments, phenolics,
and minerals, are commonly referred to as soluble solids and can be correlated with fruit
properties such as sweetness, ripeness, maturity, and overall flavor [70,77]. While its higher
value indicates a sweeter, and a lower indicates a sour apple, the SSC content can vary
depending on various pre- and post-harvest factors, including the variety, climate, growing
conditions, and storage time. The SSC in numerous fruits, consisting mostly (approximately
85%) of sugars (such as sucrose, glucose, and fructose) and sugar alcohols (for example,
sorbitol and maltitol), is commonly determined by measuring the density or refractive
index using a Brix scale hydrometer or refractometer. This value is expressed as “degrees
Brix” (◦Bx), which is equivalent to the weight percentage (%) of sucrose in a solution at a
given temperature [169].

NIR spectroscopy has been widely used for the non-destructive analysis of SSC in
apple fruit. It is an area of application, in which NIR spectroscopy has been particularly
proven, with several studies reporting successful use of the technique in determining SSC
content in apples [170–180]. Hence, attention will be given here only to the most recent
research activity in this domain.

Recently, Biegert et al. [171] aimed to gain a better understanding of the non-destructive
temporal development of SSC accumulation in apple fruit and to test the application of
PLSR models of SSC in “Braeburn” variety with a focus on model transferability and
accuracy. Noteworthily, a systematic investigation of the model performance over time
was performed, which is an immensely meaningful factor in practice, e.g., for model main-
tenance. The multi-year model was found to be reasonable for overall performance, but
yearly calibration models performed best for the same year (Figure 7). A sample size of
100 fruit for a yearly PLSR model with a wide range of SSC values is considered sufficient.
The study also found that differences in sector position and crop load can lead to large dif-
ferences in SSC during fruit development, offering the possibility for further physiological
studies. In another study, Fan et al. [172] proposed a method to enhance the validity and
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robustness of the PLSR model over a long period and minimize the impact of biological
variability on SSC prediction, making it suitable for practical applications. The study also
investigated the long-term performance of a NIR calibration model for predicting SSC
using apples collected from 2012 to 2018, taking into account the biological variability.
These recent works well highlight the attention given to long-term model performance in
practical scenarios of fruit quality monitoring.
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On the other hand, the variability of fruit samples associated with different maturity
stages and storage statuses can reduce the robustness of prediction models. Approaches
such as local calibration were therefore investigated to improve the robustness by group-
ing similar samples and developing individual models to effectively handle the issue of
batch-to-batch variation. Luo et al. [176] showed that the local calibration significantly
improves the robustness compared to global calibration, especially when the prediction
samples are of higher maturity. The authors suggested that the homogeneity of selected
calibration samples, being of the same level of starch fractions, is the reason for the superior
performance of local calibration. It was also reasoned that the modeling robustness can be
further improved by including more samples from different regions and years.

Another issue related to the training set inhomogeneity was investigated by
Tian et al. [177], who focused on the non-destructive determination of SSC of “Fuji” ap-
ple using an online spectra scanning system operating in Vis/NIR (615–1044 nm) region.
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The study proposed a method of “zone combination modelling” to evaluate the spectra
acquisition geometry yielding, respectively, efficient and inefficient for SSC prediction.
The results showed that the spectra of the apple core zone reduced the accuracy of SSC
prediction and should be removed when developing prediction models. A selection of
relevant wavelengths was also performed for the described purpose. Accordingly, an
optimal prediction model was built using ten selected effective wavelengths, yielding root
mean square error of prediction (RMSEP) of 0.733 and 0.61% for the prediction set, and a
root mean square error of validation (RMSEV) of 0.721 and 0.71% for the validation set (SSC
determination), respectively. The study concluded that the approach of zone combinations
modeling is promising for the online detection of apple quality.

Sugar Profile

The predominant sugars found in apples are fructose, glucose, and sucrose, which
contribute to the sweetness and flavor of the fruit. Various analytical methods have been
employed to measure the sugar profile of apples, including HPLC and GC [74,181–184].
HPLC is considered the most accurate method for quantifying individual sugars, but it
is time-consuming and requires expensive equipment while GC requires derivatization
of the sugars, which can introduce errors. With the advent of NIR spectroscopy, there
has been a growing interest in using this non-destructive technique for the rapid and
accurate determination of sugar profile in apples. It can be used to measure constituent
sugar concentrations in intact apples, with comparable performance to the reference HPLC
method, but offers significant practical superiority [182].

Several studies have shown that NIR can predict individual sugars and total sugar
content with high accuracy, making it a promising tool for the fruit industry [78,185–189].
This suitability of NIR spectroscopy was demonstrated relatively early. For example,
Cho et al. [78] investigated the relationship between Brix and sugar content in apples using
NIR spectroscopy. The correlation between Brix and total sugar content was found to be
0.66, while no clear relationship was identified between Brix and free sugar content. MLR
analysis showed that the sweetness score, calculated with sucrose as a standard, could
be determined by NIR spectroscopy with an R value of 0.8 and SEP of 0.82%. The study
concluded that NIR spectroscopy could be used for the non-destructive evaluation of sweet-
ness in apples. Following studies confirmed this, e.g., Temma et al. [186] demonstrated
a correlation coefficient of 0.94 or more and a SEP of not greater than 0.546◦Bx for four
varieties of apples. For two types of apple juice, a SEP value of 0.439◦Bx at most and
correlation coefficients of 0.97 or more were obtained. That early study also identified
912 nm as an important wavelength for determining sugar content in both apples and juice.

The interest in this analysis continues in contemporary literature. For example, a
design of an integrated NIR spectroscopy module for estimating sugar content in apples
was recently presented by Byun [187]. The design process involved selecting effective
wavelengths and reducing the analog-to-digital converter resolution. The final module
used eight selected wavelengths and achieved a correlation coefficient of 0.365 and a
standard error of calibration of 0.686 Brix. The module was implemented using a 0.18 µm
1P6M CMOS process and occupies a die area of 0.84 mm2.

On the other hand, a study by Larson et al. [189] aimed to monitor changes in the
carbohydrate content of two apple cultivars throughout a growing season and evaluate
the efficiency of the NIR technique to predict carbohydrates (Figure 8). The carbohydrate
concentration in fruits during the growing season exhibited temporal patterns that are
consistent with prior studies conducted on different cultivars. Sorbitol was identified as
the primary carbohydrate in the early part of the season, while sucrose and fructose levels
increased as the season progressed. Glucose and starch concentrations showed an increase
until mid-season, after which glucose concentrations remained constant and starch con-
centrations decreased. The authors concluded that NIR spectroscopy is a suitable method
for quantifying carbohydrates and predicting the levels of individual carbohydrates and
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total soluble sugars across cultivars, fruit cluster positions, and stages of fruit development
during the growing season [189].
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Total Titratable Acidity (TA)

Total titratable acidity (TA) is also an important parameter for the overall quality
of apples, determining the flavor, taste, and freshness of fruits. Several studies have
been conducted to determine the TA in apple fruit using various analytical approaches,
including enzymatic and chromatographic methods [74,190,191]. Those techniques are
highly sensitive and accurate but are destructive, require expensive equipment, and sample
preparation, and are time-consuming. NIR spectroscopy offers a rapid and non-destructive
alternative to traditional methods for the determination of TA in apple fruit. Highly
accurate and reliable determination of TA in apples by NIR spectroscopy was demonstrated
by numerous studies [192–196], with high correlation coefficients between the spectral data
and the reference values obtained using traditional methods.

Refining the methods of TA analysis in apples by NIR spectroscopy remains an active
direction of research. For instance, Pourdabani et al. recently investigated the wavelengths
relevant to the prediction of pH and TA for Fuji apples [197]. Accordingly, the spectral band
from 800 to 900 nm was selected for the analysis of the former parameter, and 830 to 910 nm
for the latter one. The selection of these spectral bands was based on a trial-and-error
approach, taking into consideration the peaks of interest in the spectra. The resulting model
yielded a coefficient of determination (R2) of 0.86 for both parameters.

The study by Zhang et al. demonstrated the focus on refining the chemometric data
analytical procedures for determining apple acidity using Vis/NIR spectroscopy [198].
In that work, the spectral data were pretreated with Savitzky–Golay (S–G) smoothing
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and wavelet transform. Subsequently, a modeling set was generated with successive
projections algorithm (SPA) and a modeling candidate set with competitive adaptive re-
weighted sampling (CARS). The optimal PLSR model, which reduced the number of
selected wavelength variables from 129 to 36, achieved a determination coefficient of 0.9776
and a relative percent deviation of 6.6812. This study provided a promising reference for
reinforcing the online determination of apple acidity. On the other hand, Hasanzadeh et al.
examined various pre-processing procedures suiting the modeling of TA, alongside pH,
SSC, and TP parameters using Vis/NIR spectroscopy applied to Red Delicious and Golden
Delicious apples (Figure 9) [199].
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Starch Pattern Index (SPI) or Starch Content Index (SCI)

Starch content is an important parameter in apple fruit quality assessment as it affects
the texture and taste of the fruit during ripening and storage periods. The Starch Pattern
Index (SPI) or Starch Content Index (SCI) is widely used to assess the starch content in
apples as critical indicators of the fruit’s maturity and quality [200,201]. The SPI is a visual
score of the microscopic appearance of the starch grains in the apple tissue, while the SCI is
a quantitative measure of the starch content in apple tissue using chemical analysis. The
determination of starch content in apples has traditionally been carried out by inefficient,
destructive, and reagent-dependent enzymatic methods. This exposes the advantage of
NIR spectroscopy as the spectral bands of starch deliver reliable information on the SPI
and SCI parameters of apples. Several studies have demonstrated the effectiveness of this
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technique in this application, with high correlations between the NIR predictions and the
reference values obtained by conventional methods [202–205].

Recently, Pourdabani et al. [206] used Vis/NIR spectroscopy to nondestructively
predict tissue firmness, acidity, and starch content in Fuji apples at different ripening
stages. An artificial neural network-cultural algorithm (ANN-CA) was used for non-linear
regression, and the results showed that the proposed method was effective in estimating
fruit properties. The mean coefficients of determination for firmness, acidity, and starch
content were reported to be high when using only the three most effective wavelength
spectral data.

On the other hand, NIR hyperspectral imaging has also been used to study starch
content in apples, with promising results. Early demonstration of the feasibility of using
NIR imaging spectroscopy as a tool for determining apple fruit maturity was established,
circumventing the need for expert interpretation of traditional starch index assignments,
which are subjective in nature [207]. In a recent study by Peirs et al. [208], hyperspectral
images were collected from apple samples using a NIR imaging system, and the images
were analyzed to determine the distribution of starch within the apple tissue. That study
found that NIR hyperspectral imaging could accurately predict the starch content of apples,
and the images could be used to create starch distribution maps within the fruit.

Total Dry Matter Concentration (DM)

Total dry matter concentration (DM) is another critical parameter that measures the
amount of solid matter in the fruit as it affects the texture and flavor of the fruit [209]. DM
is the sum of all solids in the apple fruit after drying and is calculated by subtracting the
fruit’s moisture content from 100%. High DM concentration indicates a high proportion
of dry matter in the fruit and is associated with better eating quality and longer shelf
life. Conversely, low DM concentration indicates lower-quality fruit with a shorter shelf
life [210–212].

NIR spectroscopy has been widely used to study DM concentration in apples. Sev-
eral studies have reported the successful application of this technique to determine DM
concentration in apple fruit, with high correlation coefficients between the predicted and
reference values [167,213–216]. For instance, Travers et al. [215] evaluated the prediction
performance of models for DM and SSC in apples over a storage period. While the RPD
values for the models were below the minimum threshold required to consider the models
strong enough for general quantitative predictions, they compared favorably to earlier
achievements reported in the literature. On the other hand, Zhang et al. [216] developed
NIR spectroscopy models to predict SSC and DM in several apple cultivars, including
“Royal Gala”, “Golden Delicious”, “Elshof”, “Fuji”, and “Jonagold” (Figure 10). The study
found that building individual cultivar models led to more accurate predictions, with “Jon-
agold” showing the highest R2 values. However, external validation revealed overfitting
issues and data distribution challenges. To mitigate these issues, the study recommended
using multi-cultivar models, which are more practical and robust for predicting SSC and
DM in different origins, seasons, maturity stages, storage conditions, and periods. Recently,
Zhang et al. [217] focused on the relationship between DM and SSC in “McIntosh”, “Red
Delicious”, and “Fuji” apples. The study found that fruit DM and SSC at harvest were
closely related, and the relationship was improved during maturation and storage. In this
study, calibration models for predicting SSC and DM based on NIR spectroscopy were
developed using PLSR. The models showed strong correlations with R2 values ranging
from 0.77 to 0.85 for SSC and from 0.75 to 0.85 for DM. The RMSE of the calibration models
was observed to be between 0.44 to 0.62% for SSC and from 4.25 to 4.92 g kg−1 for DM.
The study demonstrated that NIR spectroscopy has the potential to be a non-destructive
method for predicting SSC and DM in apples due to the strong linear relationship between
the two parameters.
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3.2. External Quality Parameters

External quality parameters of apples can be visually evaluated and assessed through
touch. They include size, shape, color, and texture. Size refers to the overall dimensions
of the fruit, such as its diameter and height, while shape describes its form, including its
roundness or oblong shape. Color refers to the skin’s appearance, ranging from shades of
green to yellow, red, or even dark purple. Texture refers to the physical characteristics of
the skin, flesh, and core, such as firmness, juiciness, and crispness [61,62].
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External quality parameters are critical in consumer selection, as they are the first
characteristics noticed when choosing fruits for consumption [218,219]. Skin color is often
used as an indicator of ripeness, with bright and uniform colors preferred over dull or
spotted skin. Size and shape can also influence consumer preferences, with larger and
more uniform fruits perceived as higher quality. Surface defects, such as bruises, cuts,
or insect damage, can affect fruit quality and increase spoilage risk. These parameters
play a significant role in consumer acceptance, as they determine overall quality and
freshness. External quality parameters are also used for commercial grading and sorting,
such as sorting by size or color to meet market standards or specific customer specifications,
hence forming a critical property of fruits for both consumer acceptance and commercial
purposes [220,221].

3.2.1. Color

Color is a crucial quality parameter for apples that is used to determine the fruit’s
maturity and ripeness [222–224]. The skin color of an apple is influenced by various factors,
including genetics, environmental conditions, and postharvest handling [225–227]. The
geographical locations of orchards can influence the color of apples as well [228].

Various techniques can be used to measure apple color, including visual assessment,
colorimeter measurements, and image analysis [229–232]. While color is nominally mani-
fested in the Vis region, its appearance results from the presence of chemical compounds
that can be successfully analyzed in a broad spectral region, including Vis/NIR and con-
ventional NIR as well. The vibrational bands of these chemical constituents are often more
specific than broad electronic absorption features appearing in the Vis region. Anthocyanins
and chlorophyll are the main pigments responsible for the color of apple skin [233–235].
Several studies have investigated color changes during fruit development, maturity, and
postharvest storage [236]. The color of apple skin changes from green to yellow or red as
the fruit ripens due to chlorophyll degradation and anthocyanin synthesis [237,238].

For example, Solovchenko et al. [239] demonstrated the use of Vis/NIR reflectance
spectroscopy for estimating chlorophyll and carotenoid content and for estimating ripeness.
The study estimated pigment content and on- and off-tree ripening rates and detected
physiological disorders in apple fruit. Discussed were also the basic spectral features of
fruit reflectance and their implications for method development. Merzlyak et al. [240]
showed that Vis/NIR spectroscopy is a sensitive tool for determining the peel content of
pigments in whole fruit during development. The assessment of peel pigments such as
chlorophylls, carotenoids, and anthocyanins was demonstrated for five apple cultivars.
Several reflectance indices were developed for estimating pigment content, which could
be potentially useful for non-destructive assessment in the fruit of other plant species.
However, further investigation is needed to improve the indices for other apple cultivars
and achieve a more precise assessment.

Interestingly, the dependence of the penetration depth of electromagnetic radiation
against the fruit tissue in different wavelength regions is a meaningful factor. It might
be decisive for designing a specific application, depending, e.g., whether the property of
interest of the apple is manifested in superficial parts of the fruit or its deeper parts. For
example, the study by Lammertyn et al. [241] compared two optical configurations in the
analytical method developed for predicting sugar content in apples using NIR spectroscopy.
The study also developed a technique to measure light penetration depth in apple tissue,
with values ranging from 2 to 4 mm depending on the wavelength (Figure 11). In this
regard, the property of the sample itself, such as its color, can be seen to be meaningful
as well. The study suggested further research on the light penetration properties of apple
tissue in the 1300–2500 nm range and other apple cultivars.

More recently, Ye et al. [242] explored the potential of a UV/Vis/NIR interactance
device in determining the degree of red coloration in the flesh of a red-fleshed apple variety
“Kurenai no Yume”. The results indicated a significant correlation between the interactance
spectra and the anthocyanin content in the apple flesh, suggesting that a non-destructive
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and fast interactance technique can be developed for estimating the degree of red coloration
in red-fleshed apples.
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On the other hand, recent attention is also directed at further improving the feasibility
of these techniques in a practical sense. Abbaspour-Gilandeh et al. reported a cost-effective
approach to the estimation of the chlorophyll b content of red delicious apples using color
and NIR spectral data combined with hybrid ANN [243]. The authors concluded that the
cost of the Vis/NIR spectroscopy system setup is important for real-time applications, and a
small window of around 680 nm wavelength could be used to reduce the expenditure of the
analysis. The spectral method outperforms the color method in terms of determination and
regression coefficients and error estimation parameters. Additionally, it was demonstrated
that using effective spectra selected by the hybrid ANN-differential evolution algorithm as
input to a hybrid ANN biogeography-based algorithm improves the results in that case.

3.2.2. Size

Apple size is a significant factor in the apple industry, as it influences not only mar-
ketability and consumer acceptability but also production efficiency [244]. Therefore,
continuous attention is directed at this quality parameter [245–252]. Apples are typically
classified into different size categories based on their diameter; mass and aspect ratio of
fruits can be used to classify normal and misshapen apples [253].

While influenced by growing conditions and nutrient availability, apple size is mainly
determined by genetic factors [254–258]. Apart from marketability and consumer prefer-
ence, apple size also correlates with internal quality parameters [61,62]. Thus, NIR spectra
of intact apples can provide information on the size and internal structure of the fruit based
on variations in absorption patterns caused by different components such as starch or SSC.
Several studies have demonstrated that NIR spectroscopy can accurately predict apple size
and size distribution with high precision. Larger apples tend to have higher SSC and lower
acidity levels than smaller ones. In addition, larger apples may have lower firmness than
smaller ones due to their higher water content.

In recent years, NIR spectroscopy has been repeatedly used to predict apple size and
size distribution. Jiang et al. [259] investigated the impact of apple size on its spectrum
and the prediction performance of the PLSR model of apple SSC. It was found that apple
size differences can affect the spectrum, and the relationship between apple size and its
spectrum light intensity satisfies the logarithmic function. Different solution methods and
preprocessing models were studied to address the poor performance of the SSC prediction



Foods 2023, 12, 1946 25 of 48

model due to apple size differences. The authors concluded that the inclusion of fruit
diameter as a variable in the size compensation model for SSC enhances the prediction
performance of the model and satisfies the need for online detection of SSC in apples with
varying fruit diameters.

The same authors proposed a method to correct the NIR spectra of apples with varying
sizes to improve the accuracy of the SSC prediction models [260]. The method involved
standardizing the transmission spectra using extinction coefficients and correcting them
based on average values. After size correction, the spectra were modeled to predict SSC,
resulting in a significantly improved correlation coefficient and RMSEP of PLSR. The
proposed method reduces the influence of fruit size variation on SSC models, making it
suitable for improving the performance of NIR online inspection devices for apples of
different sizes.

The relationships between the size of the fruit and its optical properties attract attention
in this context. Vaudelle et al. [261] used Monte Carlo simulations to investigate the impact
of apple size and skin on the measurement of optical properties of the flesh using steady-
state reflectance measurements and diffusion approximation. The study found that the skin
layer had little influence on the retrieved internal optical parameters of an apple, except
for measurements close to the source. On the other hand, Tian et al. [262] proposed a new
method to correct transmission spectra based on fruit size for identifying diseased fruit.
To standardize the transmission spectra of apples with varying sizes, the study obtained
the extinction coefficient of transmitted light. The extinction coefficient was then used
to correct the transmission spectra of apples based on average fruit size. Classification
models were developed using the corrected spectra (Figure 12). The accuracy of the models
using corrected spectra was superior in identifying healthy apples with large transverse
diameters and diseased apples with small transverse diameters compared to the models
using original spectra.
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3.2.3. Shape

In addition to size, the shape of apples is another important factor that affects their
marketability and consumer preferences [263]. It is determined by a complex interplay
of genetic, environmental, and physiological factors [264,265]. The shape of the apple is
also related to its internal quality, with some studies indicating that more elongated apples
tend to have higher SSC and less acidity [264]. Therefore, the shape of the apple is an
important characteristic to consider when evaluating apple quality and determining its
intended use [264].
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Image-based methods are naturally best suited for the assessment of this parameter,
and these approaches garnered significant interest for that purpose from the outset. For
instance, Cheng et al. [266] proposed a dual-camera approach using NIR and MIR for online
detection of apple stem-end/calyx to avoid incorrect sorting, achieving a 100% recognition
rate for good apples and 92% recognition rate for defective apples, indicating potential
for reliable online sorting of apples for defects. On the other hand, it was identified that
conventional 2-D machine vision techniques (i.e., a two-dimensional image that represents
the fruit’s surface from one angle only; no depth information included) for apple sorting
and grading, often face challenges in distinguishing apple stem-end/calyx from defects.
Zhu et al. [267] proposed an interesting 3-D-based approach to overcome this hindrance,
utilizing data processing methods that reconstructed the 3-D surface of apples from 2-D
NIR images using the shape-from-shading method, achieving an overall detection rate
above 90%.

Recently, Wang et al. [268] focused on analyzing the principles of apple defects, shape,
size, and Brix detection and grading based on China’s national standard. The study
established appearance quality classifier models based on machine vision (Figure 13)
and constructed a Brix value prediction model based on NIR spectroscopy. The results
showed high accuracy in apple grading detection, and the Brix prediction model had the
best performance with the CARS-PLS model. The study suggests that improvements in
algorithms and equipment can further enhance the accuracy of the system and that it can
be applied to other round fruits and vegetables.
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(h) drawing contours. Reprinted with permission from Ref. [268]. 2022, Public Library of Science (CC
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3.2.4. Surface Defects

Surface defects in apples, such as bruises, scabs, or insect damage, can greatly impact
the quality and market value of the fruit. Image-based techniques, such as computer vision,
hyperspectral imaging, fluorescence imaging, and NIR imaging are highly potent tech-
niques for the assessment of apple quality in that respect [269–275]. These non-destructive
methods can provide detailed information on the size, shape, and location of the defects
and accurately classify those as well [276,277].
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Applications of these techniques have been a focus of attention for this purpose since
early on. For example, Bennedsen et al. [271] developed a machine vision system for sorting
apples based on NIR images and characterized its analytical figure-of-merit in this role. The
system used visible grey-scale images to verify orientation and images acquired through
optical filters for defect detection. Defects were detected using different segmentation
routines and an ANN-based routine. The system performed well in detecting individual
defects and measuring their area, with a range of 77–91% and 78–92.7%, respectively, across
eight apple varieties.

Despite the numerous studies that have been conducted in this area, there are still
ongoing efforts to improve the accuracy and reliability of apple sorting and grading systems.
Recently, Fan et al. [278] presented an online apple defect detection method using combined
RGB and NIR cameras, and a diffuse illumination chamber (Figure 14). The data analytical
procedure was based on a deep learning algorithm tailored for improved detection speed.
The proposed method achieved a 93.9% detection accuracy on different cultivars of apples
at the online test assessing five fruit per second and showed potential to be implemented
in commercial packaging lines for the identification of fruit defects.
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4. Miscellaneous
4.1. Identification/Origin/Authenticity

The traceability of food products is of great importance in the food industry, partic-
ularly in the fruit supply chain. In the context of apple traceability, NIR combined with
chemometrics has been successfully used to classify apples based on their origin, cultivar,
and quality. It is possible to develop predictive models for the classification of apples by
Vis/NIR spectroscopy according to their origin and cultivar, forming a highly practical
and flexible method for the traceability of apples [279–281]. For example, Eisenstecken
et al. demonstrated that high accuracy rates in classifying apples according to their cultivar
and orchard elevation can be delivered by spectroscopic methods in the conventional NIR
region [279]. The technology could be applied in the fruit supply chain, for instance in
warehouses to control the origin of apples at delivery or as a test method for the recently
introduced EU “mountain product” label. Eisenstecken et al. [282] also explored the poten-
tial of NIR spectroscopy as a tool for post-harvest management of fruit quality. That study
found that NIR can identify different cultivars and freshly picked vs. stored fruit, as well
as the sun-exposed side of apples with increased nutrient content (Figure 15). It was also
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concluded that combining NIR spectroscopy with other analytical techniques can lead to
more efficient, reagent-free tools for post-harvest management.
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While the performance of this technique in such application is well-established nowa-
days, various chemometric approaches were investigated in combination with NIR spec-
troscopy for further refinement of the method [283–287]. Recently, Xu et al. [288] proposed
a similarity-based particle swarm optimization combined with the PFCM algorithm (SPSO-
PFCM) to quickly and accurately distinguish apple varieties using NIR diffuse reflectance
spectra. The algorithm maintained particle diversity and avoided premature convergence.
Compared with other fuzzy algorithms, SPSO-PFCM had better classification performance
and achieved accuracies of 96.66% and 93.33% for the meat and IRIS data sets, respectively.
The study concludes that NIR diffuse reflectance combined with the SPSO-PFCM clustering
is an effective method for classifying apple varieties.

NIR has repeatedly been proven to identify apple cultivars and growing regions [289–292].
For instance, He et al. [290] successfully applied NIR spectroscopy on apple skins to
distinguish “Fuji”, “Red Delicious” and “Royal Gala”; Bobelyn et al. [291] investigated
“Golden Delicious” apples from four different countries by NIR and Wang et al. [292]
focused on “Fuji” apple from 7 different apple production sites in China. On the other
hand, Tian et al. [293] studied how the FT-NIR spectral analysis of SSC values in apples was
affected by geographical region variability. Single-region models performed well when test
and training samples were from the same region but poorly when predicting SSC values
from other regions. To reduce the effect of region variability, two multi-region prediction
models were proposed and compared.

Improvements in the performance of such analysis can be delivered by optimization
of the sampling. For instance, Schmutzler et al. [294] found that using surface scanning
with NIR improved the accuracy of determining the geographical origin of apples. An
automated surface scanning technique was compared to the commonly used measurement
technique, and the results showed that automated non-destructive surface scanning led to
a more robust analysis. Multivariate clustering was performed, and successful PCA was
realized to identify Golden Delicious apples from different regions using the spectroscopic
data set derived from surface scanning. The method also included quantitative predictions
of SSC, total acid, and polyphenol content in Golden Delicious and Pink Lady apples and
delivered a reduction in the prediction errors.

4.2. Evaluation of Apple Maturity

Evaluation of apple maturity is a crucial aspect of the fruit industry as it determines
the appropriate time for harvesting and post-harvest management [295–297]. It can be



Foods 2023, 12, 1946 29 of 48

evaluated based on physical, chemical, and sensory properties [298–302]. From the point of
view of the spectroscopic techniques, the general property is therefore closely connected to
the analytical problems described in the previous sections of this review. Several studies
have reported the use of NIR spectroscopy to evaluate apple maturity based on various
parameters such as sugar content, acidity, and firmness [22,303–305]. The practicality of
NIR spectroscopy makes it an ideal method in this role, enabling optimizations of posthar-
vest management and overall enhancement of quality control in the apple industry [306].
Hyperspectral imaging in the NIR region was repeatedly used to estimate apple quality
and maturity with considerable success as well [22,304–309].

4.3. Optimization of Storage Conditions

Storage time is a crucial parameter that affects the quality of apple fruit, including its
texture, flavor, and overall quality [310–313]. Apples can be stored for extended periods
without losing their quality, but the length of storage time is dependent on a number of
factors, such as the cultivar, temperature, humidity, and atmospheric conditions [314–316].
Vis/NIR spectroscopy has been widely used to evaluate the stored apples and to monitor
changes in fruit quality during storage [317]. These changes in the chemical and physical
properties of apples during storage, such as loss of firmness, changes in sugar and acid
content, and development of off-flavors and discoloration, can be monitored with these
techniques. Particularly useful is the ability to detect internal defects, such as watercore
and decay, which can develop during storage but may not be visible on the surface of the
fruit and are challenging to detect online during production [318–322].

Several studies have reported the use of NIR spectroscopy to predict the storage
time of apples based on changes in their chemical and physical properties [323–328]. For
instance, Liu et al. [324] proposed a method for rapid determination of Fuji apple storage
time using Vis/NIR spectroscopy combined with PCA. The results showed that PCA alone
could not discriminate apples with different storage times using original spectroscopy data,
but it successfully discriminated them when signal-to-noise ratio (SNR) maximal values
were analyzed as well. On, the other hand, Zhang et al. [325] examined the quality changes
in Fuji apples at three different maturity levels during cold storage. Results showed that
the fruit quality deteriorated with prolonged storage, with a decrease in firmness and
an increase in SSC; PCA clustering suggested that starch content may be the underlying
factor. Ignat et al. [326] used Vis/NIR and SW-NIR spectrophotometers to measure the
SSC, titratable acidity, and firmness of apples at harvest and after 2, 4, and 6 months of
0 ◦C storage. The best R2 values were for SSC and starch, while titratable acidity and
firmness predictions were less precise. Camps et al. [329] evaluated the ability of Vis/NIR
spectroscopy to classify apples left on the shelf or stored in a cooled room. The classification
of storage modalities was analyzed using factorial discriminant analysis (FDA) for three
apple cultivars. The results showed that Vis/NIR spectroscopy allowed for the correct
classification of fruits of each cultivar by more than 95%, and the classification of storage
modalities was over 75% and 83% for fruits stored in a cooled room and shelf, respectively.

On the other hand, internal browning is a type of tissue breakdown that occurs in
the flesh of the apple, often without any visible external symptoms. Thus, the appearance
of this defect in stored fruits also poses a challenge for quality monitoring procedures.
Several studies have investigated the use of NIR or Vis/NIR spectroscopy for detecting and
quantifying internal browning in apples [330–333]. For example, the study of Mogollon
et al. [333] suggested that quantitative models based on semi-transmittance acquisitions
between 100–1100 nm can accurately predict the severity of internal browning tissue in
“Cripps Pink” apples after 150 days of storage as early as 90 days of storage (Figure 16).

Noteworthily, attention is given to increasing the universality of the models taking into
account varying conditions of the measurement. For instance, Guo et al. recently compared
the effects of temperature on the models and used preprocessing methods and variable
selection methods to improve the prediction performance under varying conditions [334].
The results showed that the NIR system could accurately predict the quality attributes
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of apples stored for different periods, with promising results for firmness, SSC, titratable
acidity, and vitamin C.
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between 600 and 830 nm after 150 d plus 7 d at 20 ◦C. (A) Score plot. Black dots correspond to
damaged fruit, white dots correspond to healthy fruit. (B) Loading plot. Continuous line shows
loading values for PC1, dotted line shows loading values for PC2. Reprinted with permission from
Ref. [333]. 2020, Elsevier.

4.4. Quality Compromise Effects Related to Storage Conditions

Scald and cold scald are two common physiological disorders that affect the quality
of apples during storage at low temperatures [335]. Scald appears as dark, greasy spots
on the fruit’s skin, while cold scald is a white, waxy discoloration. Despite only resulting
in superficial damage to the fruit, these disorders compromise the shelf value of apples
causing significant economic losses for apple growers and processors. Cold scald is partic-
ularly problematic as it is inflicted by cold storage, which is otherwise highly important
for preserving the freshness of apples for prolonged storage time. Understanding the
mechanisms behind these disorders and developing effective strategies to manage them
is critical. Factors such as storage temperature, duration, fruit maturity, and the presence
of ethylene can all influence the development of scald and cold scald in apples. Antioxi-
dants and modified atmosphere storage are among the physical and chemical treatments
that have been investigated for their ability to prevent or reduce the incidence of these
disorders [336–339].

Reliable assessment of apples towards the presence of chilling injury by NIR spectro-
scopic sensors is a promising measure for minimizing the loss during storage. In particular,
early detection of the disease before it leads to visible changes in fruit skin condition
will offer a decisive advantage. A joint Austrian–Italian consortium was created for the
comprehensive dissection of the superficial scald in apples [340,341]. The fundamental
objective of this project was to uncover innovative regulatory mechanisms of superficial
scald in apples, offering a fresh set of resources valuable for the scientific and technical
communities involved in apple breeding and postharvest.

Zanella et al. [342] investigated the potential of NIR to trace the scald susceptibility of
apple fruit. PCA was applied to NIR spectra of Granny Smith apples with different scald
susceptibility generated by different temperature conditioning treatments before storage.
The results showed that NIR is a promising non-destructive technology to discriminate
apples based on their scald incidence during storage and reflected the effect of scald
mitigating storage preconditioning treatments. The goal is to develop this approach into a
postharvest decision support system to minimize the loss of horticultural products.
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5. Use of Portable/Handheld NIR Spectrometers

In recent years, the use of portable or handheld NIR spectrometers has become in-
creasingly popular for the analysis of food products [44,45,343]. These instruments offer
a convenient and cost-effective alternative to traditional benchtop spectrometers, as they
can be used in the field or on the production line for rapid, non-destructive analysis. The
key advantage of portable/handheld NIR instruments is their ability to provide direct
on-site analysis outside the laboratory while preserving all other practical advantages of
NIR spectroscopy, which is particularly useful in agri-food applications [46].

5.1. Current Analytical Potential of Miniaturized Spectrometers in Apple Quality Analysis

Miniaturized NIR or Vis/NIR instruments were extensively applied in the analysis
of various properties of apples [46,47,344–350]. Among those applications, the prediction
of the SSC parameter in apples has been particularly frequently studied using those in-
struments [170,171,216,351–356]. Therefore, attention will be given here to the most recent
accomplishments in this topic.

For instance, Zhang et al. [355] used a handheld SSC analyzer for internal quality
detection of apples based on NIR spectroscopy. The data handling/analysis followed an
increasingly popular cloud service and a smartphone application for user control. The
prediction models based on the extreme learning machine (ELM) method were reinforced
by data pretreatment and optimization with several algorithms including MSC, SNV, S-
G smoothing, linear weight reduction of extreme learning machine combined with the
improved particle swarm optimization (IPSO-ELM). The resulting model achieved an R2

of 0.993, RMSEP of 0.0155, and RPD of 11.6, outperforming traditional approaches, and
NIR spectroscopy was found to be a reliable nondestructive method for SSC measurement
in apples.

On the other hand, Ying et al. [344] aimed to develop a fast and non-destructive
method for detecting apple sugar content using a portable NIR spectrometer. The sample
set was divided using Kennard–Stone (K–S) algorithm, and the optimal wavelength range
for sugar detection was determined using PLSR and interval PLSR (i.e., iPLSR). The best
prediction model for apple sugar content was established using the PLSR method, with
an optimal range of 1198–670 cm−1 after comparing nine pretreatment combinations. The
model with first-order differentiation, S-G smoothing, and standard normalization showed
the best performance with a correlation coefficient of 0.9223 and RMSEC of 0.423 for the
correction set, and a correlation coefficient of 0.9189 and RMSEP of 0.237 for the prediction
set. A portable spectrometer with low accuracy could be used for fast and lossless detection
of apple sugar.

Interestingly, recently, Malvandi et al. [116] reported a novel, non-destructive and
cost-effective method for measuring apple hardness during ultrasonic contact drying using
a portable NIR spectrometer (Figure 17). Linear PLSR and MLR algorithms were used
for multivariate analysis of NIR spectra to develop a calibration model for hardness. In
addition, partial least squares–artificial neural networks (PLS–ANN), a machine learning
algorithm that combines the strengths of PLSR and ANN methods, with the former being
used to reduce the dimensionality of the data set, while the latter models the non-linear
relationships between the input and output variables. In the reviewed study, the nonlinear
PLS–ANN hybrid method was found to significantly improve the correlation between
absorbance spectra and hardness. The best PLS–ANN calibration model achieved a cor-
relation coefficient of 0.95 and an RMSEP of 11.49 N and only seven feature wavelengths
were needed for successful prediction. As a next step, Malvandi et al. [357] used a portable
NIR instrument for non-destructive and real-time assessment of moisture content in apple
slices during direct contact ultrasonic drying. PLSR and Gaussian process regression (GPR)
models were used to develop the calibration model for predicting moisture content and
drying curve. In the best case, accurate prediction with R2

p = 0.99 and RMSEP = 3.32% was
yielded, while only three wavelengths were included in the model. The thin-layer drying
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model was developed by the equation that was in the best agreement with the reference
measurements.
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5.2. Assessment of Analytical Performance and Specific Applicability

Miniaturized sensors have varying designs and multiple competing engineering
solutions exist in this area, factors which introduce differences in their applicability and
performance profiles in different analytical scenarios [44,45]. This topic attracts considerable
attention also in the context of apple analysis, and several studies have been conducted
to compare the performance and accuracy of portable NIR devices and their applicability
potential in various setups. The significance of such studies was recognized early; for
instance, a comparison of three NIR spectrometers including two portable units was
performed in 2009 by Paz et al. [358]. The study evaluated several NIR instruments in
terms of accuracy for the measurement of soluble solid content, firmness, and shelf-life
of apples.

Recently, Kaur et al. [359] compared the performance of different portable NIR in-
struments with a benchtop instrument for predicting DM of three different main fruit
types (apples, kiwifruit, and summerfruit). The stationary instrument showed the best
performance with high prediction R2 values, while the hand-held instruments delivered
moderate to high R2 values. However, caution was recommended when evaluating the
relative performance of different instrument types or formats based on data generated
with just a single instrument or data set. A comparison of the performance of benchtop
and selected handheld spectrometers for determining apple quality parameters was also
conducted by Pissard et al. [360]. MicroNIR spectrometer offered performance equivalent
to that of the benchtop spectrometer. In the second part of their study, different regression
methods were used to develop calibration models for apple quality parameters using a
large historical database acquired using the benchtop spectrometer. The LS-SVM method
presented better predictive performance, and calibration transfer between the benchtop
and handheld spectrometers was successful using the direct standardization method.

A similar aim was presented in the study by Schmutzler et al. [361] who examined the
potential of a portable NIR spectrometer for non-destructive on-site analysis of apple quality



Foods 2023, 12, 1946 33 of 48

attributes. The results demonstrated that the instrument was able to predict the total sugar
content and concentration of polyphenolic compounds in the peel of apples of different
varieties with satisfying accuracy (Figure 18). The portable device was characterized by
portability, easy handling, flexibility, and the possibility to analyze apples directly on the
tree without the need for sample preparation. However, the precision of high-end benchtop
instruments was not reached in that case.
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5.3. Calibration Transfer

In the last few years, the problem of calibration transfer (i.e., domain adaptation)
attracted much attention in applied spectroscopy. Firstly, this procedure enables adjusting
the prediction model of a spectrometer to maintain accuracy in different conditions. Sec-
ondly, transferring a calibration model from a benchtop spectrometer to a miniaturized
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one can reinforce the practicality of the analysis, improving even further the efficiency and
flexibility of the on-site, real-time measurements [362]. To address this issue, different cali-
bration transfer methods have been developed and studied to improve the transferability
of calibration models between spectrometers [362]. Furthermore, in the case of agricultural
applications, profound variance due to different factors such as batches (i.e., batch-to-batch
variance), orchards (i.e., locations), and other complex effects originating, e.g., in season,
conditions or temperature can affect the spectral profiles of apples and can impact the
performance of models. In such cases, the model transfer is a relevant technique that can
be used to at least partially mitigate these issues.

Recently, Li et al. [354] aimed to predict the SSC in apples using portable devices and
to compare different calibration transfer methods for improving the accuracy of prediction.
Results showed that the master and slave devices could predict SSC effectively, but direct
use of the calibration model from the master device to the slave device was not practical.
PDS (piecewise direct standardization) was found to be the most effective transfer method
for spectra transformation, and optimization of the window size and the number of stan-
dard samples was necessary for satisfactory performance. The slope/bias (S/B) parameter
was used to reduce prediction deviations between different batches of apples, and the
proposed method effectively compensated for spectral response differences between the
portable devices and different apple batches.

On the other hand, Li et al. [363] developed a strategy using wavelength selection
and the transfer learning algorithm to discriminate the origin of Fuji apples between two
NIR portable spectrophotometers. The study found that the combination of the manifold
embedded distribution alignment (MEDA) method with a relative error analysis (REA) step
to select wavelength (i.e., MEDA-REA) has yielded the model with the highest classification
accuracy (Table 2). That combined strategy provided a low-cost approach to decrease the
complexity of the modeling process. The study suggested that more waveband screening
methods for calibration transfer should be explored to further reinforce the practicality of
calibration transfer in routine applications by simplifying the transference model.

Table 2. Prediction results of these models. Bold figures represent the best results. Reprinted with
permission from Ref. [363] 2022, MDPI (CC BY 4.0).

Calibration
Transfer

Spectral
Variables Accuracy

Fuji-1 Fuji-2 Fuji-3 Fuji-4

Recall Precision Recall Precision Recall Precision Recall Precision

TCA-REA 68 0.8739 0.9189 0.8095 0.9302 0.8333 0.5581 0.8571 0.9744 0.9744

BDA-REA 81 0.9160 0.9459 0.9091 0.9535 0.8039 06744 1 1 0.9630

MEDA-REA 77 0.9454 0.9324 0.9583 0.9302 0.8889 0.9070 0.8864 0.9872 1

6. Summary

Spectroscopy in Vis/NIR and NIR regions has gained remarkable popularity as a
non-destructive analytical tool for the quality assessment of apples. It enables rapid
and non-invasive measurement of multiple quality attributes, including firmness, sugar
content, acidity, nutrient content, and phenolic compounds. Spectroscopic techniques
offer significant benefits, such as time-saving, eliminated/reduced sample preparation
and analysis costs, and the ability to perform rapid measurements in real time. The non-
destructive nature of the application of Vis/NIR and NIR sensors allows for repeated
measurements on the same sample without altering its integrity for increased robustness,
while multiple quality parameters can be assessed simultaneously from every single scan.

Numerous studies have demonstrated the effectiveness of Vis/NIR and NIR tech-
niques in this area of application. This technology accurately predicts multiple quality
parameters of apples and has great potential in the food industry. The remarkably rich
literature on this topic reflects a continuous interest in developing new methods and re-
fining the existing approaches in the field of quality assessment of apples, reflecting the
importance of this field of application in the contemporary agri-food sector.
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Although spectroscopic techniques in Vis/NIR and NIR regions have shown signifi-
cant potential for non-destructive quality assessment of apples, there are still several open
challenges and future prospects in this field. Due to the high diversity of fruit samples, it is
important to address the challenge standing before the measurement procedure itself as
well as the difficulties posed by the data analysis. Emphasized here should be the need
to standardize the measurement protocols and refine the existing approaches to achieve
robust calibration models that can account for the variations in apple cultivars, maturities,
and environmental factors. Another challenge is the development of cost-effective and
portable spectroscopic devices that can be more easily integrated into fruit packaging
lines for rapid and real-time quality assessment, making these technologies more widely
applicable. Overall, the continued research and development of spectroscopic techniques
for apple quality assessment hold promise for enhancing the efficiency, quality, and safety
of the apple supply chain.
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