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Abstract: Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma,
with morphologically distinct fruits, including pods and beans. These beans are generally used
for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain
interesting bioactive compounds, among which are polyphenols and methylxanthines thought to
be responsible for various health benefits such as protective abilities against cardiovascular and
neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although
these pods represent 50–80% of the whole fruit and provide a rich source of proteins, they are regularly
eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to
provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis
on their chemical composition, bioavailability, and pharmacological properties. According to the
literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
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1. Introduction

Cocoa and cupuassu are two Amazonian fruit trees from the genus Theobroma and
the family Malvaceae. They have a lot of vernacular names, including Cacaoquahuatl
(Aztec), Cacau-Da-Mata (Brazil), Cacauí/Cupui (Portuguese), Coklat (Indonesia),
Copoasu/Cupuaçuzeiro (Brazil), Cupuaçú (Portuguese), Bacau (Colombia), Copuazú
(Spanish) or Lupu (Suriname) [1]. Cocoa (Theobroma cacao L., 1753) is native to Central (Mex-
ico) and South America (From French Guiana to Bolivia), while cupuassu
(Theobroma grandiflorum (Willd. ex Sprengel) K. Schumann) is from the northeastern states of
Brazil (Pará and Maranhão) [2,3]. These species require specific pedoclimatic conditions re-
lated to temperature (18–32 ◦C), rainfall (1250–3000 mm), and soil pH (6–7.5) [1,4]. Though
the trees morphologies are relatively similar, their flowers and fruits differ in shape and
color. The shape of cocoa pods varies from warty to almost smooth, ranging from bright
green to dark green, yellow to dark red, or a combination of all these colors [5]. Cupuassu
ranges from light brown to dark brown and can be oblong to ellipsoidal [1].

Each part of the plant has its own qualitative and quantitative compositions. Fruits
(pods and beans) are sources of protein, fat, and carbohydrates, but also polyphenols and
methylxanthines [1]. Although cocoa beans are widely studied because of their involvement
in the agri-food sectors, its pod, considered a waste, is studied little. Indeed, its chemical
composition remains largely unknown even if it suggests some biological potential. Studies
highlighted the presence of secondary plant metabolites in these fruits that are well known
to be responsible for certain human health benefits. In many studies, cocoa polyphenols
are involved in protecting against cardiovascular, tumor, oxidizing, and neurodegenerative
damage [6–8].

Furthermore, studies on cupuassu fruits have shown a growing interest in the devel-
opment of by-products in agri-food and cosmetics. However, data on the composition
and health potential of its fruits remain very rare. Consequently, this article aims to pro-
vide an overview of recent data on cocoa and cupuassu regarding taxonomy, agroecology,
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phytochemistry, and biological properties. Moreover, it aims to highlight the roles of their
different vegetative organs.

2. Botany of Cacao and Cupuassu
2.1. Taxonomy and Origins

Cupuassu (Theobroma grandiflorum (Willd. ex Sprengel) K. Schumann.) is native to Brazil
in the northeast of Maranhão and the south/ southeast region of the state of Para (covering
the central regions of the Tapajós, Tocantins, Guamá, Xingù, and Anapú rivers) [2]. It
can also be found in the Guianas shield (French Guiana, Guyana, Surinam, Colombia,
Venezuela), Ecuador, and Costa Rica [1,9]. Cocoa (Theobroma cacao L., 1753) is native to
Central (such as Mexico) and South America (from French Guiana to Bolivia) [3,10]. Some
genetic groups are thought to be associated with specific regions. For example, Amelonado
and Guiana could have an eastern Amazonian origin while Criollo and Nacional could
have a western Ecuadorian Amazonian origin [11,12].

In 1882, Morris divided cocoa into two groups: Criollo and Forastero (with different
Forastero varieties named Cundeamor verugoso, Liso, Amelonado and Calabacillo) [13].
In 1886, floral morphology described by Schuman et coll., revealed a difference between
T. cacao and T. grandiflorum [2]. In 1892, Hart gave a new ranking based on three groups
with different varieties: Forastero (Amelonado, Ordinary and Cundeamor), Calabacillo
(Colorado and Amarillo), and Criollo (Colorado and Amarillo) [14]. In 1901, Preuss iden-
tified a new group called Trinitario and considered that cocoa could be classified into
three varieties: Forastero, Criollo, and Trinitario [2]. The emergence of Trinitario could
be explained by the spontaneous hybridization between Criollo (already cultivated) and
Forastero (introduced), in Trinidad in 1727 [15,16]. In 1964, Cuatrecasas defined that the
genus Theobroma would be divided into six sections containing 22 species [2], which will be
presented in Table 1.

Table 1. Sections and species from the Theobroma genus and Sterculiaceae family. Data from [2].

Sections Species

Andropetalum T. mammosum Cuatr. & Leon

Glossopetalum

T. angustifolium Moçiño & Sesse, T. canumanense Pires & Fróes, T. chocoense Cuatr., T. cirmolinae Cuatr.,
T. grandiflorum (Willd. ex Spreng.) Schum., T. hylaeum Cuatr., T. nemorale Cuatr., T. obovatum Klotzsch

ex Bernoulli, T. simiarum Donn. Smith., T. sinuosum Pavón ex Hubber, T. stipulatum Cuatr.,
T. subincanum Mart

Oreanthes: T. bernouillii Pittier, T. glaucum Karst, T. speciosum Willd., T. sylvestre Mart, T. velutinum Benoist

Rhytidocarpus T. bicolor Humb. & Bonpl.

Telmatocarpus T. gileri Cuatr., T. microcarpum Mart.

Theobroma T. cacao L.

The classification of cocoa has long been based on morphological criteria and this
distinction of Forastero, Criollo, and Trinitario is still used today. However, since 2008, a
new classification based on genetic criteria has been demonstrated and 10 genetic groups
have been defined: Maranon, Curaray, Criollo, Iquitos, Nanay, Contamana, Amelonado,
Purus, Nacional, and Guiana [11], suggesting that the morphogeographic classification is
now obsolete. For cupuassu, few data are available on taxonomic distinction. In Brazil,
three cultivars of cupuassu are well known: Redondo (with a rounded apex), Mamorano
(with a pointed apex), and Mamau (a hypotetic parthenocarpic mutant) [1].

2.2. Agroecology and Geographical Distribution

Many pedoclimatic parameters can modulate the developments of cocoa and cupuassu
trees. Both require croplands where the average temperature is 25 ◦C (18–32 ◦C for cocoa
and 21.6–27.5 ◦C for cupuassu) [1,4]. Inadequate temperatures could threaten vegetative
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growth, flowering, and the maturity of fruits [17]. Cocoa is sensitive to prolonged exposure
to the sun and the wind; therefore, it should evolve in the protective shade of trees in its
surroundings [1,18]. They occur in very similar wetlands (70–88%) and require an average
rainfall of 1250–3000 mm for cocoa and 1900–3000 mm for cupuassu [1]. There was a
significant relationship between pre-harvest precipitation (2–5 months) and bean weight
in Nigeria [19]. Excessive precipitation or long periods of drought can harm the plant by
increasing the risk of fungal diseases [10]. The distribution of various varieties is shown in
Figure 1.
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Figure 1. Approximative locations of T. cacao (Criollo, Forastero and Trinitario) and T. grandiflorum
(Cupuassu). Data from [1,9,20–24].

Cocoa grows in rich, deep, and well-drained soil. It must be composed of 50% sand
(large particles induce good drainage); 30–40% clay (small particles for water and nutrient
retention) and a balance of 10–20% of medium-sized silt. For cocoa cultivation, the appropri-
ate soil types would be entisols (fresh horizontal alluvial soils with minerals), inceptisols (of
volcanic or other origin with minerals and low horizon development), and red or yellowish
ultisols and alfisols (minerals-rich forest soils with intense leaching) [1,23]. With very close
conditions, both species can be found in the same growing areas. Cupuassu may also grow
in red oxisols and inceptisol yellow-red oxisols [25,26]. pH is also an important parameter
since although cocoa can grow at a pH of 4 to 8.5, its optimal pH is between 6 and 7.5
where nutrients and trace elements are more available [1,23]. This availability is influenced
by soil pH [27] because at pH 7.5 and 8.5, phosphorus, manganese and boron may be less
available [28], while acidic soil induces low levels of phosphorus and high levels of iron
and copper salts, known to have toxic effects [23]. Alfaia et coll., suggested that cupuassu
could growth in a soil pH range from 4 to 5 [25].

2.3. Plant Morphologies

Cocoa and cupuassu are evergreen and cauliflory trees. Cocoa is usually 4–8 m tall,
and rarely grows up to 20 m, with dark grey-brown bark, whilst cupuassu can grow 5–15 m
tall and has a brown bark trunk [1,2]. Morphologically close, their leaves are simple and
alterne, ranging from narrowly ovate to obovate-elliptic. The veins pinnate towards the



Foods 2022, 11, 3966 4 of 23

extremity with a well-marked main vein and prominent secondary veins. They range from
20 to 35 cm long and 6 to 10 cm wide [1,29].

Flowers of cocoa (white, yellow, or pale pink) and cupuassu (white to yellow, often
with red lines) can be found on the trunk or branches as a “floral cushion” [2,29]. The
flowers are bisexual, pentamerous, and have a calyx with five lobes divided almost at the
base. The five stamens are curved outwards, and the anthers alternate with 5 staminodes
(usually purple), and a pentagonal upper ovary with five loculas containing numerous
ova [1,29]. Some varieties may have specificities. Indeed, four floral quantitative descriptors
(sepal width, gynoecium length, number of ovules, and particularly the width of the
petal ligule) could be used to distinguish the Guiana from the Trinitario, Forastero, and
Amelonado populations [30]. Fertilization (allogamic or heterogamic) causes an increase
in the ovary which becomes a fruit called «cherelle» (during the growth phase) then
«pod» (at the final stage). This maturation varies depending upon the variety and lasts
about 4–7 months for cocoa [29,31], and 3–6 months for cupuassu [32]. Both species
face fertility challenges, resulting in low fructification rates. The known reasons may be
(1) lower rates of pollinated flowers, (2) lower effectiveness of entomophilic pollination,
and (3) incompatibility reactions inducing flower abortion [29,32].

Indeed, Cuatrecasas et coll., pointed out that the problem of incompatibility is one of
the specificities of the Theobroma species [2]. Cupuassu and cocoa have both been identified
as self-incompatible species [32]. Self-incompatibility and cross-incompatibility are defined
by the inability to pollinate the flower (by its own pollen or by the pollen from another
incompatible tree) to turn it into fruits. These reactions occur late after a normal increase
in the pollen tube and can be induced (1) by the absence of antheroids in the embryonic
sac, (2) by the absence of gamete fusion, or (3) by the abortion of the egg after fusion.
Furthermore, pollinators are not very effective due to the natural floral barriers [29,33,34].
These incompatibility reactions are therefore influenced by gametophytes alleles and their
dominant position in the parent plant [35]. Cope et coll. hypothesized that incompatibility
would be based on the expression of two genes A and B (coding for dominant alleles A
and B and recessive alleles a and b) which could affect the expression of an S gene (highly
incompatible factor). Self-incompatibility would be induced by the presence of a single
dominant allele (A or B), for an allele that carries the same allele S. On the other hand,
compatibility would be possible when one of the two genes A and B are in a recessive
homozygous form since they would result in an inactive S system [36]. However, the latter
S system (controlled by five alleles) would have dominant and co-dominant relationships
and if a S allele is in a dominant form in a parent, incompatibility would be maintained [37].
With ovaries collected after 72 h of pollination, Ramos et coll., showed that compatible- and
incompatible-crosses induced a small percentage of ovules with no indication of gamete
fusion, but at a higher rate for incompatible-crosses. They suggested that fusion could
occur, but that two factors could act at the same time: the delay in incompatible pollen tube
growth and the ovular inhibition before fertilization [33].

Although cocoa and cupuassu fruits have very distinct shapes and colors, the fruits
are oblong, obovate, or sub-globose. Shape, weight, and color may vary depending on the
variety and the pedoclimatic conditions. The ripe cocoa pod is 10–32 cm long and 6–15 cm
wide. The shape can be spherical to cylindrical, and the surface (with ten longitudinal
grooves) can be warty and deeply pleated to almost smooth. The tip, called the apex, can be
pointed or serrated. Color varies during ripening from bright green to dark green, yellow
to dark red, or a mixture of all these colors [5]. The ripe cupuassu pod is 20–25 cm long and
6–10 cm wide. It can be oblong to ellipsoidal, woody, pubescent, and comes in shades of
brown [1]. Pod shapes are given in Figure 2.
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Figure 2. Representation of cocoa (adapted with permission of P. Lachenaud, Biotope Editions,
2022, [38]) and cupuassu pod shapes. Data from [2,38–40].

In general, pods contain about 20 to 60 beans in five rows (corresponding to the 5 lobes
of the ovule), surrounded by a sweet mucilaginous pulp [1,5,18]. For cocoa, beans are ovoid,
ellipsoid, amygdaloid, more or less complanate, or round, ranging from 20–40 mm long and
12–20 mm wide with a white or light-yellow wrapped pulp. For cupuassu, seeds are ovoid
or ellipsoid-ovoid, more or less flattened, and vary from 20–30 mm in length and 20–25 mm
in width with a yellowish pulp [2]. Color, height, and weight may vary depending on
genetic and pedoclimatic factors. For cocoa, Criollo has light-colored beans while Forastero
may have white to dark-purple beans and cupuassu has a light brown-color [2]. Beans are
composed of two parts: the almond (two cotyledons and an embryo) and the shell (thin
film that protects the beans). Early in germination, cotyledons induce photosynthesis and
provide the nutrients required for embryo development through an enzymatic breakdown
of the reserves [41].

3. Chemical Composition of Beans and Pods
3.1. Macronutrients

Pods (pericarp) and beans (pulp and seed) account for 80% and 20% of the total fruit
weight of cocoa, respectively, and for 43% and 57% in cupuassu [42,43]. Each vegetative
part has its own macronutrient composition that includes proteins, lipids, and sugars,
essential to its metabolism. For example, in cocoa, protein function is dedicated to 48% for
metabolism and energy, 13% for protein synthesis, and approximatively 8% and 7% for
membrane transport and defense, respectively [44].

3.1.1. Proteins

The protein content of cocoa pods varies from 2.4 to 17.6 g/100 g of the Dried
Weight [45–50]. Cocoa pods’ (COPs) protein content (from Africa, Brazil, Ecuador, Colom-
bia, and Guinea) averaged 15 ± 1.4%, of which fraction albumin + globulin was for
11.3 ± 1.1%, fraction glutenin for 2.5 ± 0.3%, and fraction prolamin for 0.4 ± 0.09%, respec-
tively. Glutamic and aspartic acids were the major amino acid (respectively 1.9 ± 0.18% and
1.5 ± 0.12% of the COPs weight). With a total amino acid content representing 11.6 ± 0.9%
of COPs, we can find lysine, leucine, threonine, and valine averaging at 0.8%; isoleucine,
tyrosine and phenylalanine at 0.5%; cysteine and histidine at 0.25%; tryptophane at 0.12%;
and methionine at 0.06%, respectively. They represent essential amino acids and count
for 44.6% of the total amino acid content [45]. To our knowledge, no data is available
concerning cupuassu pods (CUPs).
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These contents range from 2.5 to 14.4 and from 2.0 to 26.2 g/100 g of DW in cocoa beans
(COBs) and cupuassu beans (CUBs), respectively [51–58]. These include functional proteins
such as vicilin (reserve protein and precursor of specific aroma) and trypsin inhibitors
(related to seed germination and fungal defense) [53]. Isolated from 20 g of cupuassu beans,
albumin, globulin, prolamin, and glutelin accounted for 3.5 ± 0.1, 0.7 ± 0.1, 2.8 ± 0.8,
and 1.5 ± 0.2% of protein extracted of each fraction, respectively [56]. With a total protein
content of 26.2 ± 0.3% of the dry weight of beans, Carvalho et coll., indicated that leucine,
valine, and threonine represented the major essential amino acids (8.44 ± 0.15, 7.26 ± 0.15,
and 5.92 ± 0.04 g/100 g of protein, respectively) and Glutamic and Aspartic acids the major
non-essential amino acids (14.83 ± 0.11 and 12.38 ± 0.26 g/100 g protein, respectively) [56].

3.1.2. Lipids

COPs have low lipid contents, ranging from 0.6 ± 0.2 to 2.3 ± 0.4 g/100 g of
DW [45,46,48–50]. Essential human fatty acids such as palmitic, stearic, arachidic, and
linoleic acids, and also pentadecanoic acid (that is a rare saturated fatty acid in nature),
have been reported [59]. As far as we know, there is no data regarding CUP’s lipid contents.

Concerning beans, lipid levels are higher than in the pods and account for 20 to 60%
of their weight [43,52,54,55]. COB’s lipid composition includes nearly 97% of glycerolipids,
mainly triglycerides such as 1,3-dipalmitoyl-2-oleyl-glycerol (16.4–21.4%), 1,3-distearoyl-2-
oleoyl-glycerol (22.8–32.9%), and 1-palmitoyl-2-oleoyl-3-steraoyl-glycerol (38.0–46.2%), but
also 3% of glycolipids and unsaponifiable matter [55,60,61]. Fatty acids are significant in
lipid composition including the predominant saturated fatty acids, stearic acid (28.9–39.4%)
and palmitic acid (27.2–32.9%). Oleic acid is about 27.4 to 37.9% of the unsaturated fatty
acids [55,61,62]. For CUBs, oleic acid (36.3–42.2%), stearic acid (29.2–32.9%), arachidic acid
(9.8–11.2%), and palmitic acid (7.3–7.8%) are the major fatty acids [54,63,64]. Comparing
CUBs and COBs respectively, palmitic acid level is 3 times lower, arachidic acid level
10 times higher, and stearic acid level equivalent [64]. In terms of the saturated/unsaturated
fatty acids balance, COBs is composed of 69.3% and 30.7% while CUB is 48.9% and 51.1%
for each group, respectively [65].

3.1.3. Carbohydrates

In COPs, total sugars account for 1.7 ± 0.3 g/100 g of DW, where glucose is the main
sugar (1.1 ± 0.2%), followed by fructose (0.6 ± 0.2%), and sucrose (noted as trace). The
total starch stands for 1.1 ± 0.2% [45]. To our knowledge, no data is available for CUPs.

For cocoa and cupuassu beans (COBs and CUBs), total sugars range from 0.1 to
3.1 g/100 g of DW and from 1.3 to 1.6 g/100 g of DW, respectively [66,67]. Total car-
bohydrate accounts for 10.5–19.0 g/100 g of DW for COBs, and 13.6–23.1 g/100 g of
DW for CUBs, respectively [43,51,54]. In COBs, glucose (29.0–127.3 mg/100 g of DW),
fructose (12.3–69.1 mg/100 g of DW), and sucrose (265.0–2887.0 mg/100 g of DW) were
measured. Other sugars such as melibiose (4.9–197.6 mg/100 g of DW) and myo-inositol
(30.8–85.4 mg/100 g of DW) were also found in cocoa [67].

3.2. Micronutrients

Cocoa and cupuassu are well known as rich sources of polyphenols and methylx-
anthines [1,68]. These compounds are secondary metabolites located in the storage cells
that are distinctive with their single large vacuole [57]. In beans, these cells are called
“pigment-cells”, because of the existing correlation between their color (from white to dark
purple) and anthocyanin contents.

3.2.1. Polyphenols

Polyphenols that are present in pods and beans from cocoa and cupuassu were identi-
fied by HPLC and listed in Figure 3.
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Figure 3. Polyphenols identified in pods and beans of cocoa and cupuassu, with examples of their
chemical structures (in blue). Data from [9,50,52,69–76].
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An approximative total polyphenol content (TPC) using the Folin-Ciocalteu method
showed that COPs had lower TPC than COBs: 3.2 ± 0.3–56.5 ± 0.6 mg gallic acid equiva-
lent/g of DW) [46,69,77,78]) vs. 9.8± 0.1–202.2± 6.5 mg GAE/g of DW [75,79,80]. Polyphe-
nol contents may vary according to various parameters such as genotype [81,82], matu-
rity [83], soil, and crop conditions (sun exposure, number of fruits on tree, soil type) [82,84].
Pico-Hernández et coll., showed the importance of genotype. Indeed, compared to other
Colombian cocoa clones (such as CCN-51), ICS-39 have higher TPC than the others [58].
Focusing on one common variety (Trinitario), there were variations between fermented
and dried cocoa beans from Venezuela, Dominican Republic, Ecuador, and Colombia with
10.4 ± 0.5, 19.6 ± 1.1, 25.4 ± 1.4, and 37.7 ± 2.2 mg GAE/g of DW [84], respectively.

Whilst no data is available on cupuassu pods, cupuassu bean liquor (crushed fer-
mented and roasted beans) has lower TPC (7.84 ± 0.54 mg GAE/g of DW) than cocoa
(28.45 ± 2.45 mg GAE/g of DW). Moreover, total flavanol content (TFC) can be deter-
mined by two standard methods (1) with p-dimethylaminocinnamaldehyde (DMACA)
and (2) butanol. Cocoa liquors had higher TFC than cupuassu (DMACA: 22.0 ± 1.85 and
8.70 ± 0.75 mg/g of DW and Butanol: 70.6 ± 2.5 and 19.5 ± 0.86 mg/g of DW, for cocoa
and cupuassu respectively) [85].

3.2.2. Methylxanthines

Theobromine, caffeine, and theophylline are methylxanthines/alkaloids which can be
found in cocoa [86,87]. Their structures are described in Figure 4.
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HPLC quantifications indicated that COBs have higher theobromine (0.19–7.66 g/100 g
of DW) and caffeine (0.18–2.08 g/100 g of DW) contents than COPs with 0.002–0.4 and
0.002–0.004 g/100 g of DW values [1,51,83,88–91], respectively.

In a comparison study involving beans, COBs have higher levels of theobromine
(3.3 vs. 0.1 g/100 g of DW) and caffeine (0.56 vs. 0.05 g/100 g) than CUBs [66]. Although
cocoa beans present a low content of theophylline (0.2–0.37 g/100 g of DW), it was not
detected in cupuassu [1,68]. As polyphenols, methylxanthine contents also depend on
genetic, pedoclimatic, and crop conditions. Indeed, maturity stage influences theobromine
and caffeine contents, which increase by 40% from immature to fully ripe [83].

A brief comparison of the chemical compositions of beans and pods is presented in
Table 2.

Table 2. Comparison of the chemical composition of cupuassu and cocoa.

Beans Pods

Cupuassu Cocoa Cupuassu Cocoa

Proteins
(g/100 g dry weight) 2.2–26.2 [51–53,55] 2.5–14.4 [54,56–58] - 2.4–17.6 [45–50]

Lipids
(g/100 g dry weight) 20–60 [42,51,53] 20–60 [54] - 0.6–2.3 [45,46,48–50]
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Table 2. Cont.

Beans Pods

Cupuassu Cocoa Cupuassu Cocoa

Total sugars
(g/100 g dry weight) 1.3–1.6 [66] 0.1–3.1 [67] - 1.7 [45]

Polyphenols
(TPC-mg AG eq./g dry

weight)
7.8 [85] 9.8–202.2 [75,79,80] - 3.2–56.5 [46,69,77,78]

Caffeine
(g/100 g dry weight) 0.05 [68] 0.2–2.1 [1,51,83,88–91] - 0.002–0.004 [1,51]

Theobromine
(g/100 g dry weight) 0.1 [68] 0.2–7.6 [1,51,83,88–91] - 0.002–0.4 [1,51]

4. Pharmacological Activities

The use of polyphenols and methylxanthines has been associated with protection
against cardiovascular or neurodegenerative damage and other metabolic disorders [7,8].
As has already been noted, cocoa and cupuassu have a very narrow composition that could
be linked to health benefits. Although cocoa bean studies are predominant, the following
section attempts to compile and discuss the health potentials of its pod, and compare them
with the cupuassu vegetative parts.

4.1. Antioxidant (AO) Activity

Polyphenols are well-known to be positively correlated with AO activity [92]. Indeed,
with a higher TPC (611 mg of gallic acid equivalent/serving) than black and green tea (124
and 165 mg GAE/serving, respectively) and red wine (340 mg GAE/serving), cocoa also
has higher AO activities in DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-
bis(3-éthylbenzothiazoline-6-sulphonique)) assays [93]. Cocoa and cupuassu beans (COBs
and CUBs) had DPPH activities ranging from 24.0 ± 0.0 to 1370.1 ± 1.4 and 19.1 ± 2.3 to
1438.2 ± 13.0 µmol Trolox equivalent (TE)/g of DW, respectively [75,79,85,92,94].
COBs also had ORAC (Oxygen Radical Absorbance Capacity) activities from
303.0 ± 5.0 to 1097.0 ± 111.8 µmol TE/g of DW, while CUB’s range from
136.3 ± 1.8 to 713.0 ± 18 µmol TE/g of DW [52,54,75,85,95,96]. Even if a trend could be
observed, biological variability does not exclude the possibility that one variety could be
richer in polyphenols and theobromine than another. As mentioned, the chemical com-
position is related to genotypic, pedoclimatic, or plant growing conditions. However, the
literature does not deny that these two species are of major importance because of their
antioxidant potential in vitro but also in vivo.

Human endothelial vascular (EA. hy926) and hepatic (HepG2) cell lines were pre-
treated with cocoa extract, then the oxidative stress status was induced by the addition of
terbutylhydroperoxide (t-BOOH). Cocoa flavanol extracts, especially epicatechin, showed
an effective ability to protect cells in (1) reducing Reactive Oxygen Species (ROS) generation,
(2) reducing malondialdehyde (MDA) level, a lipid peroxidation marker, and (3) enhancing
the activity of AO enzymes such as glutathione peroxidase (GPx) and gluthatione reductase
(GR). Martin et coll., also showed the possible contribution of theobromine in the protective
potential of cocoa extract against ROS generation [97,98]. In addition, human intestinal
epithelial Caco-2 cells and murine enteroendocrine STC-1 cells (also stimulated by t-BOOH)
showed that pretreatment with cupuassu extract was successful in reducing ROS produc-
tion by approximatively 20% and 30% for Caco-2 and STC-1, respectively. Authors also
indicated that in the in vivo rat model, cupuassu extract prevented the expected increase in
ROS levels caused by food administration [99].

As mentioned, each part of plant contains its own polyphenols content, which would
explain the variability of their AO activities. For example, cupuassu beans (CUBs) have a
TPC and DPPH activity 80% higher than its pulp [52]. COPs have lower AO activities than
COBs with DPPH values ranging from 18.4 ± 0.3 to 133.0 ± 1.0 µmol TE/g of DW and
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ORAC values from 25.1 ± 1.5 to 342.9 ± 3.5 µmol TE/g of DW [46,50,88]. By comparing
COP’s and COB’s ABTS values, this trend is also observable with 23.1 ± 0.15–229.6 ± 21.7
vs. 925.5 ± 9.9–2610.0 ± 30.0 µmol TE/g of DW, respectively [46,50,79,88,94]. This trend
could be explained by the difference in their polyphenol composition (Figure 3). Pico-
Hernández et coll, mentioned that polyphenol fractions (monomers, dimers, trimers) may
participate in a different way with the TPC and AO values of cocoa extract [58]. The AO
potential of COPs is less studied, however, it could contribute a greater value to this waste
and thus allow the creation of different ways of recovery. In fact, cocoa and cupuassu beans
and pulp are mostly used in agri-food and cosmetic sectors. Each ton of dry beans results
in ten tons of cocoa pods and becomes a huge organic mass to be eliminated because they
can give rise to health problems (putrefying, fungal diseases) [100].

Some authors are still looking to add value to them and thus highlight notions of upcy-
cling and the valorization of the total fruit. In an in vivo animal model, COPs were added in
the diet of ewes for 8 weeks and their blood and milk AO statuses were analyzed. Authors
found that COPs did not affect AO plasmatic capacities (FRAP and ABTS), but did increase
superoxide dismutase (SOD, an AO enzyme) activity. Moreover, a COPs diet reduced
the protein carbonyl level, a marker of oxidative protein damages, and increased SOD
plasmatic activity [101]. This behavior seemed to be due to the presence of polyphenols,
which are able to form complex plasma proteins through a binding affinity [102].

Process would affect the health potential of cocoa and cupuassu. Cocoa is mainly
consumed in agri-food sectors as the basic ingredient in chocolate. Cupuassu can also be
transformed into a chocolate derivative named “cupulate” [103]. A key step to switching
from the bean to the derived chocolate (tablet or powder) is “fermentation”, which reduces
the astringency of the beans and increases the characteristic taste and color of chocolate [4].
This process leads to composition changes, including a reduction of methylxanthine and
polyphenol contents. Indeed, methylxanthines undergo external diffusion from cotyledon
to the shell. Anthocyanidins are hydrolyzed to cyanidins, and sugar and flavonoids
are converted to quinones, that can be complexed with polyphenols, proteins, or other
compounds [4,104,105]. Decreases in polyphenols and methylxanthines levels were found
to be associated with decreases in AO activities.

In the fermentation of cupuassu, TPC, theobromine, and caffeine contents decreased
by 60%, 70%, and 68%, respectively, while DPPH and ABTS activities decreased by 50%
and 25%, respectively [94]. Fermentation acted similarly on cocoa beans by reducing TPC
by 30–62% and DPPH by 25–82.5% [75,106]. To turn beans into chocolate, all steps of the
process have an impact on the AO activity of the final product. For example, Bordiga
et coll., showed that chocolate had a TPC and DPPH activity 2 and 12 times lower than
cocoa beans, respectively [107]. Even if the final product had low AO activity, it is not
negligible and may depend on its formulation. Indeed, milk and dark chocolates had lower
DPPH activity (13.7 ± 1.2 and 75.1 ± 14.1 µmol TE/g of DW for cocoa and 4.5 ± 0.2 and
7.8 ± 0.4 µmol TE/g of DW for cupuassu) than their respective powder (239.4 ± 0.4 and
13.0 ± 0.5 µmol TE/g of DW for cocoa and cupuassu, respectively) [108,109].

An in vivo streptozotocin-induced diabetic rats model revealed that cocoa and cupuassu
liquor consumptions increased the plasmatic AO capacity (ORAC and FRAP) and liver and
kidney FRAP activities [85]. Moreover, AO enzymes could be deactivated in several factors
of diabetes in the form of hyperglycemia, which causes oxidative stress [110]. Consumption
of cocoa and cupuassu liquor increased AO enzyme activities such as kidney catalase (CAT),
plasmatic SOD, and plasmatic GPx. Cocoa activated liver GPx and cupuassu activated
brain CAT, SOD, and kidney GPx, but decreased hepatic SOD [85].

AO enzymes can scavenge ROS formed by lipid peroxidation and, by extension,
protect cells from oxidative damages [111]. When comparing cocoa and cupuassu in
an HFD animal model (that mimics human metabolic syndrome [112]), both increased
plasmatic GPx activity, but also other AO enzymes such as plasmatic SOD and hepatic
CAT activities. Cupuassu extract was the only one that decreased brain GPx activities [111].



Foods 2022, 11, 3966 11 of 23

Cupuassu and cocoa liquors induced a decrease in hepatic and plasmatic MDA levels and
an increase in plasmatic AO abilities (FRAP and DPPH).

4.2. Immunomodulative (IM) Activities

Inflammation is a complex protective multipathways process that is composed by
the innate system (non-specific response) and the adaptative system (specific response).
Although inflammation is a one-time response to eliminate a threat, it could become
dangerous by becoming chronic, uncontrolled, and when directed against the body itself.
Indeed, the organism could develop a hypersensitivity that could lead to activation of the
complement, increased vascular permeability, platelet aggregation, and the secretion of
enzymes by polynuclear neutrophiles that can lyse vessels and tissues [113,114]. Chronic
inflammation could activate macrophages that release pro-inflammatory cytokines and
cytotoxic lymphocytes [112] but also produce ROS and RNS (reactive nitrogen species) by
membrane proteolytic enzymes called NADPH oxidase [115,116]. Cocoa and cupuassu
presented anti-inflammatory activities by reducing ROS and RNS generation, but also
interfered in the innate and adaptative immune systems.

For the innate system, in addition to other pathways (microbial products or pro-
inflammatory cytokines), ROS and RNS can cause the activation of the transcription factor
NF-KB. It induces the proliferation of pro-inflammatory cytokines such as tumor necrosis
factor alpha (TNF-α) or interleukins (IL-1α, IL-6 and IL-12) [117,118]. Macrophages from
monocytes play a capital role in inflammation process. On the one hand, M1 macrophages
contribute to inflammatory propagation by producing pro-inflammatory cytokines (IL-1β,
IL-6, IL-12 and TNF-α), RNS, ROS, and by promoting T-helper 1 that produces interferon
gamma (IFN-α) [117]. On the other hand, M2 macrophage is involved in wound healing
and the resolution of chronic inflammation by excreting anti-inflammatory IL-10 and small
amounts of IL-12 [117,119].

In a human THP-1 macrophages-derived model, cocoa extracts have shown IM activi-
ties by reducing proinflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-12) and increasing
anti-inflammatory cytokines (IL-10) in LPS/IFNγ-stimulated M1 [120]. Although cocoa did
not affect M0 and M2 cytokines levels, they induced in M1 similar IL-10 and IL-12 levels as
M2. This could suggest that cocoa may promote the polarization of M1 to an alternative
M2 phenotype [120].

In a cell model using Mouse immortalized Mesangial Cells (MiMC), the addition of a
high glucose (HG) level induced an increase in nitric oxide (NO) and ROS levels. Cupuassu
extract reduced NO and ROS levels in MiMC treated with HG after 48 and 72 h [121]. In
the in vivo diabetic rat model, cupuassu extract again decreased renal NO level, but also
eNOS (endothelial nitric oxide synthase) and 3-nitrotyrosine (biomarker of RNS damages)
levels from kidney. These results were also accompanied by a decrease in renal NF-KB and
IL-6 suggesting the immunomodulatory potential of cupuassu [121]. In another in vivo
intestinal inflammation rat model called TNBS (trinitrobenzenesulphonic acid)-induced
rats, cupuassu not only decreased IL-6 and IL-1β levels, but also reduced the activity of
mieloperoxidase (MPO, a toxic enzyme that produced ROS) and alkaline phosphatase (ALP,
a marker of intestinal inflammation caused by lipid peroxidation) [122].

Although many studies presented the anti-inflammatory actions of cocoa, several
indicated opposite actions. For example, Ramiro and collaborators indicated that cocoa
extract decreased the TNF-α levels by 50–60% [123] while other studies indicated increases
of 50% to 412% [75,124]

For adaptative system, in ovalbumin (OVA)-sensitized rat models, cocoa diets have
been down-modulated OVA-specific antibodies IgM, IgG1, IgG2a and IgG2c [125] and
IgE [126]. Allergen-specific T-cells turn into T helper 2 (Th2) and produce IL-4, responsible
for producing IgE against the allergen [126]. The decrease in the secretion of IL-4, IgE,
and IgG1 (main subclasse associated with Th2 immune response) after cocoa consumption
suggested that it would act in Th2 immune down-response [125,126].
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4.3. Impact on Intestinal Tract

As stated above, cocoa’s and cupuassu’s anti-inflammatory capacities have been
demonstrated in various systems. Cocoa samples showed protective effects against intesti-
nal damage on rats and cell models. Cocoa bean shell (extracted alone or incorporated
in an ice cream formula) decreased the levels of two markers of inflammation, IL-8 and
monocyte chemoattractant protein-1 (MCP-1), in Caco2-cells [127]. Similarly, the cocoa diet
in Zucker diabetic fatty rats (ZDF) reduced the expression of TNF-α, IL-6, and MCP-1, but
also the cd45 level (an immune marker of cell infiltration) [128]. Moreover, cocoa protected
the integrity of the intestinal epithelial barrier by restoring protein levels involved in tight
junctions (TJ). They included claudin-1, occluding, and anti-junctional adhesion molecule-A
(JAM-A) [127], as well as Zonula occludens-1 (ZO-1) [128], which may be altered during
intestinal damage.

Metabolic disorder could lead to ROS production in hepatocytes and engender cell
damage markers such as an increase in transaminase enzymes, for example alanine
aminotransferase (ALT) and aspartate aminotransferase (AST). Consumption of cocoa
and cupuassu liquor in HFD (High fat diet)-Winstar rats resulted in a reduction of these
two markers. This indicated that they prevented mitochondrial hepatocyte damage caused
by ROS production [85].

Accumulating various compounds in the digestive tract may result in local beneficial
activities. For instance, ethanolic and aqueous extracts of cupuassu (bean and shell) were
generated. Aqueous cupuassu bean extract exhibited a higher α-amylase inhibition rate
(97.4 ± 1.01%) than other extracts (ranging from 57.3 ± 0.2 to 75.4 ± 0.9%) [129]. α-amylase
had led to the starch cleavage increasing of glycemia. Cocoa has also shown antidiabetic
effects by inhibiting these types of enzymes such as α-amylase and α-glucosidase [130–132].

A cocoa diet has induced changes in the microbiota composition. Indeed, when
compared with non-diabetic ZDF rats who were not fed with cocoa, cocoa consumption
led to an increase of the abundance of Proteobacteria (3.6-fold), Tenericutes (2.8-fold), and
Actinobacteria (2.6-fold) phyla. Moreover, the cocoa diet significantly increased the abun-
dance of Firmicutes (1.4-fold increase) and Deferribacteres phyla (9.3-fold increase) and de-
creased the relative abundance of Cyanobacteries phylum (by 74.9%) [128]. In human clinical
trials, cocoa consumption has increased the abundance of Blautia and Lachnospira genera and
decreased the abundance of Agathobacter genus and Faecalibacterium prausnitzii [133,134].

4.4. Clinical Trials of Cocoa

Clinical trials of cocoa consumption revealed the potential of their bioactive com-
pounds in multitude pathways. They would act in food allergy. This hypothesis was
reinforced by a study of the relationship between health status and cocoa consumption. Au-
thors found that the percentage of allergic students who are moderate and high consumers
of cocoa was lower than that of the low consumers group. Moreover, cocoa consumption
was associated with a lower allergic symptoms level [135]. Cocoa polyphenols could also
affect the lymphoid composition of tissues where they were the most accumulated (thymus,
lymph nodes and spleen) [136]. Indeed, in the rat model, a 10% cocoa-diet may have
enhanced thymic maturation by reducing or increasing thymocytes (lymphocytes from
thymus). A mature thymocyte exhibited CD4 and CD8 co-receptors on its surface with a
T-cell receptor called TCRαβ high. The cocoa diet decreased the levels of CD8+, CD4- (and
CD8-, CD4-) TCRαβ low (immature) cells without affecting the levels of those with TCRαβ
high (mature). Moreover, the cocoa diet decreased CD8+ and CD4+ thymphocytes and
increased the levels of CD8-, CD4-, and both CD4+ cells [137].

In a double-blind, placebo-controlled, randomized cross-over clinical trial, the effect
of taking a single dose of high cocoa polyphenols was analyzed on redox statue and
inflammatory response. The transcriptomic profile of the peripherical mononuclear cells
(PBMC) of healthy volunteers revealed that after cocoa consumption, moderate modulation
was observed and the gene expression was linked to (1) a decrease in ROS production
(FPR1, IL8, Sestrin 3 (SESN3), CD36, and Hemoglobin Subunit Alpha 1/2 (HBA1/HBA2)
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(2) Ca2+ modulation (ADRB2, IL8, IL8RA, IL8RB, FPR1, Protein Tyrosine Phosphatase,
Receptor Type C (PTPRC), TPT1 HBA1/ HBA2, ORM1), and (3) activation of leukocytes
and viral response ((IL8, PTPRC, TIGIT, TPT1, FPR1, IL8RA and IL8RB). Of 98 genes with
modulated expressions, 5 were selected for their involvement in at least these 3 regulatory
pathways (IL8, IL8RB, CD36, ADRB2 and FPR1) and were validated by 40 RNA samples
belonging to 10 participants in real time qPCR [138]. This hypothesis was reinforced by a
double-blind, 12-week cocoa flavanol supplementation. Inflammation biomarkers (IL-6)
and cardiometabolic risk factors seemed to be positively affected by this consumption [139].
This consumption also reduced levels of malondialdehyde (lipid peroxidation marker) and
protein carbonylation. This indicated the implication of flavanols in blood oxidative stress
diminution. Moreover, cocoa flavanol was associated with an improvement of mobility
by being correlated with better hand strength, sit up, and walking distance assays [139].
The implications of cocoa for quality of life is increasingly being studied, while information
about the cupuassu is still lacking. Their bioactive compounds were thought to be related
to IM activity, so one might assume that with a very narrow composition, cupuassu could
also have a significant impact on the immune system. More studies are required on this
promising matrix. All pharmacological activities presented below are in Table 3.

Table 3. Summary of pharmacological activities of cocoa and cupuassu.

Antioxydant activities

Model Matrix Action Sources

Cell model-human EA.
Hy926 and human HepG2 Cocoa

↓MDA level, ↓ ROS level
[97,98]↑ GPx and GR activities

Caco-2 epithelial cell and
murine STC-1

enteroendocrine cells
Cupuassu ↓ ROS levels

[99]

Rats model Cupuassu ↓ ROS levels

Ewes model Cocoa
Not affect AO plasmatic activities,

[101]↑ SOD activities,
↓ protein carbonyl levels

HFD animal model
Cocoa and
Cupuassu

↑ plasmatic GPx, SOD and hepatic
CAT activities

[111]↓hepatic and plasmatic MDA levels
↑FRAP and DPPH plasmatic activities

Cupuassu ↓ brain GPx activities

STZ-induced diabete
rats model

Cocoa and
Cupuassu

↑CAT kidney, SOD plasma and
plasmatic GPx

[85]
↑ plasmatic, liver and kidney FRAP

and plasmatic ORAC activities

Cocoa ↑ liver GPx activity

Cupuassu ↑ bain CAT and SOD,
↑ kidney GPx

Immunomodulatory
activities

human THP-1 macrophages
M1 model

Cocoa
↓TNF-α, IL-6, IL-1β, and IL-12 levels,

[120]↑ IL-10 level,

Provide M1/M2 metabolic switch
(similar levels of IL-10 and IL-12)

MiMC cell model Cupuassu ↓ NO and ROS levels,
[121]

in vivo diabetic rat model Cupuassu
↓ renal NO level, kidney eNOS and

3-nitrotyrosine,
↓ renal NF-KB and IL-6 levels
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Table 3. Cont.

Model Matrix Action Sources

in vivo TNBS-induced
rats model

Cupuassu
↓ neutrophil myeloperoxidase and

alkaline phosphatase activities, [122]
↓ IL-6 and IL-1 levels

ovalbumin-sensitized
rats models Cocoa ↓ OVA-specific antibodies IgM, IgG1,

IgG2a and IgG2c and IgE levels [125,126]

Rat model Cocoa

↓ the levels of CD8+, CD4- (and CD8-,
CD4-) TCRa-b low (immature) cells,

[137]↓ CD8+, CD4+ thymphocytes
↑ CD8-, CD4- and both CD4+ cells levels

Impact on
intestinal tract

Caco2 cells Cocoa ↓ IL8 and MCP1 levels, restoring
claudin-1, occludin and JAM-1 levels [127]

ZDF rats Cocoa
↓ TNF-α, IL-6 and MCP1 levels, and ↓

cd45 levels [136]
restauring ZO-1

HFD rats Cocoa ↓ ALT and AST activities [107]

ZDF rats Cocoa

↑ Proteobacteria, Tenericutes and
Actinobacteria phyla,

[128]↑ firmicutes and deferribacteres phyla,

↓ cyanobacteries phylum

Clinical trials Human

Cocoa
↑ Blautia and Lachnospira genera,

[133,134]↓ Agathobacter genus and
Faecalibacterium prausnitzii

Cocoa

modulated the expression of gene
involving in ↓ of ROS production, Ca2+

modulation and activation of leukocytes
and viral response.

[138]

Cocoa

↓ IL6, malondialdehyde and protein
carbonyl levels, ↑ 6-min walked

distance assay, ↓ sit-up test, ↑ hand
strength assay

[139]

The increase and decrease are represented by ↑ and ↓ respectively in the table.

5. Bioaccessibility and Bioavailability

Bioaccessibility could be defined as the fraction of a compound, released from the food
matrix, capable of passing through the intestinal barrier, to reach the gut [140]. Meanwhile,
bioavailability is the fraction of the available digested bioactive compound that can be
taken through regular metabolic and distribution pathways [141]. Various parameters
could affect the bioavailability of these compounds such as solubility, interaction with other
food compounds, metabolism environment conditions, cell transporters, and interaction
with the intestinal microbiota [142]. Furthermore, there are inter-individual parameters
between consumers such as diet, genetic background, composition, and mechanism of
intestinal microbiota [143]. Only 5–10% of the total intake of flavonoids (mainly monomeric
and dimeric structures) can pass through the small intestine. This ability is often possible
following deconjugation reactions such as deglycosylation. The remaining 90–95% can be
converted into other metabolites with other implications by undergoing the gut microbiota
fermentation process [141,144].

Cocoa polyphenols, absorbed in the small intestine, can reach the liver through the
portal vein, where they can be converted by phase I and II biotransformations into new
compounds [145]. In the liver, during phase I, compounds undergo oxidation, reduction,
and hydrolysis. In phase II, they conjugate to became glucuronide, sulfated, and methyl
derivates [146–149], and can reach various target organs. For example, once absorbed,
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(–)-epicatechin metabolites can reach lymphoid organs (thymus, spleen, etc.) and the
liver [136]. Sulfate-glucuronide-(–)-epicatechin derivates have been identified in urine and
plasma after ingesting dark chocolate [150].

Cocoa and cupuassu are rich sources of polyphenols. In the case of cocoa, it contains
mainly flavanols such as (–)-epicatechin, (+)-catechin, and procyanidins (dimeric flavan-3-
ol compounds such as B2). (–)-epicatechin can be rapidly absorbed in the small intestine
(within 1 to 4 h). Conversely, large polyphenols such as procyanidins are poorly absorbed
(10–100-fold less) [151–153]. Moreover, procyanidin and condensed tannins which are not
allowed to pass through the gut barrier (due to their high weight structures or the nature
of their sugar moiety) can be converted by the gut microbiota into various phenolic acids,
to be absorbed [154].

Barros et coll., evaluated the distribution of cupuassu polyphenols in an animal model.
They revealed that clovamide and flavanols ((−)-epicatechin and procyanidin B2) were
present in higher doses in the stomach and small intestine than in the caecum and colon.
An increase in (–)-epicatechin and B2 concentrations was observed and appeared to be
related to the tannin hydrolysis process [74]. Flavones (hypolaetin glucuronide, hypolaetin
glucuronide- sulphate, hypolaetin methyl ether and isoscutellarein) were found in the
stomach, the small intestine, and in the caecum. In the colon, hypolaetin glucuronide was
not detected, while higher amounts of hypolaetin glucuronide-sulfate were noted [76],
likely due to enterohepatic circulation [155].

Microbial metabolism induces the presence of new compounds. For example, 1-
(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl) propan-2-ol and 1-(3-hydroxyphenyl)-3-
(2,4,6-trihydroxyphenyl) propan-2-ol appeared to originate from (–)-epicatechin [76]. Some
beverages made from cocoa beans, shells, and other ingredients (such as coconut, turmeric,
and curry) were digested. They revealed differences in the amounts of methylxanthines and
phenolic compounds. For example, for a coconut-cocoa beverage, after in vitro digestion,
there was a decrease in phenolic acids (protocatechic acid, caffeic acid), flavanols (catechin,
epicatechin and catechin-3-O-glucoside) and procyanidin B2. If the amounts of theobromine
and caffeine remained unchanged after digestion, quercetin-3-O-glucoside and quercetin-3-
O-rhamnoside were no longer detected [132].

When Andrade et coll., submitted their cupuassu (beans and shells) ethanolic and
aqueous extracts to various digestive modalities (undigested, digested, and fermented),
their composition revealed variations. This seemed to be influenced by the choice of the
cupuassu part and the solvent, as well as the acidic and enzymatic state of the digestive
compartment (leading to a difference in solubility). For example, gallic acid (from ethanolic
beans extract) was detected after digestion and fermentation. Gallic acid was only detected
after digestion of the shell. For the aqueous shell and bean extracts, it was only detected after
the fermentation process [129]. The bioaccessibility index is defined by the concentration
of compounds after ingestion over the concentration of the total compound. Regarding
total polyphenol (TPC), digestion induced an increase in the bioaccessibility rate. Indeed,
we noted an increase of 274 ± 4% and 203 ± 2%, for aqueous shell extract and ethanolic
seed extract, respectively [131]. Dantas et coll., determined the bioaccessibility index by
assessing the level of phenolic compounds that crossed the intestinal barrier (represented
by a dialysis membrane), after in vitro digestion. They reported that catechin, procyanidin
B1, B2 and A2 from cupuassu presented a bioaccessibility rate of 20, 62, 56 and 72%,
respectively [156].

6. Perspectives

Both fruits are involved in the agri-food sectors but are valued differently. Cocoa
seed is preferred over pulp, which is mainly used to initiate the bean fermentation process,
while cupuassu pulp is directly transformed into dessert cream, sorbet and ice cream, juice
and jam, and the seeds are less consumed [1]. This trend may change as more and more
attention is paid to bean-based cupulat derivates. This could be a good alternative to
chocolate, which is an increasingly challenging and problematic sector. For years, cocoa has
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been confronted with explosive demand (for beans and butter), which leads to ecological
pressure. From 2000 to 2020, worldwide cocoa bean production rose from 3.38 million
tonnes to 5.75 million tonnes, which represents $1.937 M and $7.404 M [157], respectively.

This may result in issues of concern such as deforestation, climate change, and pollu-
tion. The cultivation of cocoa requires humid tropical regions, which limits opportunities
for increased production. Other ways are being set up to produce more, such as the use of
pesticides, over-consumption of water, and deforestation. Renier et coll, identified that over
2000–2019, there was 2.5 Mha of cocoa deforestation and degradation, which accounted for
46% of global deforestation [158]. Deforestation is a catalyst of global warming and limits
cocoa cultivation by causing a water deficit due to evapotranspiration, modifying the cocoa
growth condition, and causing a global temperature increase (2 ◦C by 2050) [159]. Thus,
global warming causes an increase in drought in a huge water consumer culture. Santosa
et coll., indicated that the changes in rainfall and temperatures (2010–2015) have been
correlated with the fluctuation of cocoa production and could reduce population stability.
Rainfall seemed to have a higher impact than temperature. However, other parameter
could interfere, such as genotype and pedoclimatic conditions [160]. Cupuassu are also
sensitive to water deficit. Like cocoa, it grows better in shaded areas and would be more
productive when grown intercropped with other species [161]. It takes short- and long-term
strategies to maintain cocoa production [160]. Cupuassu could be a good strategy to satisfy
the producer with new growing areas and the consumer, who are looking for new products
with traceability, ethics, and original flavor.

More and more studies are putting forward formulations based on cupuassu. Pereira et
coll., indicated that cupuassu juice had a good probiotic carrier potential for
Lactobacillus casei and their fermentation induced an increase in AO activities [162]. Costa
et coll., formulated cupuassu prebiotic and probiotic goat milk yogurt [163]. However,
with the rise of interest in superfoods and health products, consumers are not only looking
for flavor, but also for a positive impact on their mental and physical health. Having an
interesting composition is beneficial to health only if the compounds can be absorbed and
metabolized by the human body. Cupuassu polyphenols (rhamnetin, gallic acid, epicate-
chin or pyrocatechol) were detected after digestion, but also (for vanillin) after fermentation
by gut microbiota. Moreover, some compounds cannot reach the blood and instead target
organs, and they can induce local activities in the intestinal tract [129]. However, there is
limited evidence on the impact of this process on their composition and biological potential.

As the production of cocoa and cupuacu grows, so does the amount of plant waste.
Pods of cupuassu and cocoa represent a burden for producers who must get rid of them,
creating sanitary and social inconveniences. In 2019 and 2020, global exports of cocoa
hulls, skins, and other waste amounted to $206 million and $225 million, respectively [164].
Côte d’Ivoire dominates this market with more than 80% of these exports over the two
years. Most of this waste is disposed of even though it is a product with a high recovery
potential. In the agri-food sector, new solutions are being created such as using cocoa pods
as a source of sugaring molecules, for example as xylitol (by fermentation of the yeast
Candida boidinii XM02G) [165], vegetable gum [100], and encapsulating agent [166], but
also as an ingredient in the formulation of animal feed [167]. They can also interact in
the technological part by being converted into biobased carbo-rich solids, such as active
carbon (ref or replace fossil gas in certain thermal treatments (roasting, boiling water)).
Zinla et coll. indicated that cocoa pods had thermochemical potential with a higher heating
value of 13.70 MJ/kg. This heat provided by combustion could be used by thermal power
plants to produce electricity. With the high level of potassium in cocoa bean ash (77.53%),
it could also be used in the production of biofertilizers [168]. With a desire to be more
environmentally friendly, the lack of information about the chemical composition of the
cupuassu pod must also rectified.
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7. Conclusions

In conclusion, cupuassu and cocoa fruits have varying compositions within and be-
tween species. Firstly, beans had higher lipid, polyphenol total, and methylxanthines
contents than pods. Secondly, cupuassu seeds, which had similar levels of lipids and car-
bohydrates, contained fewer proteins, total polyphenols, and methylxanthine than cocoa.
Both species may exhibit unique compounds that are not detected in the other. HPLC analy-
sis revealed in cupuassu the presence of singular sulfated polyphenolic compounds named
theograndin I and II and hypolaetin-derived, while cocoa have vitexin and theophylline.
Cupuassu, which has a very similar composition, could be a good alternative to reduce
the environmental pressure caused by the huge demand for cocoa. Both could be used in
agri-food, cosmetic, and pharmaceutical applications in different formulations using beans
and pods. These fruits are an interesting matrix due to their health potential.
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