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Abstract: The flavor differences in Oolong tea from different producing areas are caused by its
complex differential compounds. In this study, representative samples of Oolong tea from four
countries were collected, and their differential nonvolatile compounds were analyzed by a combi-
nation of widely targeted metabolomics, chemometrics, and quantitative taste evaluation. A total
of 801 nonvolatile compounds were detected, which could be divided into 16 categories. We found
that the difference in these compounds’ content among Oolong teas from three producing areas in
China was the largest. There were 370 differential compounds related to the producing areas of
Oolong tea, which were mainly distributed in 67 Kyoto Encyclopedia of Genes and Genomes (KEGG)
metabolic pathways. In total, 81 differential nonvolatile compounds made important contributions
to the taste differences in Oolong tea from different producing areas, among which the number of
flavonoids was the largest. Finally, the characteristic compounds of Oolong tea in six producing
areas were screened. This study comprehensively identifies the nonvolatile compounds of Oolong
tea in different producing areas for the first time, which provides a basis for the analysis of flavor
characteristics, quality directional control, and the identification and protection of geographical
landmark agricultural products of Oolong tea from different producing areas.

Keywords: Oolong tea; widely targeted metabolomics; nonvolatile compounds; producing areas; taste

1. Introduction

Tea (Camellia sinensis (L.) O. kuntze) is one of the most traditional nonalcoholic drinks in
the world, with unique aromas, tastes, and health benefits [1]. According to the difference
in the tea processing technology used, it can be divided into six types—namely, green tea,
black tea, yellow tea, Oolong tea, dark tea, and white tea [2]. Oolong tea is a semi-fermented
tea that is mainly produced in the Fujian, Guangdong, and Taiwan provinces of China [3].
Oolong tea was first produced in the early Song Dynasty (960–1279) but became popular
in the Ming Dynasty (1368–1644). The traditional manufacturing process of Oolong tea
includes withering, shaking, de-enzyming, rolling, and drying [3]. The quality character-
istics of traditional Oolong tea are green leaves with red edges, golden infusion, and an
elegant fruity and floral, thick, and refreshing taste [4]. Oolong tea is favored by consumers
for its unique flavor and quality [4]. Today, Oolong tea is produced in many countries and
regions, including Japan, Myanmar, Sri Lanka, South Korea, etc. [5]. The flavor formation
of Oolong tea is affected by the variety, producing areas, processing technology, season, and
picking method [6]. For example, different Oolong tea cultivars have different “cultivar
fragrances” [3]. Multiple stresses (low/high temperature, machinery, and air humidity) in
processing technology can cause Oolong tea to accumulate different metabolites [7]. There-
fore, there are great differences in the quality characteristics of Oolong tea from different
producing areas. The tea plant is a treasure-house of many natural bioactive metabolites,
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and these metabolites are not only the key contributing factors to tea color, aroma, and
taste quality but are also the main providers of tea health care functions [8]. There is no
systematic report on the flavor differences and nonvolatile compounds of Oolong tea in
different countries and regions, which is not conducive to people’s deep and extensive
understanding of the characteristics of Oolong tea in different producing areas. Studies of
flavor formation of Oolong tea from the level of small molecular nonvolatile compounds
play an important role in clarifying the formation mechanism of the flavor differences in
Oolong tea from different producing areas.

Plant metabolomics is a qualitative and quantitative analysis of all metabolites in
plants [9]. It is a technology that combines a holistic and comprehensive analysis and
chemical informatics analysis methods to determine the target differential metabolites
so as to clarify the metabolic process and change mechanism in organisms [9,10]. In
recent years, this technology has been gradually applied in the field of tea research to
reveal the growth and development of the tea plant, the formation mechanism of tea
flavor, the evaluation of tea grade and quality, and the traceability and discrimination
of teas [11,12]. Targeted metabolomics and non-targeted metabolomics are often used to
carry out metabolomics research, but these two methods have some defects [13]. Targeted
metabolomics technology has high data accuracy and reliability but limited coverage of
metabolites. On the other hand, non-targeted metabolomics technology is characterized
by high coverage of compounds but has a low accuracy [13]. In contrast, widely targeted
metabolomics combine the advantages of non-targeted and targeted metabolite detection
technology to achieve high throughput, high sensitivity, and wide coverage [13]. At
present, this technology has achieved good results in the flavor analysis of horticultural
crops and foods [13,14]. Wang et al. [14] used widely targeted metabolomics to reveal the
changes in metabolites and the nutritional quality of Lycium barbarum fruits in different
production areas. Zou et al. [15] used widely targeted metabolomics to determine that the
taste differences among different loquat cultivars could be explained by the changes in
the composition and content of carbohydrates, organic acids, amino acids, and phenolic
compounds. Wang et al. [16] revealed the dynamic changes of nonvolatile and volatile
metabolites during green tea processing by widely targeted metabolomics. Wu et al. [17]
used widely targeted metabolomics to study the nonvolatile metabolites in the processing
of Oolong tea and found that carbohydrates, amino acids, and flavonoids may contribute
to the comprehensive flavor of Oolong tea.

In view of this, this study aimed to analyze the differential nonvolatile compounds of
Oolong tea from different producing areas by combining widely targeted metabolomics and
chemometrics to clarify the metabolic pathways involved in these differential compounds
and determine the characteristic compounds of Oolong tea from six producing areas. At
the same time, combined with the quantitative taste evaluation, the compounds that had an
important impact on the taste differences of Oolong tea from different producing areas were
screened. These results will provide a theoretical basis for analyzing the flavor differences
and production quality control of Oolong tea in different countries and regions and provide
a reference for the origin traceability of Oolong tea in different geographical regions.

2. Materials and Methods
2.1. Experimental Materials

In order to collect representative samples of Oolong tea produced in different countries,
we learned from the “World Tea Production Data Information Table” [18] and other relevant
literature [5] that, in addition to China, Japan, Myanmar, and Sri Lanka also produce a
large amount of Oolong tea. Therefore, 36 samples of Oolong tea products were collected
from four different countries, including 8 from Guangdong, China, 8 from Northern Fujian,
China, 7 from Southern Fujian, China, 5 from Japan, 3 from Sri Lanka, and 5 from Myanmar.
These Oolong tea samples included different grades and different cultivars. Sample details
are shown in Table S1. After collection, the samples were stored in the refrigerator at −80 ◦C
for standby. First, the tastes of all samples were preliminarily evaluated by referring to
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GB/T 23776–2018 [19]. We excluded samples with similar taste characteristics from the
same producing areas. Finally, twelve representative Oolong tea samples from various
producing areas were then selected for taste quantitative evaluation and widely targeted
metabolomics analysis, including 3 from China (1 from Guangdong (GD), 1 from Northern
Fujian (MB), and 1 from Southern Fujian (MN)), 3 from Japan (J1, J2, and J3), 3 from Sri
Lanka (S1, S2, and S3), and 3 from Myanmar (M1, M2, and M3) (Table S1).

2.2. Experimental Method
2.2.1. Nonvolatile Compounds Extraction

The sample to be tested was vacuum freeze-dried and ground into powder (30 Hz,
1.5 min). Then, 100 mg of the ground sample was weighed and placed in a 2 mL centrifuge
tube, and 1 mL of 70% methanol was added and mixed evenly; this mixture was put in
the refrigerator at 4 ◦C for extraction for 12 h. During this period, it was vortex oscillated
three times to improve the extraction rate. After that, it was centrifuged (Centrifuge 5810
R, Rotor S-4-104, Eppendorf, Hamburg, Germany) at 10,000 g-forces for 10 min, and the
supernatant was absorbed with a 0.22 µm microporous membrane filtration, which was
stored in the injection bottle to be tested by liquid chromatography–electrospray ionization–
tandem mass spectrometry (LC-ESI-MS/MS). Three biological replicates were taken for
each sample.

2.2.2. Quality Control Samples Processing

The quality control samples (QC) were prepared by equal mixing of 6 groups of
Oolong tea extracts from different producing areas. They were treated and tested by the
same method as the analytical samples and repeated 6 times. In the process of instrument
testing, one QC sample was inserted into every 10 test and analysis samples to monitor the
repeatability of the whole analysis process.

2.2.3. LC-ESI-MS/MS Analysis of Nonvolatile Compounds

Nonvolatile compounds were identified using an LC-ESI-MS/MS system (HPLC,
Shim-pack UFLC SHIMADZU CBM30A, Kyoto, Japan; MS, Applied Biosystems 6500
Q TRAP, Kyoto, Japan). For the HPLC conditions, the chromatographic column used
was Waters ACQUITY UPLC HSS T3 C18 (2.1 mm × 100 mm, 1.8 µm, Waters Company,
Milford, MA, USA). For the mobile phase, phase A was 0.04% acetic acid, and phase B
was acetonitrile solution containing 0.04% acetic acid. The elution gradient of phase B was
0.00–11.00 min, 5–95%, maintained at 95%, 1.00 min; 11.00–12.10 min, 95–5%, and balanced
at 5% until 15.00 min. The flow rate was 0.4 mL/min, the column temperature was 40 ◦C,
and the injection volume was 2 µL.

For the mass spectrometry parameters, the electrospray ionization (ESI) temperature
was 500 ◦C, the mass spectrum voltage was 5500 V, the curtain gas (CUR) was 25 psi,
and the parameter of the collision-activated dissociation (CAD) was set to high. In the
triple quadrupole, each ion pair was scanned and detected according to the optimized
declustering potential (DP) and collision energy (CE).

2.2.4. Quantitative Evaluation of Taste Attributes of Oolong Tea from Different
Producing Areas

According to the requirements of GB/T 16291.1-2012 [20], five evaluators were se-
lected from the tea science teacher team of Fujian Agriculture and Forestry University
to form a sensory evaluation team. The five evaluators had participated in various sen-
sory evaluation experiments such as black tea, white tea, and Oolong tea and had more
than 10 years of experience in sensory tea evaluation. The taste quantitative evaluation
method used to assess the twelve representative Oolong tea samples was based on GB/T
23776-2018 (the covered-bowl method) with modifications [19]. The evaluation team used
a 0–5 strength scale standard to evaluate the intensities of bitterness, astringency, umami,
“sweet aftertaste”, and “heavy and thick” of the samples, namely 0 = none and 5 = very.
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Briefly, 5.0 g of the sample was weighed, and placed in a 110 mL covered bowl, filled with
boiling water, and capped. Tea was brewed three times. After the first was brewed for 2
min, the tea infusion was drained; the second was brewed for 3 min, and the third was
brewed for 5 min. The taste intensity was evaluated immediately after the tea infusion was
drained each time. The result was the average of the three evaluations. Every sample was
randomly evaluated three times.

2.3. Statistical Analysis

The nonvolatile compounds were analyzed qualitatively by comparing the ion frag-
ment mode, retention time, and m/z value combined with the self-compiled database
(MetWare, Wuhan, China) [21] and the public databases and quantified by using the
multiple reaction monitoring (MRM) mode of triple quadrupole mass spectrometry. The
nonvolatile compounds data were processed and analyzed by Analyst 1.6.3 software. One-
way analysis of variance (ANOVA) with least significant difference (LSD) was performed
using SPSS19.0. Principal component analysis (PCA), orthonormal partial least-squares dis-
criminant analysis (OPLS-DA), and orthogonal partial least squares analysis (O2PLS) were
performed using SIMCA 14.0. Heat maps were generated using Hiplot software [22]. The
correlation data network diagram of O2PLS was generated using Cytoscape 3.9.1 software.

3. Results and Discussion
3.1. Profile Analysis of Taste Characteristics of Oolong Tea from Different Producing Areas

The mean values of the evaluation results of the taste intensity of Oolong tea from
different producing areas are shown in Figure 1. There were statistically significant differ-
ences in the intensity of five taste attributes of Oolong tea in six producing areas (Figure 1).
The taste characteristics of Guangdong and Northern Fujian’s Oolong tea had the strongest
intensity of “heavy and thick”. The difference between them was that Guangdong’s Oolong
tea had a strong intensity of a sweet aftertaste, bitterness, and astringency, while Northern
Fujian’s Oolong tea had a weak intensity of bitterness and astringency. The intensities of
bitterness and “heavy and thick” of the Oolong tea from Southern Fujian were weaker than
those in Northern Fujian and Guangdong, but the umami was stronger than both. Southern
Fujian’s Oolong tea is mainly Tieguanyin, Northern Fujian’s Oolong tea is mainly Wuyi
rock tea, and Guangdong’s Oolong tea is mainly Fenghuang Dancong tea [3]. Previous
studies on the quality characteristics of Oolong tea from these three producing areas found
that each had its own characteristics, but there was no quantitative evaluation of taste [6,23].
In this study, the quantitative taste evaluation was carried out to further clarify the taste
differences of Oolong tea in the three production areas. Myanmar and Japan’s Oolong
tea had a similar intensity of umami, bitterness, sweet aftertaste, and astringency, but the
difference was that Japan’s Oolong tea had a stronger “heavy and thick” taste. Sri Lanka’s
Oolong tea had the weakest intensities of umami and sweet aftertaste, and the intensities
of “heavy and thick” and an astringent taste were relatively strong.

3.2. Identification of Nonvolatile Compounds of Oolong Tea from Different Producing Areas

Widely targeted metabolomics analysis based on LC–ESI–MS/MS was conducted on
the nonvolatile compounds of Oolong tea from four countries. Through database compari-
son, a total of 801 compounds was identified (Table S2). These compounds could be divided
into 16 categories (Figure 2a). They were ranked according to the number and proportion
of nonvolatile compounds included in each category, which were flavonoids (221, 27.6%),
organic acids and their derivatives (112, 14.0%), amino acids and their derivatives (94,
11.7%), phenylpropanoids (66, 8.2%), lipids (61, 7.6%), nucleotides and their derivates (57,
7.1%), alkaloids (47, 5.9%), others (33, 4.1%), phenolamides (22, 2.7%), saccharides (22,
2.7%), alcohols (18, 2.2%), vitamins and their derivatives (16, 2.0%), terpenes (14, 1.7%),
indole derivatives (10, 1.2%), sterides (5, 0.6%), and proanthocyanidins (3, 0.4%).
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(a) Tree view of nonvolatile components classification. The larger the area and text of the component
category in the figure is, the larger the number and proportion of the component category is. Each
color represents a class of compounds. (b) Violin chart of coefficient of variation of components of
Oolong tea in four countries. * p < 0.05, **** p < 0.001.

The overall difference in the content of Oolong tea nonvolatile compounds between the
four countries was large, and the average coefficient of variation reached 44.1% (Figure 2b).
The order of the mean value of the coefficient of variation was China (58.2%) > Sri Lanka
(48.6%) > Japan (42.9%) > Myanmar (26.6%) (Figure 2b). Among them, China’s Oolong tea
samples (Northern Fujian, Southern Fujian, and Guangdong) showed the largest difference
in nonvolatile components, followed by Sri Lanka and Japan, and the smallest in Myanmar.
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3.3. Analysis of Differential Nonvolatile Compounds and Metabolic Pathways in Oolong Tea from
Different Producing Areas

PCA can form new characteristic variables by a linear combination of variables accord-
ing to a certain weight. Because there are no external human factors, the PCA model can
reflect the original state of the data [24]. PCA was performed with all detected nonvolatile
compounds as variables, and the results are shown in Figure 3a. Six QC samples were
gathered in the middle of the PCA score plot, and the three repetitions of each sample could
be effectively aggregated, indicating good repeatability and reliable data. In the PCA score
chart, the distribution of Oolong tea samples from the three producing areas in China was
the most dispersed, followed by Sri Lanka and Japan, and Myanmar was clustered together.
These results indicated that the difference in nonvolatile compounds in the Oolong tea
samples from the three producing areas in China was the largest, followed by Sri Lanka
and Japan, while the difference between Myanmar’s Oolong tea was the smallest. This
conclusion was exactly the same as that of the coefficient of variation (Figure 2b). The
samples of Oolong tea from Japan and Myanmar were relatively clustered on the PCA
score plot, indicating that the content of nonvolatile compounds of Oolong tea from the
two countries was relatively similar.

Compared with PCA, OPLS-DA provides a supervised classification, which can ef-
fectively distinguish samples and extract the information of differential variables [25]. In
order to question the differential nonvolatile compounds and distinguish Oolong tea from
the six producing areas, OPLS-DA modeling analysis was carried out on all the detected
compounds, and it was discovered that Oolong tea from the six producing areas was effec-
tively distinguished in the model (Figure 3b). Cross-validation analysis manifested that
the model had a high degree of interpretation (R2X = 0.900, R2Y = 0.998, Q2 = 0.987). The
substitution test graph showed that the model was not overfitted (all blue Q2 points from
left to right were lower than the original green Q2 points at the far right, and the intersection
of the regression line of Q2 points at the ordinate was less than 0) (Figure S1). Differential
compounds were screened according to the principle of VIP > 1.00 and p < 0.05 [26]. A
total of 370 differential nonvolatile compounds were identified, including 14 categories,
namely, flavonoids (103), organic acids and their derivatives (54), amino acids and their
derivatives (38), phenylpropanoids (31), nucleotides and their derivates (31), alkaloids (25),
others (20), lipids (19), saccharides (16), vitamins and their derivatives (9), phenolamides
(7), alcohols (7), terpenes (6), and indole derivatives (4) (Table S3). These 370 differential
nonvolatile compounds were closely related to the producing areas of Oolong tea.

The total heat map of the differential compounds of the sample is shown in Figure 3c.
The difference in nonvolatile compounds among samples from three producing areas of
China was the largest (the distribution of red and blue regions was different). S3 in Sri
Lanka had different nonvolatile compounds than S1 and S2 (the distribution of red and blue
regions of S3 was different from that of S1 and S2). The contents of differential compounds
in Japan and Myanmar were partially similar. These results were the same as the conclusion
of the PCA (Figure 3a) and the coefficient of variation (Figure 2b).

Since there was no complete metabolomics database for tea plants, Arabidopsis
thaliana was taken as the corresponding species for KEGG metabolic pathway analy-
sis. The screened differential compounds were mainly enriched in 67 metabolic pathways
(Table S4), of which the 10 metabolic pathways with the highest enrichment were respec-
tively: flavonoid biosynthesis, purine metabolism, aminoacyl-tRNA biosynthesis, galactose
metabolism, cysteine and methionine metabolism, amino sugar and nucleotide sugar
metabolism, arginine, and proline metabolism, starch, and sucrose metabolism, alanine,
aspartate and glutamate metabolism, and tyrosine metabolism (Figure 3d). Flavonoid
biosynthesis mainly included the metabolism of flavonoids, flavonoid glycosides, cate-
chins, and anthocyanins [27]. The products of purine metabolism also participated in
the biosynthesis of alkaloids [28]. Aminoacyl-tRNA biosynthesis, cysteine and methio-
nine metabolism, amino sugar and nucleotide sugar metabolism, arginine and proline
metabolism, alanine, aspartate, and glutamate metabolism, and tyrosine metabolism be-
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longed to the synthesis and degradation of amino acids [29]. Galactose metabolism and
starch and sucrose metabolism were mainly the synthesis and transformation of saccha-
rides [30]. Therefore, the difference in the content of nonvolatile compounds in Oolong tea
from different producing areas mainly stemmed from the metabolism of flavonoids, amino
acids, saccharides, and alkaloids in Oolong tea. These four substances are also the main
contributing components of the Oolong tea flavor [3].
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Foods 2022, 11, 1057 8 of 15

3.4. Differential Nonvolatile Compounds Analysis and Characteristic Nonvolatile Compounds
Identification of Oolong Tea from Different Producing Areas

In order to screen out the characteristic compounds of Oolong tea in various producing
areas, 370 differential nonvolatile compounds (VIP > 1.00, p < 0.05) were analyzed using a
heat map. The screening criteria for characteristic compounds were based on the variation
trend of variables in the heat map. Variables with a high content (red) in all samples
from the same producing area and low content (blue and white) in all samples from other
producing areas were regarded as characteristic compounds [31].

3.4.1. Flavonoids

Flavonoids are the main polyphenols in tea, including flavonols, flavonoids, flavanols,
flavanones, anthocyanins, and isoflavones, among which flavanols (mainly catechins) and
flavonols (such as quercetin and its glycosides) are the main subclasses in tea [32]. Heat
map analysis was conducted on the differential flavonoids (Figure S2), and their differential
metabolic pathways are shown in Figure 4. The content of flavonoids of Oolong tea
from different producing areas was significantly different, mainly flavonols and catechins.
Guangdong’s Oolong tea had a high content of flavonoid glycosides, such as kaempferol
glycosides, apigenin glycosides, some luteolin glycosides, and quercetin glycosides. The
contents of catechins, anthocyanins, and some flavonoid glycosides in Sri Lanka’s Oolong
tea were high, such as catechin, (+)-gallocatechin, epigallocatechin, geranium pigment
glycosides, myricetin, and some quercetin glycosides. The contents of naringin, some
apigenin glycosides, some luteolin glycosides, and some catechins in Southern Fujian’s
Oolong tea were higher. The content of flavonoids in Japan’s Oolong tea and Myanmar’s
Oolong tea was low. The content of flavonoids in Northern Fujian’s Oolong tea was the
lowest. Catechins and flavonols are the main contributors to the bitterness and astringency
of tea infusion; for example, ester catechins, quercetin glycosides, and myricetin glycosides
would make the mouth feel bitter and astringent [33]. Scharbert et al. [34] claimed that
flavanol glycosides were important substances in the astringency of tea infusion and
could enhance the bitterness of caffeine. Chen et al. [35] reported that catechins and their
oxidation products were important substances in the bitter and astringent taste of Oolong
tea. In sensory evaluation (Figure 1), Guangdong’s Oolong tea had the strongest bitterness
and astringency, followed by Sri Lanka, and was weaker when from Japan, Myanmar, and
Northern Fujian. The intensities of bitterness and astringency of the tea infusions were
consistent with the content trend of flavonoids in the samples, suggesting that flavonoids,
especially flavonols, catechins, and anthocyanins, might be the main contribution to the
difference in bitterness and astringency of Oolong tea. According to the screening method
of characteristic compounds, the selected characteristic flavonoids were kaempferol-7-
O-rhamnoside in Guangdong’s Oolong tea, myricetin-3-O-rhamnoside, isoliquiritigenin,
epigallocatechin, and (+)-gallocatechin in Sri Lanka’s Oolong tea, and (+)-gallocatechin and
deoxyrhapontin in Myanmar’s Oolong tea.

3.4.2. Amino Acids and Their Derivatives

Amino acids, mainly theanine, glutamic acid, and aspartic acid, are the main con-
tributors to the umami of tea infusion and can weaken the bitter and astringent taste [36].
Differential amino acids and derivatives were analyzed by a heat map (Figure S3). Japan
and Myanmar’s Oolong tea had a higher amino acid content, while the amino acid content
of Northern Fujian and Sri Lanka’s Oolong tea was lower than others. In the sensory evalu-
ation, the umami intensity of Japan and Myanmar’s Oolong tea was stronger, while that of
Sri Lanka and Northern Fujian was weaker. The trends in umami intensity and the content
of amino acids and their derivatives were relatively uniform, indicating that amino acids
and their derivatives might have an important impact on the umami differences of Oolong
tea from different producing areas. The roasting process can lead to theanine degradation
and produce pyrazines with a roasted aroma [37]. The roasting aroma of Oolong tea in
Northern Fujian and Sri Lanka’s Oolong tea was produced by the roasting process, which
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might be an important reason for the low amino acid content of both. Based on the different
profiles in the heat map, the selected characteristic amino acids and their derivatives were
lysine butyrate and N-acetylglycine in Guangdong’s Oolong tea, N-acetyl-L-phenylalanine
in Sri Lanka’s Oolong tea, S-5’-adenosyl-L-methionine and DL-homocysteine in Japan’s
Oolong tea, and H-homoarg-OH and N-acetyl-L-leucine in Myanmar’s Oolong tea.
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Figure 4. Distribution of differential flavonoid substances in the flavonoid metabolism pathway of
Oolong tea from different producing areas. GD, Guangdong, China; MB, Northern Fujian, China;
MN, Southern Fujian, China; MM, Myanmar; LK, Sri Lanka; JP, Japan. Red indicates high content
and blue indicates low content. The metabolic pathway of flavonoids comes from the literature [26].

3.4.3. Saccharides

The saccharides in tea include monosaccharides, disaccharides, oligosaccharides,
polysaccharides, and traces of other saccharides. The content of soluble saccharides in
Oolong tea is high [38]. Saccharides mainly affect the sweetness and viscosity of the tea
infusion and inhibit the bitterness, as well as optimize the taste of tea, and also affect the
aroma, such as the roasted smell produced by the Maillard reaction [36]. The heat map anal-
ysis of differential saccharides (Figure S4) showed that the content of saccharides in Japan
and Southern Fujian’s Oolong tea was higher. Japan’s Oolong tea had higher fructose, glu-
cose, and mannose, and Southern Fujian’s Oolong tea contained higher galactose, maltose,
pine trisaccharide, and pentose. The saccharide content in Myanmar and Guangdong’s
Oolong tea was moderate. The contents of glucose, fructose, and mannose in Northern
Fujian and Sri Lanka’s Oolong tea were low, which might be related to their long-term
roasting, which caused the saccharides to participate in the Maillard reaction and convert
into aroma substances. The selected characteristic saccharides were ribulose-5-phosphate
in Guangdong’s Oolong tea, N-acetyl-D-glucosamine in Northern Fujian’s Oolong tea, and
maltotetraose and panose in Southern Fujian’s Oolong tea.
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3.4.4. Alkaloids

Alkaloids and their salts are mostly bitter, some are extremely bitter and spicy, and
some have the burning feeling of stimulating the lips and tongue and can generate syn-
ergistic effects with other bitter substances [39]. Caffeine, theobromine, and theophylline
are the main alkaloids in tea [40]. However, these three important alkaloids did not be-
long to the differential compounds of Oolong tea in different producing areas. Heat map
analysis results of differential alkaloids (Figure S5) indicated that the alkaloid content of
Oolong tea from Guangdong and Northern Fujian was higher, while that of Myanmar,
Japan, and Southern Fujian was lower. In sensory evaluation, the bitterness of Guang-
dong’s Oolong tea was superior, and that of Northern Fujian’s Oolong tea was slightly
weak. It may be due to the interaction between flavonoids and alkaloids in Guangdong’s
Oolong tea leading to enhanced bitterness. The selected characteristic alkaloids were
betaine, 4-phenyldiazenylbenzene-1,3-diamine, and hydrochloride in Guangdong’s Oo-
long tea, indole-3-carboxylic, and tryptophol in Northern Fujian’s Oolong tea, peimine,
2-hydroxypyridine, and l-dencichin in Southern Fujian’s Oolong tea, and 4-pyridoxic acid
in Japan’s Oolong tea.

3.4.5. Organic Acids and Their Derivatives

Organic acids are important intermediate metabolites in the tricarboxylic acid cycle
and shikimic acid pathway and play an important role in the flavor of tea [41]. The content
of organic acids is the highest in black tea, followed by Oolong tea [36]. In this study, it
was found that organic acids and their derivatives had great differences in Oolong tea
from different producing areas, and the identified differential nonvolatile compounds were
second only to flavonoids. The heat map analysis of differential organic acids and their
derivatives showed that the content of organic acids and their derivatives in Myanmar and
Sri Lanka’s Oolong tea was relatively high, while those in Japan and China were relatively
low (Figure S6). There were great differences in organic acids and their derivatives in
Oolong tea from the three producing areas in China. The contents of sebacate, L-(+)-Tartaric
acid, 10-Formyl-THF, D-tartaric acid, and methyl gallate in Guangdong were higher, while
the contents of p-Hydroxyphenyl acetic acid, mandelic acid, 5-O-p-Coumaroyl shikimic
acid, and 3-O-p-Coumaroyl shikimic acid in Northern Fujian were higher, and the contents
of 2-Hydroxybutanoic acid, α-Hydroxyisobutyric acid, anisic acid-O-feruloyl hexoside,
and 2-Methylsuccinic acid in Southern Fujian were higher. At present, there are few
studies on organic acids in Oolong tea. In the process of black tea processing, it was
found that the effect of withering and rolling on organic acid accumulation was more
important than fermentation [41]. The process of withering and rolling is also used in
the processing of Oolong tea, and the roasting process can increase the content of gallic
acid [42]. Therefore, the differences in organic acids and their derivatives in Oolong tea
from different producing areas may have a greater relationship with the production process.
The selected characteristic organic acids and their derivatives were 2-Methoxybenzoic acids
in Northern Fujian’s Oolong tea and neochlorogenic acid in Myanmar’s Oolong tea.

3.4.6. Phenylpropanoids, Nucleotides, Lipids and Others

Nucleotide and its derivatives have umami, which can enhance the mellow and sweet
taste [43]. Phenylpropanoid participates in the shikimic acid metabolic pathway and is
the synthetic precursor of many taste and aroma substances [44]. Lipid is an important
component of the biofilm system, one of the six human nutrients, as well as the synthetic
precursors of volatile compounds and some bitter substances [45]. Up to now, there has
been little research on the contribution of these substances to the tea taste, which needs to be
further discussed. A heat map was used to analyze the differential nucleotides (Figure S7),
phenylpropanoids (Figure S8), lipids (Figure S9), and others (Figure S10) in the samples.
The results manifested that the nucleotide content of Oolong tea was higher in Guangdong
and Sri Lanka’s Oolong tea and lower in Southern Fujian’s Oolong tea. Myanmar’s Oolong
tea had higher phenylpropanoid content. The lipid content of Sri Lanka, Myanmar, and
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Japan’s Oolong tea was relatively high, while that of China’s Oolong tea was relatively low;
among them, the lipid content of Southern Fujian’s Oolong tea was extremely low. The
selected characteristic compounds were 6-hydroxymethylhernirin in Guangdong’s Oolong
tea, syringic acid, 7-hydroxy-5-methoxycoumarin, and ribopline in Myanmar’s Oolong
tea, β- nicotinamide mononucleotide in Japan’s Oolong tea, α-linolenic acid in Sri Lanka’s
Oolong tea, and indole-5-carboxylic acid and indole-3-carboxaldehyde in Northern Fujian’s
Oolong tea.

To sum up, 35 characteristic compounds were screened from Oolong tea from different
producing areas (Figure 5), including seven in Guangdong, six in Northern Fujian, five in
Southern Fujian, six in Sri Lanka, four in Japan, and seven in Myanmar. These selected
characteristic compounds were the compounds specifically accumulated by Oolong tea
in a certain producing area, which could be applied to the traceability identification of
Oolong tea from this producing area and other producing areas. The reasons for the specific
accumulation of characteristic compounds of Oolong tea from these producing areas need
to be further studied.
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3.5. Relationship between Differential Nonvolatile Compounds and Taste Characteristics of Oolong
Tea from Different Producing Areas

The unique taste quality of tea is reflected in various chemical components, and its
taste difference comes from the difference in the composition and content of these chemical
components [46]. In order to identify the components that made an important contribution
to the taste differences in Oolong tea from different producing areas, an O2PLS model
was established with 370 differential compounds (X variable) and five taste sub-attributes
(Y variable) as variables (Figures S11 and S12). Under the criteria of the VIP value > 1.0,
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p < 0.05, and correlation coefficient >0.7 [47], 81 nonvolatile compounds were identified as
compounds with an important contribution to taste sub-attributes, including 19 flavonoids,
14 organic acids and their derivatives, 11 phenylpropanoids, 10 amino acids and their
derivatives, 8 nucleoside acids and their derivatives, 6 saccharides, 6 others, 5 lipids, and
2 alkaloids. The difference in the content of these 81 nonvolatile compounds in Oolong tea
from different producing areas may be the main reason for the difference in taste.

The correlation coefficient and correlation network diagram are shown in Table S5 and
Figure 6, respectively. Among the 81 compounds, the number of flavonoids was the largest,
mainly including flavonols and their glycosides, catechins, and anthocyanins and their
glycosides. Most of these substances were positively correlated with “heavy and thick”,
bitterness, and astringency (more red lines) and negatively correlated with umami (more
blue lines) (Figure 6). This result confirmed the above speculation that flavonols, catechins,
and anthocyanins may be important contributors to the difference in the bitterness and
astringency of Oolong tea. The processing technology of Oolong tea has a great impact
on flavonoids [17]. Fermentation and roasting can promote the decrease in catechins, and
roasting can reduce flavonoid glycosides and procyanidins so as to weaken the bitterness
and astringency of Oolong tea [42]. At the same time, the tea cultivar is also the main reason
for the difference in flavonoid content in Oolong tea [48]. Most amino acids and derivatives
were positively correlated with umami (more red lines) (Figure 6). The differences in amino
acids and their derivatives mainly come from the cultivar and processing technology of
tea [29]. Many reports have shown that flavonoids, amino acids, saccharides, and alkaloids
have important effects on the taste of Oolong tea [3,23,42], but the effects of organic acids
and their derivatives, phenylpropanoids, nucleotides and their derivatives, and lipids on
the taste differences in Oolong tea have not been systematically studied, especially organic
acids and their derivatives. This study showed that the effect of organic acids and their
derivatives on the taste differences in Oolong tea in different production areas was second
only to flavonoids, more than the number of amino acids and their derivatives, and its
different mechanisms need to be further explored.
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4. Conclusions

In this paper, for the first time, we used widely targeted metabolomics, chemomet-
rics, and taste quantitative evaluation to reveal the difference in nonvolatile compounds
and the mechanism of the taste differences in Oolong tea from different producing areas.
This work provided comprehensive information on the composition and content of non-
volatile compounds in Oolong tea from different producing areas. In total, 801 nonvolatile
compounds were detected using widely targeted metabolomics, including 370 differen-
tial compounds. These differential compounds were mainly distributed across 67 KEGG
metabolic pathways. The metabolic pathways with a high enrichment level were closely
related to the metabolism of flavonoids, amino acids, saccharides, and alkaloids. There
were statistically significant differences in the intensity of the five taste attributes of Oolong
tea from six producing areas. In total, 81 nonvolatile compounds had an important con-
tribution to the taste difference, among which the number of flavonoids was the largest,
followed by organic acids and their derivatives, phenylpropanoids, and amino acids and
their derivatives. Finally, the characteristic compounds of Oolong tea from six producing
areas were screened.
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