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Abstract: Meat adulteration is a global problem which undermines market fairness and harms
people with allergies or certain religious beliefs. In this study, a novel framework in which a one-
dimensional convolutional neural network (1IDCNN) serves as a backbone and a random forest
regressor (RFR) serves as a regressor, named 1DCNN-RFR, is proposed for the quantitative detection
of beef adulterated with pork using electronic nose (E-nose) data. The IDCNN backbone extracted a
sufficient number of features from a multichannel input matrix converted from the raw E-nose data.
The RFR improved the regression performance due to its strong prediction ability. The effectiveness
of the IDCNN-RFR framework was verified by comparing it with four other models (support vector
regression model (SVR), RFR, backpropagation neural network (BPNN), and 1IDCNN). The proposed
1DCNN-RER framework performed best in the quantitative detection of beef adulterated with pork.
This study indicated that the proposed IDCNN-RFR framework could be used as an effective tool for
the quantitative detection of meat adulteration.

Keywords: meat adulteration; electronic nose; one-dimensional convolutional neural network;
random forest regressor

1. Introduction

Meat is one of the best nutritional sources of protein for humans and is consumed
worldwide due to its highly appreciated taste [1]. A recent report issued by the Organi-
zation for Economic Cooperation and Development and Food and Agriculture Organiza-
tion (OECD-FAO) revealed that the average annual global meat consumption surpassed
327 million tons (carcass weight equivalent) from 2018 to 2020 [2]. Due to differences
in prices, unethical producers sometimes blend expensive meat with lower priced meat,
such as by supplementing beef with pork to increase profits [3]. An economic loss of
USD 45.6 million occurred in Europe due to beef products being adulterated with horse
meat [4]. Besides the economic loss, the illegal activity of fraudulent substitution also raises
serious concerns about food safety, public health, religion, and ethics [5]. Therefore, it is
important to develop a reliable method for the detection of adulterated meat.

To date, the technologies that have been used in the detection of meat adulteration
include biology-based, chemistry-based, and spectroscopy-based methods. Biology-based
technologies have included polymerase chain reaction (PCR) [6], polymerase chain reaction-
restriction fragment length polymorphism (PCR-RFLP) [7], loop-mediated isothermal am-
plification (LAMP) [8], and enzyme-linked immunosorbent assay (ELISA) [9]. Although
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these methods have proven to be reliable, specific, and sensitive, biology-based technolo-
gies are time-consuming, expensive, and require complex laboratory procedures to be
performed by skilled personnel [10,11]. Chemistry-based technologies, such as gas chro-
matography mass spectrometer (GCMS) [12] and liquid chromatography-tandem mass
spectrometer (LC-MS/MS) [13], have been proposed for halal verification and the accurate
identification of meat products. Chemistry-based technologies are reliable and precise in
the identification of adulterated meat. However, they require complex extractions and have
long analysis times which significantly limit their widespread use [14]. For spectroscopy-
based technologies, near-infrared spectroscopy (NIRS) [15], Raman spectroscopy (RS) [16],
and hyperspectral imaging (HSI) [17] have been shown to be useful for detecting meat
adulteration. However, the complex spectroscopy data requires a high degree of technical
expertise to analyze. Due to the various drawbacks of these methods, it is imperative to
develop a fast, precise, simple, and low-cost method for the detection of meat adulteration.

An electronic nose (E-nose) is a chemical measurement system used to measure the
chemical properties of volatile gases and has been widely applied to detect the quality and
safety of food due to its fast speed, high reliability, simple operation, and relatively low
cost [18,19]. In recent years, reports of detecting meat adulteration using an E-nose have
been increasing. Tian et al. [14] built a backpropagation neural network (BPNN) model
for the prediction of pork content in minced mutton using a metal oxide semiconductor
(MOS)-based E-nose and obtained a root mean square error (RMSE) of 5.26% on a test set.
Han et al. [20] proposed a BPNN model for detecting pork adulteration in beef using a
low-cost E-nose based on colorimetric sensors and got an RMSE of 0.147. Sarno et al. [21]
proposed an optimized E-nose system using an optimized support vector machine (SVM)
for the identification of pork in beef products and got an accuracy of 98.10%. To the best of
our knowledge, most studies that have utilized E-nose devices have achieved good results
in qualitative detection of meat adulteration; however, few studies have demonstrated
reliable quantitative detection. An important reason underlying the imperfect performance
in quantitative detection is that these studies have depended on manually selecting and
extracting features. These manual operations not only burden the user with complex tasks
but are also likely to lose valuable information.

The present work therefore aimed to propose a precise method for the quantitative de-
tection of minced beef adulterated with pork. A high-efficiency framework (1IDCNN-RFR)
consisting of a IDCNN backbone and an RFR is proposed for the quantitative detection of
meat adulteration. The IDCNN backbone is a powerful feature extractor that automatically
mines the volatile compound information of meat samples. The RFR is employed as the
regressor to strengthen the anti-overfitting ability, instead of the fully connected layer, for
predicting adulterated proportions.

2. Materials and Methods
2.1. Meat Sample

In this study, fresh beef and pork satisfying Chinese national food safety standards [22]
were purchased from a Carrefour supermarket in Beijing, China, and transported to the
author’s laboratory in 20 min. Once in the laboratory, the fat and connective tissue were
removed and the beef and pork were minced for 1 minute using a commercial blender
(ZG-L805, Guangdong Zhigao Co. Ltd., Foshan, China). The minced beef was adulterated
by mixing it with minced pork at seven distinct proportions by weight (0%, 10%, 20%,
30%, 40%, 50%, and 60%). Adulterated proportions higher than 60% were not considered
because they are easily identifiable by human senses.

To undertake a more comprehensive evaluation of the models, two independent
measurements (Measurement A and Measurement B) of sample gases were taken by the
E-nose every day. For Measurement A, meat samples were purchased and measured in
the morning. For Measurement B, meat samples were purchased and measured in the
afternoon. Every day, three samples of each adulterated proportion were prepared, making
21 samples (3 samples of each proportion x 7 proportions) for both Measurement A and
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Measurement B. The daily operations for making experiment samples were same and
lasted for 10 days. A total of 420 samples (10 days x 2 measurements x 21 samples) were
measured. The details of the meat samples are shown in Tables 1 and 2.

Table 1. Details of the meat samples in Measurement A.

No. Adulterated Proportion Measuring Time Number of Samples
Sa.P1 0% Morning 30 (10 days x 3 samples)
Sa.P2 10% Morning 30 (10 days x 3 samples)
Sa.P3 20% Morning 30 (10 days x 3 samples)
Sa.P4 30% Morning 30 (10 days x 3 samples)
Sa.P5 40% Morning 30 (10 days x 3 samples)
Sa.P6 50% Morning 30 (10 days x 3 samples)
Sa.P7 60% Morning 30 (10 days x 3 samples)

Table 2. Details of the meat samples in Measurement B.

No. Adulterated Proportion Measuring Time Number of Samples
Sa.P1 0% Afternoon 30 (10 days x 3 samples)
Sa.P2 10% Afternoon 30 (10 days x 3 samples)
Sa.P3 20% Afternoon 30 (10 days x 3 samples)
Sa.P4 30% Afternoon 30 (10 days x 3 samples)
Sa.P5 40% Afternoon 30 (10 days x 3 samples)
Sa.P6 50% Afternoon 30 (10 days x 3 samples)
Sa.P7 60% Afternoon 30 (10 days x 3 samples)

2.2. Data Collection by E-Nose

In this study, a PEN3 E-nose (Airsense Analytics GmbH, Schwerin, Germany) was
used to collect the E-nose data of the adulterated meat. The PNE3 E-nose has a sensor array
with 10 different MOS sensors. The details of the sensors are listed in Table 3.

Table 3. Sensor array details [23].

No. Sensor Main Performance
1 Wi1C Sensitive to aromatic compounds
» W5S High sensitivity to nitr(?g.er.l oxides, broad
range sensitivity
3 W3C Sensitive to ammonia and aromatic
compounds
4 We6S Sensitive mainly to hydrogen
Sensitive to alkanes and aromatic
5 W5C components and less sensitive to polar
compounds
6 Wi1S Sensitive to met}.u.m.e, broad range
sensitivity
Sensitive primarily to sulfur compounds
7 WIW and many terpenes and organic sulfur
compounds
Sensitive to ethanol and less sensitive to
8 W2s .
aromatic compounds
9 Wow Sensitive to aromatic compounds and
organic sulfur compounds
10 W3S Highly sensitive to alkanes

All experiments were conducted in a single clean laboratory room (about 45 square
meters) with the temperature and relative humidity were controlled at 25 + 1 °C, 50 + 2%,
respectively. Measurements of the sample gases were conducted in a well-ventilated
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location to reduce baseline fluctuations and interference from other gas molecules. The air
in the working environment was filtered by two active charcoal filters (Filter 1 and Filter 2
in Figure 1) to produce the zero gas, which was used as the baseline in this study.

The workflow of E-nose data collection included a collection stage and cleaning stage,
as shown in Figure 1. Before collecting E-nose data, the meat samples were placed in
sealed 50 mL samplers for 3 min so that the volatile gases from the samples would fill
the sampler airspace. During the collection stage, zero-point trim was first conducted via
a 15 s automatic adjustment and calibration of the zero gas. The values relative to the
zero-point values were recorded as a baseline. After the establishment of the baseline, the
volatile gases from the meat samples were pumped into the sensor chamber following
Arrow 1 in Figure 1 at a constant flow rate of 10 mL/s where they contacted the MOS
sensors. In this manner, the gas molecules were absorbed on the sensors’ surfaces where
they changed the sensors’ conductivity through redox reactions with the sensors” active
elements [23]. The sensors” conductivities stabilized when they were saturated. The sample
gases were measured every 1 s for 100 s during the collection stage. During the cleaning
stage, clean air from Filter 2 was pumped into the sensor chamber in the direction of Arrow
2 in Figure 1 to entirely remove the substances that had absorbed on the surface of the
sensors. The cleaning stage lasted 30 s. As a result, the measurement of each sample lasted
325 s. Figure 2 shows examples of response curves of the 10 sensors” during the collection
stage for the 7 different proportions of adulterated meat. Each response curve represents
the ratio of G (the conductivity of the sensor when contacted by the sample’s volatile gases)
to GO (the conductivity of the sensor when contacted by the zero gas). As shown in Figure 2,
the response curves rose slowly and steadily from 0 s to 90 s and stabilized after 90 s.
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Figure 1. Schematic diagram of data collection using an E-nose.

2.3. Dataset Settings

The stable value (SV) is a vital and simple feature of the E-nose response signal which
reflects the properties of the substances in the volatile gas and can be used by pattern
recognition algorithms [24]. In this study, SVs (the values from 91 s to 100 s of the response
signal) were used as the input data to the SVR, RFR, and BPNN. The response values from
whole data collection stage (the values from 1 s to 100 s of the response signal) were used
as the input data of the IDCNN framework and the IDCNN-RFR framework. The details
of the datasets used in this study were as follows.

Dataset A: This dataset comprised a total of 210 samples (10 days x 3 samples for
each proportion x 7 proportions) of Measurement A. For the SVR, RFR, and BPNN, the
dataset could be expressed as a 2100 x 10 (number of sensors) matrix. For the IDCNN and
1DCNN-REFR frameworks, the dataset could be expressed as a 210 x 10 x 100 matrix.

Dataset B: This dataset comprised a total of 210 samples (10 days x 3 samples for
each proportion x 7 proportions) of Measurement B. For the SVR, RFR, and BPNN, the
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dataset could be expressed as a 2100 x 10 (number of sensors) matrix. For the IDCNN and
1DCNN-REFR frameworks, the dataset can be expressed as a 210 x 10 x 100 matrix.
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Figure 2. Example response curves of the 10 E-nose sensors (the baseline is marked with the red
dotted line): (a) proportion of 0%; (b) proportion of 10%; (c) proportion of 20%; (d) proportion of 30%;
(e) proportion of 40%; (f) proportion of 50%; (g) proportion of 60%.

2.4. Related Works
2.4.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a commonly utilized method for feature ex-
traction [25]. PCA is mathematically defined as an orthogonal linear transformation that
transforms data into a new coordinate system such that the greatest variance by some
projection of the data comes to lie along the first coordinate (the first principal component),
the second greatest variance along the second coordinate, and so on [26]. Generally, the
first few principal components must contribute at least 85% of the variance, or else the
PCA method would be considered unsuitable because too much of the original information
would be lost [27]. The first few principal components to make up a cumulative contri-
bution exceeding 95% contain nearly all the information of the original data [24]. PCA is
arguably the most popular multivariate statistical technique and has been applied in nearly
all scientific disciplines [28].

2.4.2. Convolutional Neural Network (CNN)

The CNN is a supervised feed-forward deep learning network designed to process
data that come in the form of multiple arrays [29]. Basically, CNN are composed of three
types of layers: the convolutional, pooling, and fully-connected layers [30,31]. The con-
volutional layer is composed of several convolutional kernels which are used to compute
different feature maps and the pooling layer merges semantically similar features into one
and prevents overfitting. After several convolutional and pooling layers, there will be one



Foods 2022, 11, 602

60of 17

or more fully connected layers which take all neurons from the previous layer and connect
them to every single neuron of the current layer to generate global semantic informa-
tion. CNNs have provided excellent performance solutions to various problems in image
classification, object detection, games and decisions, and natural language processing [32].

2.4.3. Random Forest (RF)

Random forest (RF) is a combination of tree predictors such that each tree depends
on the values from a random vector sampled independently and where all the trees in the
forest have the same distribution [33]. The aim of the RF is to create a large number of
uncorrelated decision tree models to produce more accurate predictions [34]. According
to the strong law of large numbers, an increasing number of decision tree models leads to
better generalizations and prevention of overfitting [35]. For the construction of the RF, N
bootstrap samples are first drawn from the original training set (with replacement). Then,
for each bootstrap sample, an unpruned classification or regression tree is grown with the
following modifications: at each node, random sample m (m < M) of the predictors (each
sample contains M predictors) is taken and the best split from among those variables is
chosen. The second step is repeated until the node can no longer be split without pruning.
Finally, the generated decision trees are formed into a random forest that is used to classify
or regress the new data [36,37]. Compared to other machine learning methods, RF has
various advantages, including low complexity, fast computing speed, lower overfitting,
etc. [38].

2.4.4. Evaluation Metrics

In this study, three evaluation metrics, including the coefficient of determination (R?),
the root mean square error (RMSE), and the mean absolute error (MAE), were used to
evaluate the regression performance of the four models and the proposed framework. The
R? is usually presented as an estimate of the percentage of variance within the response
variable explained by its (linear) relationship with the explanatory variables [39]. The
RMSE represents the standard deviation of the differences between the predicted values
and the observed values of the samples [19]. The MAE is defined as the average absolute
difference between the predicted values and the observed values of the samples. The
evaluation metrics are defined in Equations (1)—(3).

R2:1— E?:l(}/i_]//\i)z (1)
Y (yi —9)
n T AYA
RMSE — Zi:l(]/z Vi) )
n
1, N
MAE = — Y04 lyi = Vil (©)

where 7 is the number of the samples in the training set or the test set; y; is the actual value
of the ith sample; i; is the predicted value of the ith sample; and ¥ is the mean of the actual
value.

3. Proposed Method

Although the RFR has a low complexity and a lower likelihood of overfitting, its poor
ability to extract a sufficient number of features may limit its performance. The IDCNN
is a type of CNN model [40] which only performs one-dimensional convolutions, giving
them simpler structures and fewer parameters. Therefore, IDCNN can save on computing
resources and time [41]. Generally, a IDCNN with the appropriate structure can mine
sufficient features from the input data and with a flexible form. However, the 1IDCNN
requires more samples for training than traditional statistical models and the number of
samples required may make it impractical for E-nose applications, where it may result
in overfitting. Thus, a IDCNN-RFR framework (presented in Figure 3a) consisting of a



Foods 2022, 11, 602

7 of 17

10-channel
input

1DCNN backbone (presented in Figure 3b) and an RFR was developed to combine the
advantages of the IDCNN and RFR to predict the proportions of pork in adulterated
minced beef.
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Figure 3. Schematic diagram of the proposed framework. (a) Structure of the proposed IDCNN-RFR
framework; (b) structure of the proposed 1IDCNN backbone.

3.1. Data Preprocessing

In recent years, data preprocessing has increased in importance because data-mining
algorithms require meaningful and manageable data so that they can correctly operate and
provide useful knowledge, predictions, and descriptions. As Table 3 shows, the 10 MOS
sensors exhibited strong cross-sensitivity because the sensitive substances of the sensors
had some overlap. This is why E-nose data needs to be preprocessed before determining
correlations between the sensors for the input of the IDCNN backbone. Thus, the data
preprocessing step is crucial to improving the prediction precision. To fit the multichannel
input used in the IDCNN model, the raw E-nose data were converted into a 10-channel
input for the 1DCNN backbone. As shown in Figure 3a, the raw E-nose data formed
a matrix with a size of 100 x 10, where 100 represents the 100 data points in the data
collection stage (100 s) from each sensor and 10 represents the 10 MOS sensors. The 100 raw
data points from each sensor were converted into a vectors with lengths of 100, and the
10 vectors of the sensors were concatenated into a 10 x 100 matrix as a 10-channel input of
the IDCNN backbone.

3.2. Proposed IDCNN-RFR Framework

In this study, a 1IDCNN backbone consisting of four convolutional layers and three
pooling layers was constructed to automatically extract features from the E-nose data. For
all convolutional operations, the convolutional kernel size was 3. A batch normalization
layer was used to accelerate convergence and improve the generalization ability of the
operation. ReLU was selected as the activation function to increase the ability of nonlinear
expression. In all downsampling operations, the stride was 2 and the filter size was 2 for the
first two pooling layers (Pool 1 and Pool 2). For the last pooling layer (Pool 3), the stride was
1 and the filter size was 3. A flattening layer came last, wherein a flattening transformation
is applied to the tensor to convert the two-dimensional matrix of features into a vector that
can be fed into the RFR. The specific design of the layers is shown in Table 4. The RFR,
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which consists of 100 random decision trees, is used to predict the adulterated proportions.
Each tree is grown based on a resampling, using a regression tree procedure with a random
subset of variables selected at each node.

Table 4. Details of the IDCNN backbone.

No. Layer Parameters Outpur Size

Input Input / 10 x 100
Conv 1 ConvBNReLU 16@3, padding = 1, stride =2 16 x 50
Conv 2 ConvBNReLU 32@3, padding = 0, stride =1 32 x 48
Pool 1 Max Pooling Filter size = 2, stride =2 32 x24
Conv 3 ConvBNReLU 64@3, padding = 1, stride = 2 64 x 12
Pool 2 Max Pooling Filter size = 2, stride =2 64 x 6
Conv 4 ConvBNReLU 128@3, padding = 1, stride = 2 128 x 3
Pool 3 Avg Pooling Filter size = 3, stride = 1 128 x 1
Flatten Flatten / 128

As shown in Figure 4, the IDCNN-RFR framework workflow begins with the IDCNN
backbone automatically extracting features from the E-nose data, which are then fed to the
RER to output the adulterated proportions. An MSE loss function serves to calculate error
and is minimized by the stochastic gradient descent (SGD) optimizer. A learning decay
strategy with a fixed step size is used during training of the IDCNN backbone. The batch
size and the initial learning rate were set to 49 and 0.001, respectively. After the training
process of the framework is completed (solid line), the test samples are used to verify the
performance of the trained framework (dotted line).

Training Test
samples samples

Training the 1IDCNN backbone — Training the RFR

|

The trained IDCNN-RFR framework N

Training process
convergence?

T
i
1
L2

Output ]

backbone
I

Fed the training features to the RFR

Save the optimal parameter of the IDCNN [

Training progress Test progress

Figure 4. The workflow of the IDCNN-RFR framework.

4. Results and Discussion
4.1. Principal Component Analysis

In pattern recognition, principal component analysis (PCA) is commonly used for
feature extraction. In this study, the PCA was used to intuitively show the data distribution
in a low-dimensional space by extracting meaningful information from the raw E-nose
data. The SVs of 63 randomly selected meat samples (9 samples of each proportion x
7 proportions) were used in the PCA. The first three principal components contributed
92.76% of the variance and were selected to visualize the PCA results. The projections of
the first three principal components are shown in Figure 5. The three axes represent the first
principal component (PC 1), the second principal component (PC 2), and the third principal
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component (PC 3), which contributed 58.53%, 26.40%, and 7.83%, respectively. As shown in
Figure 5, the PCA was able to distinguish pure beef from adulterated meat. However, there
was a large overlap between the adulterated meats of different proportions. Therefore,
the PCA was unable to distinguish among meat samples with different proportions of
adulteration.

10 52

s
05 0
0o =

-4

-2
PC—I 0

(5. 2

&'539‘6) 4 -3

Figure 5. Projection of the first three principal components of the PCA of the meat samples.

4.2. Comparing Five Models

Support vector regression (SVR), as an extension of the support vector machines in re-
gressions, is commonly applied in a variety of fields [42]. BPNN, as a known machine learn-
ing method, is proven to have great potential in rapid detection of meat adulteration [14,20].
Therefore, an SVR model with RBF kernel and a BPNN model were also examined in this
study. The performances of the SVR model, RFR model, BPNN model, and 1IDCNN frame-
work were compared with that of the proposed 1DCNN-RFR framework using multiple
evaluation metrics, i.e., RZ, RMSE, and MAE. The 1DCNN framework consisted of the
1DCNN backbone and a IDCNN regressor. The IDCNN regressor consisted of two fully-
connected layers with 64 and 32 neurons, respectively. ReLU and Sigmoid were selected as
the activation functions for the first and second fully connected layers to strengthen the
nonlinear expression ability of the IDCNN regressor. A grid search method was used for
identifying the best parameters of the five models via a three-fold cross-validation using
the training set. The five models were programmed using the scikit learn library and the
open-source PyTorch framework. Two experiments (Experiment A and Experiment B)
with two datasets (Dataset A and Dataset B) were conducted to thoroughly compare the
performances of the five models.

4.2.1. Experiment A

Dataset A was used in Experiment A, and was divided into two parts, namely the
training set (data from the first 7 days, 147 samples) and the test set (data from the remaining
3 days, 63 samples). For the SVR, RFR, and BPNN models, the training set was expressed
as a 1470 x 10 matrix, the test set was expressed as a 630 x 10 matrix. For the IDCNN
and 1DCNN-RFR frameworks, the training set and the test set were obtained from all the
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response values and were expressed as a 147 x 10 x 100 matrix and a 63 x 10 x 100 matrix,
respectively.

The SVR, RFR, and BPNN models, combined with SVs, were used to study the
quantitative detection of adulteration in meat. The parameters searched for by the SVR
model were the penalty factor (1, 5, 10, 20, 50, 100, 200, 500) and gamma (0.01, 0.1, 1, 5,
10, 20). The parameters searched for by the RFR model were the max depth (3,5,7,9, 11,
13) and the minimum number of samples required to split an internal node (min. samples
split: 7, 14, 21, 28, 35, 42). Through the grid search skill, the penalty factor and gamma
for the SVR model were set to 50 and 1, respectively. For the RFR model, the max depth
and the min samples split were set to 5 and 35, respectively. For the BPNN model, the
optimum network architecture was obtained with topological architecture 10-21-1. An MSE
loss function serves to calculate error and is minimized by the stochastic gradient descent
(SGD) optimizer. ReLU was selected as the activation function of the BPNN model. The
regression results from the SVR, RFR, and BPNN models on the test set are shown in Table 5.
Three evaluation metrics, the R?, RMSE, and MAE, were computed to comprehensively
and accurately assess these two regression models. When combined with SVs, the BPNN
model achieved a marginally better result with an R? of 0.9456, an RMSE of 4.6663%, and a
MAE of 2.6486%. However, the performances of these three models were unsatisfactory
because they failed to extract a sufficient number of features.

Table 5. Evaluation of the regressions from the five models using the test set in Experiment A using
three metrics.

Model R? RMSE (%) MAE (%)
SVR 0.9183 5.7176 4.1394
RFR 0.9290 5.3293 2.9782

BPNN 0.9456 4.6663 2.6486

1DCNN 0.9852 2.4301 2.0250
1DCNN-RFR 0.9977 0.9491 0.4619

The 10-channel input was submitted to the proposed 1IDCNN framework consisting of
the 1IDCNN backbone and a IDCNN regressor. The 1IDCNN framework was implemented
on a laptop (Intel Core i7-9750H processor). The number of epochs was 1100 and the
training time was 57.6207 s. The training loss of the IDCNN framework during the training
process is shown in Figure 6. The 1IDCNN framework converged after 920 epochs. The
parameters at 920 epochs were saved and used to evaluate the performance of the IDCNN
framework on the test set. As shown in Table 5, the IDCNN framework performed much
better than the SVR and RFR models, with an R? of 0.9852, an RMSE of 2.4301%, and a
MAE of 2.0250% on the test set. The comparison with the SVR, RFR, and BPNN models, it
was revealed that automatically mining a sufficient number of features from the E-nose
data using the IDCNN backbone significantly improved detection performance.
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Figure 6. Training loss curve of the IDCNN framework during training in Experiment A.

The 10-channel input was submitted to the proposed 1IDCNN-RFR framework con-
sisting of the IDCNN backbone and the RFR. The IDCNN backbone in the IDCNN-RFR
framework used the model parameters of the trained 1IDCNN framework at 920 epochs.
The training stage of the RFR in the IDCNN-RFR framework was the same as that of the
RFR model. Through the grid search skill, the max. depth and the min. samples split were
set to 5 and 35, respectively. As shown in Table 5, the proposed 1DCNN-RFR framework
achieved a better performance than all other models, with an R? 0f 0.9977, an RMSE of
0.9491%, and a MAE of 0.4619% on the test set. These results indicated that the strong
prediction ability of the RFR improved the regression performance in the IDCNN-RFR
framework. The relationships between the predicted adulterated proportions by the five
models and the corresponding actual adulterated proportions are shown in Figure 7. The
x-axis represents the sequence number of the tested samples, and the black and red points
along the y-axis represent the actual and predicted proportions, respectively. Figure 7 intu-
itively illustrates that the predictive performances of models using the IDCNN backbone to
extract features were significantly better than those that did not use the IDCNN backbone.
The proposed IDCNN-RFR framework achieved the best predictions and predicted almost
all adulterated proportions precisely.

4.2.2. Experiment B

In practical applications, the number of samples will probably be much more limited
than in Experiment A. Thus, Experiment B used a smaller number of training samples to
further evaluate the generalization performance of the models. Dataset B was used in this
experiment and was divided into the training set (data from the first 3 days, 63 samples)
and the test set (data from the remaining 7 days, 147 samples). For the SVR, RFR, and BPNN
models, the training set was expressed as a 630 x 10 matrix and the test set was expressed as
a 1470 x 10 matrix. For the IDCNN and 1DCNN-RFR frameworks, the training set and the
test set were expressed as a 63 x 10 x 100 matrix and a 147 x 10 x 100 matrix, respectively.
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Figure 7. Relationships between the predicted adulterated proportions of the five models and
the actual adulterated proportions in Experiment A: (a) SVR; (b) RFR; (c¢) BPNN; (d) 1DCNN;
(e) IDCNN-RFR.

All the experimental steps were the same as those of Experiment A, except for the
1DCNN where the batch size was adjusted from 49 to 21, while the other parameters
were left unchanged. The best parameters of the SVR and RFR models were a penalty
factor of 500, gamma of 0.1, max. depth of 3, and min. samples split of 21. The max.
depth and min. samples split of the RFR in the 1IDCNN-RFR framework were set to 3
and 7, respectively. The training loss of the IDCNN during training is shown in Figure 8.
The 1IDCNN framework converged after 980 epochs. The parameters at 980 epochs were
saved and used to evaluate the performance of the IDCNN framework on the test set.
The test set regression results from the five models (the SVR model, RFR model, BPNN
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model, 1IDCNN framework, and 1IDCNN-RFR framework) are shown in Table 6. The
prediction performances of the SVR and RFR models in Experiment B were much worse
than those of Experiment A. The BPNN model, the IDCNN framework, and the proposed
1DCNN-REFR framework also suffered a slight reduction in performance. Even so, the
1DCNN framework and the IDCNN-RFR framework performed much better than the SVR
and RFR models. The 1IDCNN-RFR model still worked best and obtained a good result
with an R? of 0.9858, an RMSE of 2.3849%, and a MAE of 1.1625% on the test set. The
regression results in Experiment B further demonstrated the superiority of the proposed
1DCNN-REFR framework, which performed well despite the much smaller sample size. The
relationships between the predicted adulterated proportions of the five models and the
actual adulterated proportions are shown in Figure 9. These relationships showed that
the SVR and RFR models, which did not use the 1IDCNN backbone and were unable to
extract a sufficient number of features, had extremely poor prediction results. The proposed
1DCNN-REFR framework performed best.

103 4
Epoch =980

10! 4

0 200 400 600 800 1000
Epoch

Figure 8. Training loss curve of the IDCNN framework during training in Experiment B.

Table 6. Evaluation of regressions on the test set by the five models in Experiment B using three

metrics.
Model R? RMSE (%) MAE (%)
SVR 0.6108 12.4770 9.7819
RFR 0.7734 9.5204 5.6891
BPNN 0.9219 5.5910 4.2554
1DCNN 0.9703 3.4441 2.6853

1DCNN-RFR 0.9858 2.3849 1.1625
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Figure 9. Relationships between the predicted adulterated proportions of the five models and
the actual adulterated proportions in Experiment B. (a) SVR; (b) RFR; (c) BPNN; (d) 1DCNN;
(e) IDCNN-RFR.

5. Conclusions

In this study, a novel framework 1IDCNN-RFR, consisting of a 1IDCNN backbone
and an RFR, was proposed for the quantitative detection of beef adulterated with pork
using an MOS-based E-nose. The IDCNN backbone automatically extracted a sufficient
number of features from the E-nose data. The RFR strengthened the generalization ability
of the IDCNN framework and improved the prediction performance. Compared with the
other four models (SVR, RFR, BPNN, and 1DCNN), the proposed 1IDCNN-RFR framework
obtained the best results on the test set, with an R? of 0.9977, an RMSE of 0.9491%, and
a MSE of 0.4619%. All the findings suggest that the MOS-based E-nose coupled with the
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proposed 1DCNN-RFR framework has great potential for the quantitative detection of
minced beef adulterated with pork.
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Abbreviations

The following abbreviations are used in this manuscript:

E-nose Electronic Nose
MOS Metal Oxide Semiconductor
RF Random Forest
RFR Random Forest Regressor
SVR Support Vector Regression
CNN Convolutional Neural Network
1DCNN One-dimensional CNN
1DCNN-RFR a 1DCNN backbone combined with an RFR
PCA Principal Component Analysis
RBF Radial Basis Function
R? the Coefficient of Determination
RMSE the Root Mean Square Error
MAE the Mean Absolute Error
SV Stable Value
SGD Stochastic Gradient Descent
PC1 Principal Component 1
PC2 Principal Component 2
PC3 Principal Component 3
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