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Abstract: Semi‑smoked sausages were made with 5%, 10%, 15%, 20%, and 25% replacement of horse‑
meat by emulsion gel made with offal broth (stomach, kidney, liver, heart, brain, and a miscellaneous
trimmings of a horse), pumpkin flour, and egg yolk in a ratio of 5:4:1. The technological, nutritional,
oxidative, and rheological (G′ and G′′) properties were studied. Sausage water holding capacity
(WHC) rose after being incorporated with pumpkin‑based emulsion gel (PEG). There was a statisti‑
cally significant (p < 0.01) improvement in sausage emulsion stability. Lipid oxidation in all samples,
especially 5% and 15% addition of emulsion gel samples, was below the rancidity criterion, which
is TBARS > 2.0–2.5 mg MDA/kg sample. This really is encouraging because unsaturated fatty acids,
such as those found in horsemeat, are easily oxidized. Use of the emulsion gel did not noticeably al‑
ter the sausages’ pH. Using emulsion gel considerably reduced the cooking loss (p < 0.05) of sausages
and significantly improved texture (p < 0.05). Partial replacement of mixed horsemeat with emulsion
gel improved the physicochemical characteristics of semi‑smoked sausages. The elasticity modulus
(G′) showed that PEG15 (15% of emulsion gel) was the most resilient gel. The least powerful gels
(p < 0.05) were PEG20 and PEG25. According to this study, adding a pumpkin‑based emulsion gel to
the meat matrix could improve the quality of the emulsified meat system and provide important data
for related research and companies as strategies to market a healthier and more nutritious product
with the necessary quality characteristics.

Keywords: horsemeat; pumpkin; quality of sausages; technological properties; emulsion gel; semi‑smoked
sausages; healthier meat products

1. Introduction
Due to their high protein content and improved nutritional value, meat and meat

products constitute a substantial part of the human diet worldwide. As a result of its nu‑
tritional benefits—including a low intramuscular fat and cholesterol content and a high
level of readily available iron‑horsemeat has been promoted as a healthy addition to the
human diet [1,2]. Fatty acids that are both monounsaturated and polyunsaturated can be
found in high concentrations in horsemeat. In addition to being a rich source of miner‑
als (particularly iron, phosphorus, zinc, magnesium, and copper) and essential and non‑
essential amino acids, it is also more easily digested than other red meats like lamb, beef,
or pork [3–5]. Therefore, horsemeat is recommended in dietetic nutrition, as well as the
nutrition of children, athletes, and people with anemia [3,5,6]. This rise in popularity coin‑
cides with the rise in interest in healthy eating. In order to meet the growing demand for
horsemeat, attempts have been made to improve the horsemeat’s sustainability and safety.
Emulsification technology could be used to improve the quality of semi‑smoked sausages
made from horsemeat by helping to increase their viscosity and stability, as well as control
the moisture of the product [7].

Foods 2022, 11, 3886. https://doi.org/10.3390/foods11233886 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11233886
https://doi.org/10.3390/foods11233886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods11233886
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11233886?type=check_update&version=1


Foods 2022, 11, 3886 2 of 18

Food items based on emulsions show a great deal of promise, both in terms of health
and financial gain. Producing functional foods, which are foods that have been fortified
with additional nutrients to increase their health benefits, is a potential new area of re‑
search. Soft, solid emulsion gels are preferable to classic emulsions because they can be
used to create fat alternatives. In terms of texture, hardness, and water‑retention capac‑
ity, among other features of animal fats, they are more authentic representations of animal
fat [8,9]. The nutritional qualities of meat products can be enhanced by using these emul‑
sions, which are better suited for transporting and safeguarding oxidized lipids in food
and are more successful in maintaining taste components and bioactive chemicals. Improv‑
ing our knowledge of how emulsion gels act in meat systems is crucial for ensuring high‑
quality end results. In addition, meat emulsions [10], patties [11,12], and sausages [13–15]
might benefit from the use of emulsion gels rather than traditional oil‑in‑water emulsions
due to the gels’ greater water‑holding capacity, improved texture, and reduced cooking
loss. Oxidation and quality loss can occur in meat products like horsemeat that are high
in mono‑ or polyunsaturated acids. Therefore, extra components with high antioxidant
activity would be helpful to prolong the process before oxidation of food sets in [16]. The
gelled structure of an emulsion presents a chance to include oxidatively stable substances
in meat products, hence extending their shelf life.

Because of their propensity to boost the meat’s health benefits and improve the prod‑
uct’s overall quality, fruits and vegetables are another source of interest in meat product
formulations [17]. Bulambaeva et al. [18] showed that oxidation in sausages was decreased
by adding pumpkin powder (Cucurbita moschata) and goji berries. There is evidence that
pumpkin’s nutritional components can help fight diabetes, cancer, and weariness [19]. The
high nutritious content of the pumpkin makes it a versatile vegetable (including carbs,
vitamins A and C, carotenoids, and vital amino acids). It is an antioxidant [20] and is
employed in the production of many manufactured goods. Since pumpkin pectin is a hy‑
drocolloid, it can be used as a stabilizer in emulsions to improve texture, bind water, or
thicken food [21]. According to research by Kim et al. [22], including just 2% pumpkin di‑
etary fiber in low‑fat frankfurters significantly altered their technological qualities. In their
study of a 10% of pumpkin flour (PF)substitution, Hleap‑Zapata et al. [23] discovered that
the sausages’ water‑holding capacity increased by 3.81%, while Unal et al. [24] informed
that the adding of pumpkin powder enhanced the color, emulsion capacity (EC), emulsion
stability (ES), and textural aspects of the emulsified meat products. These features suggest
that adding pumpkin powder to meat products as an emulsion ingredient may improve
their anti‑oxidative and functional properties. As far as we can tell, there is no published
research on the topic of incorporating pumpkin powder‑based gel into a mixed horsemeat
emulsion. In light of the preceding, the aim of the present study was to examine the effect
of pumpkin powder‑based emulsion gel on the qualitative aspects of semi‑smoked sausage
in an effort to broaden the range of horsemeat semi‑smoked sausages currently available.

2. Materials and Methods
2.1. Materials

Fresh, non‑damaged whole butternut squash (Cucurbita moschata) and spices were se‑
lected from the local marketplace in Semey and stored at 4 ◦C until used. The horsemeat
(highest grade and grade I) and poultry (chicken) meat were supplied from local farms
(“Nurbol” and “Klar” peasant farms, East Kazakhstan). The muscles were cleaned of any
excess fat and connective tissues and kept at a 4 ◦C with fat until needed. All chemicals
used in the research study were of analytical grade.

2.2. Pumpkin Flour Processing (PF)
The PF was produced at Shakarim University of Semey (Semey, Kazakhstan) in the De‑

partment of Technology of Food Production and Biotechnology’s Laboratory of Operating
System. At the Semey regional market, 8 kg of pumpkins (Cucurbita moschata) were pur‑
chased, all of the same ripeness. A sodium hypochloride solution at 700 ppm at 10 ± 1 ◦C
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was used to wash and disinfect pumpkins. The next step was to manually peel them, which
entailed removing the seeds and husks. After it had been cleaned, it was shredded man‑
ually into pieces no bigger than 3–4 mm thick using a sharp stainless steel knife. Pump‑
kin was dehydrated in a tray dryer at 40–60 ◦C for 5 h (Sedona SD‑9000, Tribest, Seoul,
South Korea). After drying, the pumpkin was processed in a household grinder (Magic
Bullet, Capital Brands, Los Angeles, CA, USA) until 95% of the particles went through a
12‑mesh filter, or a particle sizes of 102 microns. The flour was stored in a dry, dark room
at 24 ± 2 ◦C after being vacuum‑packed in polyethylene bags using a vacuum baler (Boxer
42, Henkelman, Hertogenbosch, The Netherlands). In order to prevent light from interact‑
ing with the PF and changing its physicochemical, color, and textural properties, the bags
containing the PF were wrapped with aluminum sheets. The content of mass fractions in
100 g of flour was as follows moisture 6.8%, proteins 11.51%, lipids 6.90%, carbohydrates
51.15%, minerals 15.40%, β‑carotene 67.50 mg, and vitamin C 83.90 mg. The process of the
preparation of PF is given in Figure 1. The method makes it possible to obtain a finished
product powder from pumpkin pulp, which remains as a result of the industrial process‑
ing of pumpkin in the form of a powder with nutritious and beneficial properties. With
these numbers, we were able to recreate 0.47 kg of PF.
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Figure 1. The process of the preparation of the PF ((a)—cutting process, (b)—after the dryer,
(c)—pumpkin flour).

2.3. Preparation of Pumpkin Based Emulsion Gel (PEG)
The preparation of the emulsion gel occurs in the cutter with the following feed load‑

ing scheme. To prepare 100 kg of PEG, into 50 kg of bouillon from cooking offal (35–40 ◦C)
in the cutter with a knife speed of at least 3000 rpm, and a bowl of 12 rpm, added 40 kg
of PF, mixed for 3–4 min, then added 10 kg of egg yolk and mixed for 4–6 min until a ho‑
mogeneous emulsion is obtained. After this process, the mixture is unloaded into trolleys
with a layer thickness of not more than 40 cm and directed for cooling to a temperature
in the center of the product of 4 ± 1 ◦C. For this research, the emulsion gel (EG) sample
was developed in a ratio of Broth: Pumpkin Flour: Egg Yolk as 5:4:1. This ratio was based
on the findings of a preliminary study of functional properties such as gelling capacity,
emulsifying activity, particle size of pumpkin powder, and texture of the final product.
The formulation of PEG was selected after several trials. The pH value of the PEG was
recorded as 6.37.

2.4. Analysis of the PEG
A pH meter (ST‑2100; Mettler‑Toledo, Greifensee, Switzerland) was used to take read‑

ings from multiple locations within the sample using a penetrating probe to determine the
pH. The CIELab color system was used to evaluate the L* (lightness), a* (redness), and b*
(yellowness) parameters of the instrumental color with a Konica Minolta CM‑5 (Konica
Minolta, Chiyoda‑ku, Japan) spectrophotometer (D65 illuminant, 100 observer angle, and
SCE mode). At 25 ◦C, each sample was analyzed three times.

A controlled‑stress rheometer AR 1500ex (CPI, Liverpool, UK) with a 4 cm diameter
stainless steel roughed parallel plate geometry was used to conduct the oscillatory rheolog‑
ical testing (gap of 1.5 mm). Prior to measurements, the samples were balanced for 2 min
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at 4 ◦C after being carefully placed on the plate using a laboratory spatula. 10 Pa of pres‑
sure was applied, at a frequency ranging from 1 to 10 Hz. Triplication was used to finish
the analysis.

2.5. Preparation of Sausages with PEG
The formulation of the “Narli” semi‑smoked sausages was developed in the Depart‑

ment of Technology of Food Production and Biotechnology of the Shakarim University
of Semey. The formulations of “Narli” semi‑smoked sausages with different additions of
PEG are given in Table 1. The sausages were made with a mixture of horsemeat (high‑
est grade and grade I) and poultry meat without any connective or adipose tissue. The
horsemeat (highest grade and grade I) and poultry meat are crushed on a top with a lattice
hole diameter of 8–12 mm. Shredded raw meat is subjected to a salting process by keeping
it in a salt solution at 0–4 ◦C for 6–12 h. After the salting process, the PEG, water (ice),
and potato starch are added. Next, the spices were added. The batter inside the cutter
did not go above 12 ◦C. Within a maximum of 10 h, a sample of the batter vacuum‑sealed
into plastic bags (30 cm × 50 cm) and stored at 4 ◦C, was sent for subsequent assessments
of its pH, color, rheological, and emulsion stability. Fibrous casings (Ø 45 mm, 600 g of
product per unit) were used for the other part of the formulation. The formed loaves are
subjected to curing for 2–4 h at 10–12 ◦C. After the curing process, the sausages proceed to
roast at 60–90 ◦C for 30–60 min. Roasted loaves are steamed in steam chambers or boilers
at 60–75 ◦C for 35–60 min. Boiling is completed and held up to the internal temperature
of the sausages got 70–72 ◦C. Afterwards, the sausages are chilled to a temperature not
exceeding 12 ◦C for 3–4 h. The cooling with water under a shower lasts 10–15 min, while
the temperature inside the loaf drops to 30–35 ◦C. Next, smoking is carried out at 50 ◦C
for 12–24 h and drying at 12–15 ◦C with air exchange for 2–4 days. Upon passing quality
assurance, items are packaged, labeled, and held at around 5 ◦C for up to five days before
undergoing pH, color, texture, and microstructural studies. For this research, five samples
were developed with the content of PEG of 5%, 10%, 15%, 20%, and 25%, with a control
sample without any PEG addition.

Table 1. The formulation for control and “Narli” semi‑smoked sausages.

Ingredients Control PEG5 PEG10 PEG15 PEG20 PEG25

Horsemeat (high grade and grade I) 55 25 + 25 22.5 + 22.5 20 + 20 17.5 + 17.5 15 + 15
Poultry meat 30 30 30 30 30 30

Starch 5 5 5 5 5 5
Water (ice) 10 10 10 10 10 10

PEG ‑ 5 10 15 20 25
Total 100 100 100 100 100 100

Spices (per 100 kg of raw materials)

Nitrite‑salt mixture 1.7 kg 1.7 kg 1.7 kg 1.7 kg 1.7 kg 1.7 kg
Garlic 1 kg 1 kg 1 kg 1 kg 1 kg 1 kg

Nutmeg 100 g 100 g 100 g 100 g 100 g 100 g
Black pepper 300 g 300 g 300 g 300 g 300 g 300 g

Sugar 100 g 100 g 100 g 100 g 100 g 100 g

2.6. Analysis of Meat Batters Prior to Thermal Processing
2.6.1. Rheological Properties

Frequency and stress (0.1–100 Hz) sweeps were completed as prescribed in Section 2.4.
The formulation’s contents can cause variation in meat batters, even when other process‑
ing conditions, such as knife speed, temperature, and cutting time, are held constant. So,
following the salting process, the combined mince paste was blended, and before the ad‑
dition of the other components, 20 g of mince paste was taken and held at 4 ◦C overnight
in order to analyze the actual rheological behavior of combined meat with emulsion gel.



Foods 2022, 11, 3886 5 of 18

Raw mixed horsemeat emulsions were examined for their dynamic viscoelastic behavior
using the procedure outlined in [25]. Specifically, 3 g of the uniform batter samples were
put onto the rheometer’s bottom plate, left at room temperature (25 ◦C) for 5 min, and then
subjected to a thermal sol‑gel transformation ramping from 25 to 90 ◦C at a constant rate
of 1 ◦C/min. The environment’s temperature was meticulously monitored and adjusted.
A layer of silicon oil was applied to the exposed sample periphery to prevent dehydra‑
tion. The gelation tests were conducted at a constant frequency of 1 Hz and a controlled
stress of 50 Pa, both of which were chosen to correspond to the linear viscoelasticity range
(LVR, 0.1–1000 Pa and 0.1–100 Hz, respectively). Both the storage modulus G′ (a measure
of elastic property) and the loss modulus G′′ (a measure of viscous property) were used to
describe the outcomes.

2.6.2. Emulsion Stability (ES)
ES was measured in accordance with [26]. In order to test the batter’s consistency,

25 g was weighed out and centrifuged at 2600× g for 5 min in 50 mL graduated tubes. The
samples were heated in a water bath until the temperature in the center got 75 ◦C (25 min
at 40 ◦C and 5 min at 75 ◦C). The tubes were then cooled to room temperature (25 ◦C), and
the total fluid released was reported as a percentage of the sample’s weight. The treatment
was performed in triplicate.

2.6.3. The Color and pH
The color and pH of the batter were measured as demonstrated in Section 2.4. The

batters were stacked into the cuvette to a height of about 1 cm for the color measurements.
All measurements were taken at 25 ◦C in triplicate. In order to evaluate the differences
between the control sample (C) and the PEG‑added products (PEG), the Chroma value
(Chroma =

√
a∗2 + b∗2) and Hue angle (Hue = tan−1 b∗

a∗ ) were computed.

2.7. Evaluation of “Narli” Semi‑Smoked Sausage
2.7.1. Chemical Composition and Energy Value

Chemical composition and energy value (moisture, protein, ash, and fat content) were
determined according to the requirements of GOST (State Standard) R 51479‑99 (oven dry‑
ing method), GOST 25011‑81 using the Kjeldahl method, GOST 31727‑2012 (muffle fur‑
nace), and GOST 23042‑86 using the Soxhlet method. Analyses were completed three times.
The energy value was designed based on the caloric content of fat (4.6 kcal/g), protein
(21.42 kcal/g), and carbohydrate (0.077 kcal/g).

2.7.2. The Color and pH Examination of “Narli” Semi‑Smoked Sausage
The color and pH examination were done according to Section 2.4. The sausage was

cut up to a depth of 0.5 cm to examine the color characteristics. The analyseswere completed
at 25 ◦C in triplicates. Hue and Chroma values were calculated as shown in Section 2.6.3.

2.7.3. Texture Profile Analysis (TPA)
All texture readings were taken with a TA‑XT Plus at a temperature of 4 ◦C (Stable

Micro Systems, England). The sausages’ texture profiles were analyzed using a P‑35 probe
and the procedure outlined in [27]. The samples were acquired in the form of twelve metal‑
lic cylinders with dimensions of h = 20 mm and d = 20 mm. The samples were compressed
in a single direction at 30% of their original height at a continual rate of 1 mm/s for two cy‑
cles. Hardness (N), springiness (mm), cohesiveness, chewiness (N*mm), and gumminess
(N) were the measured properties.

2.7.4. The Fatty Acid Profile
The product’s fatty acid profile was calculated by isolating lipids from samples by

chloroform/methanol extraction, as described by the Folch method. Thin‑layer chromatog‑
raphy was utilized to examine the extracted lipids for purity. Fatty acid composition was



Foods 2022, 11, 3886 6 of 18

measured using an Agilent Technologies, USA HP‑Innowax 30 m × 0.25 mm × 0.25 m col‑
umn on a Hewlett Packard HP 6890 gas chromatograph with a flame ionization detector.
The analysis was performed in triplicate.

2.7.5. Lipid Oxidation
The extraction method was used to assess the TBARS (thiobarbituric acid reactive com‑

pounds) concentrations in four separate samples [28]. The absorbance was determined at
532 nm using a spectrophotometer (Beckman, DU‑70, Triad Scientific, Inc. Manasquan, NJ,
USA) and a blank solution of 3 mL trichloroacetic acid and 5 mL thiobarbituric acid (TBA)
reagent. The outcomes were converted to milligrams of malondialdehyde per kilogram of
meat (mg MDA/kg) using a TEP standard curve (1,1,3,3‑tetraethoxypropane).

2.7.6. Water‑Holding Capacity (WHC) and Cooking Loss (CL)
WHC of sausages was analyzed according to [14]. CL was identified through calcula‑

tion of the ratio of meat batter before and after cooking, and stated as follows:

% Cooking Loss =
(

weightraw −weightcooked
weightraw

)
× 100

2.7.7. Scanning Electron Microscopy (SEM)
The surface morphology of the sausage was assessed using a non‑destructive tech‑

nique known dispersing preparation of the sample using a high vacuum scanning elec‑
tron microscope (TM 3000 Tabletop Microscope, Hitachi High Technologies, Tokyo, Japan),
with a magnitude of 15× to 30,000× and a 15 kV acceleration voltage. We employed
100× and 200× magnifications. The product was put in a stub, cut into standard pieces
(2 cm × 2 cm), and then evaluated at 15 kV in the modular apparatus.

2.8. Statistical Analyses
The testing was directed in duplicates. One‑way analysis of variance (ANOVA) was

used to analyze the data for the PEG (color, pH, emulsion stability), meat batter (color, pH,
emulsion stability), and “Narli” semi‑smoked sausage (proximate composition, pH, color,
TPA, and TBARS), and Tukey’s test was used at 5% impact level (p < 0.05).

3. Results and Discussion
3.1. Property of Pumpkin‑Based Emulsion Gel

The value of L*did not show a significant difference among PEG and horse fat samples
(p > 0.05) (Table S1). Fat analog is darker than horsemeat fat, the main ingredient in making
horsemeat sausages. Fat contributes to the meat’s tenderness and, in turn, the sensation
of juiciness. Fat turns yellow and even orange on older animals [5]. Foals slaughtered
at 9 months had a larger level of intramuscular fat than foals slaughtered at 12 months
(p < 0.05), according to research by Franco et al. [29]. Therefore, similar outcomes necessi‑
tate considering the ages of the animals involved. The emulsion gel has a higher redness
(a* = 1.36) and yellowness (b* = 7.90) value than the horse fat (p < 0.05). This effect may be
due to the high‑density yellow color of PEG itself. The pumpkin flour probably was re‑
sponsible for these results due to high level of carotenoids, particularly, α‑ and β‑carotene,
β‑criptoxanthin, lutein, and zeaxanthin. The flour dried at 45 ◦C preserved 95% of the
α‑carotene and 83% of the β‑carotene [30]. Emulsion gel and horse fat both showed pH
values near to neutral, therefore there wasn’t much of a difference between them (p > 0.05).
Choe et al. [14] and Hleap‑Zapata et al. [23], reported similar outcomes when utilizing a
combination of pork skin and wheat fiber as a fat replacement and the partial replacement
of wheat flour with different amount of pumpkin flour during development of frankfurt‑
type sausages. Frequency sweeps were used to acquire dynamic rheological measures.
According to the values of the storage or elastic modulus (G′) and the loss or viscous (G′′)
modulus of the emulsion gel and control (HF) (not shown), the gel exhibited dense prop‑
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erties. Emulsion gels, on the other hand, showed greater G′ and G′′ values than horse fat.
Complexes of pumpkin flour and egg yolk formed at pH levels above the isoelectric point
(5.7) of egg yolk. Previous findings in protein dispersions demonstrated the importance
of electrostatic repulsions when the protein’s net charge increased as pH deviated from
its isoelectric point (IEP), where the net surface charge was zero. Extreme pH levels cause
protein unfolding, which in turn promotes protein aggregation and the establishment of a
network [31]. Although egg yolk is most commonly employed to stabilize food emulsions,
it also has the ability to gel, texture, and bind in baked goods. Egg yolk’s ability to gel
is one of its most useful features. Gels can be formed from egg yolk because of its high
protein content and wide range of lipids. Gel formation is due to interactions between
proteins and between proteins and lipids, which occur when the natural structure of the
proteins in egg yolk is disrupted by treatments like heat, alkali, salt, etc. An increase in
G′ and G′′ can be attributed to protein aggregation, which is in turn explained by partial
protein denaturation, as shown by Clark et al. [32]. Finally, protein aggregates associate
to create a three‑dimensional network. The protein gel network may also be strengthened
by some covalent crosslinking linkages [33]. Functional components, such as egg yolk and
pumpkin flour, impact the emulsion gel’s stability. Since pumpkin flour is hydrophilic, col‑
loidal, and water‑holding, it improves the emulsion’s stability when added. According to
Nidhal et al. [21], pumpkin flour works well as a stabilizer in low‑calorie mayonnaise. Con‑
centration of pumpkin powder and egg yolk proteins, temperature, pH, and ionic strength
of the medium all play a role in the gel development qualities, net configuration, and rhe‑
ological characteristics of the finished product [16].

3.2. Characteristics of Emulsion Gel‑Made Sausage
3.2.1. Proximate Composition

Table 2 displays the proximal compositional differences between semi‑smoked sausages
made with different PEG levels. The moisture content was higher in semi‑smoked sausages
with increasing PEG addition (p < 0.05) than that in the control sample, which could be at‑
tributed to the existence of water in emulsion gel along with preferred water binding ability
contributed by the added pumpkin flour and due to greater protein and dietary fiber con‑
tent of flour that led more water being entrapped in the meat matrix. Similar tendencies
in moisture content were documented by Kim et al. [22] when varying amounts of fat and
pumpkin fiber extract were added to reduced‑fat frankfurters and Alves et al. [34] found
a rise in the moisture content of sausages made using green banana flour gels as fat re‑
placers. Moisture content is a significant property of sausages, because of its effect on the
end product’s texture, sensory features, and ultimately its weight, all of which contribute
to the products economic worth [15,35]. Fat contents in different sausages ranged from
22.28% to 7.35% (p < 0.05) and protein content ranged from 22.14% to 18.78% (p < 0.01)
compared to the control sample. This finding is consistent with that of Ali et al. [36], who
found that adding 10% rice flour to pig and duck sausage and Cittadini et al. [11], who
reported that the replacement of 100% of pork fat with the oil mixture emulsions added
avocado or pumpkin seed into foal burgers reduced the protein and fat content. Similarly,
Öztürk‑Kerimoğlu et al. [37] also found that the inclusion of quinoa flour improved mois‑
ture and carbohydrate contents however decreasing fat and energy values. So, the addition
of quinoa flour successfully increased both protein and fiber content. On the other hand,
the addition of PEG did not had significant affect on to the ash content. Semi‑smoked
sausages made with varied concentrations of emulsion gel had drastically variable calorie
count (Table 2). The energy value tended to decrease by adding emulsion gel (p < 0.05).
Substitution of beef fat with quinoa flour in low‑fat sausages had comparable effects, as
described by the authors [37]. According to Turhan et al. [38], total fat levels influenced the
energy content of beef products because lipids supply 9 kcal/g of energy, which is much
more than the energy given by proteins (4.02 kcal/g) or digested carbs (3.87 kcal/g). Simi‑
lar outcomes were observed by Pintado et al. [16] when they used a chia and oat emulsion
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gels, while Bozhko et al. [39] used a soybean isolate to achieve the same effect to replace
some of the pork.

Table 2. Semi‑smoked sausages’ proximate composition formulated with horsemeat and different
level of emulsion gel.

Parameter Control PEG5 PEG10 PEG15 PEG20 PEG25 p‑Value

Moisture (%) 66.37 ± 0.90 a 68.18 ± 0.18 a 71.08 ± 0.12 c 71.83 ± 0.14 b 71.08 ± 0.12 b 72.12 ± 0.27 b *
Lipid (% u.b) 22.28 ± 0.67 a 10.55 ± 0.81 c 7.35 ± 1.00 a 7.96 ± 0.30 bc 8.52 ± 0.81 a 9.97 ± 0.57 b *

Protein (% u.b) 22.14 ± 0.50 ab 20.03 ± 0.36 ab 21.50 ± 0.30 a 19.72 ± 0.44 bc 19.45 ± 0.01 a 18.78 ± 0.01 c **
Ash (% u.b) 1.59 ± 0.10 a 1.93 ± 0.04 a 2.37 ± 0.05 a 2.64 ± 0.07 a 2.59 ± 0.06 a 2.32 ± 0.09 a ns

Energy Value
(Kcal/100 g) 226.17 ± 5.12 a 212.52 ± 5.24 bc 185.15 ± 4.21 c 165.21 ± 4.39 a 237.45 ± 4.84 c 178.52 ± 5.21 a *

All values are mean ± standard deviation of triplicates. * There were no significant differences (p > 0.05) across
samples with the same letter configuration in the same row. p‑value: ** (p < 0.01), * (p < 0.05), ns (not significant).

3.2.2. Fatty Acid Profile (FAP)
Table 3 shows that the addition of emulsion gel did not significantly alter the FAP

of semi‑smoked sausages, presumably because of the high content of unsaturated amino
acids in horsemeat. Specifically, palmitic (31.2%), stearic (4.45%), and myristic (4.54%) fatty
acids and oleic (34.21%), linoleic (16.6%), and ‑linolenic (4.1%) fatty acids made up the FAP
of the semi‑smoked sausage of the sample without PEG (control).

Table 3. Semi‑smoked sausages with varying emulsion gel concentrations (g/100 g product) in terms
of fatty acid profile.

Fatty Acid (%) Control PEG5 PEG10 PEG15 PEG20 PEG25

Saturated fatty acids (SFA)

C12:0 lauric 0.256 0.249 0.189 0.200 0.158 0.24
C14:0 myristic 4.54 4.54 3.52 4.35 4.20 4.15

C15:0 pentadecanoic 0.425 0.420 0.425 0.412 0.415 0.418
C16:0 palmitic 31.2 30.6 30.2 29.8 30.6 31.0
C17:0 margaric 0.485 0.479 0.385 0.363 0.411 0.423
C18:0 stearic 4.45 4.40 3.54 3.38 3.89 4.11

C20:0 arachidic 0.071 0.071 0.068 0.071 0.068 0.062
C22:0 behenic 0.108 0.091 0.105 0.108 0.085 0.095

Total SFA 41.535 40.85 38.432 35.842 39.827 40.498

Monounsaturated fatty acids (MUFA)

C16:1, ω‑7
palmitoleic 0.272 0.251 0.214 0.278 0.188 0.254

C17:1 heptadecene 0.13 0.13 0.13 0.13 0.13 0.12
C18:1, ω‑9, cis oleic 34.21 34.11 33.85 34.28 34.11 34.15

C18:1, ω‑9, trans oleic 0.117 0.108 0.113 0.116 0.114 0.114
Total MUFA 34.729 34.599 34.307 34.694 34.542 34.638

Polyunsaturated fatty acids (PUFA)

C18:2 trans linoleic 0.12 0.11 0.12 0.12 0.105 0.10
C18:2, ω‑6 cis linoleic 16.6 16.5 16.2 16.5 16.3 15.8
C18:3, ω‑3 linolenic 4.10 4.13 4.10 4.18 3.52 3.64

C20:4, ω‑6
arachidonic 1.68 1.65 1.58 1.68 1.25 1.53

Total PUFA 22.5 22.39 22.0 22.48 21.175 21.07
PUFA/SFA 0.542 0.547 0.570 0.625 0.532 0.520
ω‑6/ω‑3 4.46 4.43 4.44 4.23 4.98 4.76

The analysis of the fatty acid content of mixed horsemeat semi‑smoked sausage with
PEG confirms that the concentration of total SFA in the formulations was reduced com‑
pared to control sample. Da Silva et al. [15] reported a significant reduction in SFA content
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by the substitution of up to 50% of pork back fat by oleogel. As compared with the control
sample, the reduction of SFA in the PEG15 was greatest (13.71%) among the other treat‑
ments. The PEG did not had the noticeable affect on MUFA content of the semi‑smoked
sausages, probably due to the higher amount of MUFA in horsemeat (40.1%) compare to
beef or pork [40]. Horsemeat is low in fat and has a high concentration of healthy omega‑
3 polyunsaturated fatty acids (PUFA), including linolenic (18:3n‑3) and other long‑chain
n‑3 fatty acids (FA), which have been shown the valuable effect to prevent some chronic
diseases [1,3,4,6,7]. The ω‑6/ω‑3 ratio describes how healthier is meat products. Greater
values of the ω‑6/ω‑3 ratio are connected with the growth of several disorders, including
cancer and heart disease; the ideal ratio is <4 [41]. Our value is slightly higher because the
formulation included horsemeat which is rich in PUFA. Our findings are consistent with
prior research [39] showing that semi‑smoked sausages made with duck meat have a signif‑
icant polyunsaturated fatty acid content. Authors [42] also obtained a ratio for traditional
sausages (8.26) over goods that were either locally sourced (16.80) or were conventional
(13.75). A mean ratio of 13.87 was found by Pietrzak‑Fieko and Modzelewska‑Kapitua [43],
whereas Amaral et al. [44] found a range of 9 to13 for pork frankfurter style sausages.

3.2.3. The Color, pH, Emulsion Stability (ES), WHC, CL, and TBARS
Table 4 displays the results for pH, L*, a*, b*, Chroma and Hue values, and TBARS for

semi‑smoked sausage batter and sausages with varying levels of PEG.

Table 4. The color, pH, and TBARS parameters of mixed horsemeat emulsions and sausages.

Parameters Control PEG5 PEG10 PEG15 PEG20 PEG25 p Value

Meat batter

pH 6.44 ±  0.07 b 6.48 ±  0.12 ab 6.45 ±  0.10 a 6.46 ±  0.11 a 6.57 ±  0.07 a 6.56 ±  0.11 a *
L* 65.16 ±  0.13 a 64.87 ±  0.91 a 64.17 ±  0.88 a 63.27 ±  0.56 a 63.48 ±  0.16 a 62.44 ±  0.78 a ns
a* 16.22 ± 2.51 a 15.21 ±  1.15 a 12.58 ±  1.43 c 11.60 ±  0.69 b 10.76 ±  0.59 b 10.42 ±  0.87 b *
b* 11.45 ±  0.43 a 11.61 ±  0.53 a 11.89 ±  0.21 a 11.77 ±  0.76 a 11.69 ±  0.56 a 10.97 ±  0.55 a ns

Chroma 19.85 ± 0.25 b 19.13 ± 0.21 a 17.31 ± 0.45 c 16.53 ± 0.23 c 15.89 ± 0.15 a 15.13 ± 0.15 a **
Hue 0.61 ± 0.05 b 0.65 ± 0.08 a 0.75 ± 0.01 a 0.79 ± 0.02 a 0.83 ± 0.03 a 0.81 ± 0.01 a *

Semi‑smoked sausage

pH 6.56 ±  0.13 b 6.58 ±  0.09 ab 6.61 ±  0.06 a 6.67 ±  0.11 b 6.73 ±  0.08 b 6.76 ±  0.06 a *
L* 62.06 ±  0.67 a 61.87 ±  0.91 a 61.34 ±  0.81 a 61.17 ±  0.91 a 60.13 ±  0.61 a 58.54 ±  0.78 a ns
a* 14.12 ± 2.51 a 14.01 ±  1.11 a 10.52 ±  1.31 b 9.70 ±  0.97 c 8.86 ±  0.86 c 8.52 ±  0.92 b *
b* 12.36 ±  0.51 a 12.41 ±  0.61 a 12.76 ±  0.31 a 12.57 ±  0.41 a 12.69 ±  0.46 a 12.67 ±  0.52 a ns

Chroma 18.77 ± 0.35 a 18.72 ± 0.55 a 16.54 ± 0.27 c 15.88 ± 0.43 a 15.48 ± 0.17 b 15.26 ± 0.25 a *
Hue 0.72 ± 0.01 ab 0.72 ± 0.05 a 0.88 ± 0.02 ac 0.91 ± 0.02 a 0.96 ± 0.02 c 0.97 ± 0.01 a **

TBARS, mg
MDA/kg 0.15 ± 0.03 a 0.06 ± 0.02 c 0.08 ± 0.02 a 0.06 ± 0.03 a 0.08 ± 0.01 a 0.09 ± 0.02 a *

All values are mean ± standard deviation of triplicates. * There were no significant differences (p > 0.05) across
samples with the same letter configuration in the same row; p‑value: ** (p < 0.01), * (p < 0.05), ns (not significant).

Adding PEG had a slight tendency to raise the pH of the mixed meat batter and
sausage, but there were not significant (p > 0.05) changes in the pH of the mixed meat
emulsions that were formed using PEG. Similar findings were found by authors [22], when
pumpkin fiber was added to lower the fat content of frankfurters, while studies by Ser‑
daroğlu et al. [45] and Unal et al. [24] found that adding dry pumpkin pulp and seed com‑
bination to beef patties or pumpkin powder to beef emulsions raised the pH. To the con‑
trary, Ahmed et al. [46] discovered that adding pumpkin powder to beef sausages caused
the pH value to drop relative to the control samples. Water‑binding capacity and emulsion
stability are enhanced in meat systems with a high pH [47].

Consumers are heavily influenced by a product’s visual appeal, making color a crucial
role in the evolution of meat products [48]. Color values for batters and semi‑smoked
sausages are displayed in Table 3 as L*, a*, b*, Chroma, and Hue angle. Since the PEG
had a dark tendency that is very similar to that of the meat emulsion, it is clear that the
addition of PEG did not result in significantly different L* values from the control sample
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(p > 0.05). L* values of beef patties containing pumpkin pulp and seed and beef burgers
including pineapple, passion fruit, or mango byproducts were not significantly different,
as was the case with Serdaroğlu et al. [45] and Selani et al. [49]. Contrarily, Kim et al. [22]
and Öztürk‑Kerimoğlu et al. [37] reported decreasing L* value in frankfurters by reducing
the fat content level with added pumpkin fiber and in a combination of teff flour with
quinoa flour in beef sausages. Freshly prepared sausage’s a* values decreased and b* values
did not have a significant difference in comparison to the control sample (p > 0.05). Da Silva
et al. [15] reported lower a* and higher L* and b* values of freshly prepared sausages with
oleogel, whereas Calvalho Barros et al. [12] noted no change in a* value in beef burgers with
tiger nut oil emulsion. The addition of pumpkin powder into a beef emulsion both boosted
the emulsions’ yellowness (b*), as reported by Unal et al. [24]. Using amorphous cellulose
fiber in place of pig fat has not been shown to appreciably alter the color characteristics,
save for the change in b* values after storage, as previously reported by Schmiele et al. [50].
Based on these results, it appears that formulation components used in meat products may
have varying effects on the end product’s color.

Dissimilarities in the light scattering properties of the meat fat and PEG in the sausage
batters may be to reason for the differences in color factors among the control and PEG‑
added sausages [50], and the presence of polyphenolic compounds in pumpkin powder
may be transferred to the final product, as shown by the Chroma values (Table 3), which
indicates the color saturation. Similarly, the Hue angle, the indication of the presence of
red, was at its minimum in the control sample and increased in intensity in the samples
that included PEG [51].

Lipid oxidation is crucial to the storage, quality, and nutritional value of meat prod‑
ucts. PEG5 and PEG15 showed lowest oxidation levels among all samples (Table 3). Since
pump‑kin is a source of carotenoids, tocopherols, and antioxidants it was expected that the
in‑corporation of PEG into sausage formulation will reduce the oxidation level. All sam‑
ples had oxidation levels that were lower than the rancidity criterion, TBARS > 2.55–10.0 mg
MDA/kg sample [52], with values below 0.2 mg MDA/kg sample. Our samples showed
TBARS, (mg MDA/kg) values as Control (0.15± 0.03), PEG5 (0.06± 0.02), PEG10 (0.08 ± 0.02),
PEG15 (0.06 ± 0.03), PEG20 (0.08 ± 0.01), and PEG25 (0.09 ± 0.02) mg MDA/kg, which are
showing lower value than the rancidity level as per reference [52]. According to Zhang
et al. [52] the meat remains acceptable to consumers even when their TBARS values achieve
levels of 2.5 mg MDA/kg or 10.0 mg MDA/kg. Since unsaturated fatty acids found in horse‑
meat are easily oxidized, this is a positive finding. PEG’s ability to lower TBARS (p < 0.05)
may be attributable to the antioxidant chemicals found in pumpkin in PEG, which slowed
down the oxidation process. Wahyono et al. [53] observed similar results, stating that the
addition of 20% hot air dried pumpkin powder reduced lipid oxidation because of the
pumpkin’s natural antioxidants. Yet, a shelf‑life investigation is required to verify the re‑
duced lipid oxidation in semi‑smoked sausages.

Emulsion stability (ES) and cooking loss (CL) are significant factors to be assessed for
predicting the technological quality of sausages. Table 5 displays the ES and CL value of
semi‑smoked sausage with different amounts of PEG.

Table 5. Physico‑chemical characteristics of semi‑smoked sausage produced with different amounts
of PEG.

Parameters Control PEG5 PEG10 PEG15 PEG20 PEG25 p Value

WHC (%) 75.03 ± 0.71 a 73.87 ± 0.33 b 74.52 ± 0.34 a 76.68 ± 0.24 c 75.41 ± 0.21 a 74.47 ± 0.74 a **
Emulsion Stability
Fat exudation (%) 6.45 ± 0.74 c 3.56 ± 0.98 a 2.62 ± 0.77 b 1.22 ± 0.12 a 1.20 ± 1.11 a 1.14 ± 1.01 a **
Water exudation (%) 20.45 ± 0.37 c 15.31 ± 0.63 a 9.33 ± 0.74 b 6.40 ± 0.44 d 7.22 ± 0.14 d 7.25 ± 0.66 d **
CL (%) 11.12 ± 1.34 a 9.45 ± 1.13 b 6.53 ± 1.11 a 4.96 ± 0.75 a 5.73 ± 0.54 a 5.45 ± 1.45 b *

All values are mean ± standard deviation of triplicates. * Different superscripts indicate statistically significant
(p < 0.05) differences between means in the same row (a–d). p‑value: ** (p < 0.01), * (p < 0.05), ns (not significant).
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While all PEG‑made sausages had lower CL than the control sample, PEG15 had the
lowest CL (p < 0.05). Reformulated sausages using chia or oat emulsion gels as a fat re‑
placer have been shown to be very resistant to cooking temperatures, as described by
Pintado et al. [16]. Unal et al. [24] found a similar pattern, reporting that the addition
of pumpkin powder to beef emulsions reduced CL and raised ES. The forms of dietary
fiber added to the meat product have a significant impact on CL. Hence, the drop in CL
might have resulted from the semi‑smoked sausages’ enhanced water absorption capabil‑
ity due to the addition of dietary fiber in the form of PEG. The values of water and fat
exudation ranged from 6.40–20.45 to 1.14–6.45, respectively (Table 5). The control sample
showed higher water and fat exudation, and therefore, lower emulsion stability (p < 0.05).
In addition, higher emulsion stability was observed with the increase in the replacement
level (p < 0.05). These results can be due to the dietary fiber content of pumpkin in the
emulsion gel, resulting in greater retention of water and lipids in the food matrix. Egg
yolk and pumpkin powder serve to increase the emulsion’s stability. Pumpkin flour is
used as a stabilizer in low‑fat mayonnaise due to its hydrophilic colloidal qualities [21].
CL and ES values are in agreement with those published by Öztürk‑Kerimoğlu [51], who
found that elevating the concentration of the pea protein‑agar agar gel complex enhanced
the stability and CL. Similarly, Choe et al. [14] and Alves et al. [34] reported lower cook‑
ing loss and higher emulsion stability when a mixture of chicken skin and dietary fiber
and pork skin and green banana flour were used as fat replacement in emulsified meat
products. Protein source, fat amount, fiber type, salt concentration, and processing meth‑
ods are all potential contributors to the ES of semi‑smoked sausage batter, in addition to
supplementary additives.

The presence of dietary fibre in pumpkin flour may be responsible for the rise in WHC.
Water molecules fill the pore space of fiber particle as the dietary fibre hydrates. Addition‑
ally, the gelatinization of hydrated pumpkin flour at high temperatures may be the cause
of the observed rise in WHC in the treated sample. Accordingly, Serdaroğlu et al. [45] re‑
ported that adding pumpkin mix to beef patties increased WHC. Ammar et al. [54] and
Unal et al. [24] found that the incorporation of pumpkin powder into meatball samples
increased WHC more than samples with date seed flour or wheat germ and physicochem‑
ical characteristics of beef emulsion improved by introducing pumpkin powder. Thus, for
an acceptable cooking yield, a good water retention capacity is also required. To assure a
juicy meat product after culinary treatment before consumption, it is crucial to combat the
exudation inside the sausages’ package during storage and commercialization.

3.2.4. Texture Analysis Profile
The texture of meat products is often improved by the addition of non‑meat sub‑

stances such soy protein, whey protein, and carbohydrates like starch and cereal flour.
Table 6 provides information on the various sausage textures. The strong binding capacity
of the fiber source components and egg protein likely contributed to the softer structure
seen at higher concentrations of PEG (p < 0.05), which in turn reduced hardness. This sup‑
pleness might be a result of the higher moisture content as well. Similar reductions in
hardness and gumminess were found by Öztürk‑Kerimoğlu et al. [37,51] when they used
a pea protein‑agar agar gel complex and included quinoa flour and teff flour. Adding egg
yolk protein to meat emulsions had a similar effect, increasing the hardness value while
also increasing the capacity to absorb water [55]. Chewiness and gumminess scores for
PEG‑treated sausages were significantly lower compared to those for the control group.
Considering the close relationship between softness and the other features, it is possible
to implement these alterations in response to the reduced hardness value. The reduced
hardness and chewiness of low‑fat meat emulsions produced with pea protein‑agar agar
complex and aloe gels was also linked by Öztürk‑Kerimoğlu et al. [51] and Kumar et al. [56]
to increased water binding and fat capacity. Cohesiveness values (p < 0.05) that increase
when PEG is added indicate that the PEG has been successfully incorporated into the meat
mixture, which in turn suggests that the internal linkages in these samples are stronger
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than in others [56]. Both Öztürk‑Kerimoğlu et al. [57] and Eim et al. [58] observed that the
inclusion of carrot powder into beef meat batter and the addition of carrot dietary fiber
to fermented sausages altered the hardness and gumminess of the final product, and our
results corroborate their findings.

Table 6. Texture profile analysis of semi‑smoked sausages.

Parameters Control PEG5 PEG10 PEG15 PEG20 PEG25 p Value

Hardness (N) 66.23 ± 1.65 b 65.78 ± 1.47 b 63.89 ± 1.05 a 62.77 ± 1.08 a 60.19 ± 1.38 c 60.51 ± 1.05 b *
Springiness (mm) 0.90 ± 0.01 ab 0.89 ± 0.05 b 0.90 ± 0.02 b 0.93 ± 0.03 a 0.90 ± 0.01 b 0.89 ± 0.01 a ***
Cohesiveness 0.77 ± 0.01 b 0.78 ± 0.00 b 0.78 ± 0.01 ac 0.83 ± 0.05 a 0.81 ± 0.00 a 0.82 ± 0.02 ac **
Gumminess (N) 22.45 ± 1.85 a 23.72 ± 0.08 ac 22.12 ± 0.07 c 17.83 ± 0.14 c 17.24 ± 0.12 a 16.05 ± 0.02 c *
Chewiness
(N × mm) 19.21 ± 2.59 a 16.54 ± 0.15 a 15.68 ± 0.16 a 13.65 ± 0.21 ac 13.20 ± 0.53 a 12.98 ± 0.08 c *

All values are mean ± standard deviation of triplicates. * Different superscripts indicate statistically significant
(p < 0.05) differences between means in the same row (a–c). p‑value: *** (p < 0.001), ** (p < 0.01), * (p < 0.05), ns
(not significant).

3.2.5. Rheological Characteristics of the Meat Emulsion before Thermal Processing
The rheological measurements are very important to manage the chemical interac‑

tions of food components to get the desired food structure with the desired texture charac‑
teristics [59]. Figure 2 displays the storage (G′) and loss (G′′) modulus of the meat batters
(a). The paste exhibited characteristics of viscoelastic solids, with G′ values greater than
G′′ within the frequency range studied. All of the samples exhibited the characteristic
viscoelastic behavior associated with ‘weak gel’ qualities, proving that the produced 3D
gel cross‑linked gel network was rheologically consistent across all of the samples [59].
Low‑fat meat emulsions with fish oil and various binders [60] and low‑fat sausage with in‑
ulin [61] as a fat substitute both had similar results. These characteristics are crucial when
analyzing the potential uses of this emulsion gel in the meat processing business.

3.2.6. The Influence of Heat on the Rheological Characteristics of the PEG‑Added
Meat Emulsion

During heating (25–80 ◦C), the structure of the semi‑smoked sausages created with
varying concentrations of emulsion gel are shown in Figure 2b as a function of storage mod‑
ulus vs. temperature. Up to 80 ◦C, all treatments, with the exception of control, exhibited
identical thermo‑rheological curves. The three changes in G’ during heating suggest that
protein denaturation occurred while the raw sausage was being heated. Heating the batter
changes it from a disorganized system into a new well‑ordered gel matrix (G′) with similar
elastic properties across all treatments except at 45–80 ◦C [62], where covalent bonding and
hydrophobic interactions for proteins are accomplished. When the temperature reaches
this point, the viscous solution transforms into an elastic gel network, with G′ increasing
as the temperature rises [62]. Compared to the other sausages, the control sample’s elastic
network construction began earlier when no PEG was added. The dissimilarity amongst
control and other formulations is probably associated with a more complicated configura‑
tion, necessitating more energy to breakdown the bonds and component connections that
lead to gel formation. At temperatures around 50 ◦C, the myosin tail forms a semi‑gel,
which likely explains why the G′ peak rises slightly. After this stage, G′ decreased with
increasing temperatures from 55 to 60 ◦C due to denaturation of myosin tails, which al‑
tered fluidity and disrupted the meat protein network established at lower temperatures.
When the temperature was raised from 60 ◦C to 80 ◦C, the viscous sol transformed into an
elastic gel network, and the G′ increased fast [62]. After the heating process was complete,
G′ showed that all treatments were equally elastic and viscous.
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During the cooling process, as depicted in Figure 2c, the G′ of meat emulsions con‑
tinues to form and the components of the sausage partially crystallize, resulting in the
rheological features of the final product [62]. The final readings of the elasticity modu‑
lus showed that PEG15 was the most resilient gel. The least powerful gels (p < 0.05) were
PEG20 and PEG25.

3.2.7. Microstructure (SEM Analyses)
The semi‑smoked, mixed horsemeat sausages with emulsion gel can be seen in detail

in the SEM images shown in Figure 3. There was no discernible visual difference between
the untreated and treated samples, as shown by the SEM images. Water and air expansion
caused the control sample’s irregular structure to seem spongy [63]. All the other samples
had the same amounts of water (Table 1), but their structures were more structured and
homogeneous. Pumpkin flour, which binds well to both water and fat, was used to create
an emulsion gel for these formulations. When compared to other samples, the PEG15 ex‑
hibits the most homogeneous sausage matrix structure. These findings may be explained
by the high antioxidant capacity of pumpkin flour (thanks to its high fiber and protein con‑
tent and its position high in the β‑carotine/linoleic acid system) [53], which allows having
a good binding ability with water and fat. It was suggested that a chemical treatment to
be performed on the meat sample prior to examination in order to separate the protein
component, a fat globule, and a pore.
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4. Conclusions
The incorporation of pumpkin‑based emulsion in semi‑smoked sausages made with

mixture of horsemeat (highest grade and grade I) and chicken was analyzed. Sausage hard‑
ness, viscoelasticity, network structure, and cooking loss were all improved by the addition
of an emulsion gel made from pumpkin powder, egg yolk, and bullion in the ratio of 5:4:1.
Pumpkin powder, a rich source of antioxidants and fiber, can be used to make emulsion gel
that can increase the sausages’ resistance to oxidation, which was noticed in samples PEG5
and PEG15. Yet, the study of lipid oxidation during storage is needed to understand the
PEG property more clearly. Reformulation of the sausage presented greater effects on the
physicochemical, rheological, and microstructural properties when emulsion was used in
15% substitution of the meat batter. Research from this study suggests that incorporating
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pumpkin flour into emulsion gel for use in the processing of meat products could be an
effective method for improving the meat industry. In any case, the sensory analysis would
be essential to the introduction of this new product. There will soon be a study comparing
the effects of various antioxidant chemicals on the storage life of semi‑smoked sausages.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11233886/s1, Table S1: Color parameters (L*, a*, b*) and pH of
pumpkin‑based emulsion gel (PEG), and horse fat (HF) at 25 ◦C (solid‑state).
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