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Abstract: Epicatechin (EPI) is a dietary flavonoid that is present in many foods and possesses various
bioactivities. We assessed the effects of EPI supplementation on intestinal barrier integrity in mice.
Thirty-six mice were assigned to three groups and fed a standard diet or a standard diet supplemented
with 50 or 100 mg EPI/kg (n = 12 per group). After 21 days of rearing, blood and intestinal samples
were collected from eight randomly selected mice. Supplementation with 50 and 100 mg/kg EPI
decreased (p < 0.05) the serum diamine oxidase activity and D-lactic acid concentration and increased
(p < 0.05) the duodenal, jejunal, and ileal abundance of tight junction proteins, such as occludin.
Moreover, it lowered (p < 0.05) the duodenal, jejunal, and ileal tumor necrosis factor-α contents and
enhanced (p < 0.05) the duodenal and jejunal catalase activities and ileal superoxide dismutase activity.
Supplementation with a lower dose (50 mg/kg) decreased (p < 0.05) the ileal interleukin-1β content,
whereas supplementation with a higher dose (100 mg/kg) increased (p < 0.05) the duodenal and
jejunal glutathione peroxidase activities. Furthermore, supplementation with 50 and 100 mg/kg EPI
decreased (p < 0.05) cell apoptosis, cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3), and
cleaved caspase-9 contents in the duodenum, jejunum, and ileum. In conclusion, EPI could improve
intestinal barrier integrity in mice, thereby suppressing intestinal inflammation and oxidative stress
and reducing cell apoptosis.

Keywords: epicatechin; antioxidant capacity; inflammatory responses; cell apoptosis; intestinal
barrier

1. Introduction

In addition to serving as the main site for nutrient digestion and absorption, the intesti-
nal epithelium acts as a barrier to inhibit the passage of toxins, allergens, and pathogens
from the luminal environment into the circulatory system [1,2]. However, numerous factors,
such as inflammation and oxidative stress, can disrupt the intestinal barrier and thereby
negatively affect health [3,4]. Therefore, dietary intervention with certain nutrients that
can inhibit intestinal inflammation and oxidative stress is likely to attenuate intestinal
barrier damage. Flavonoids are polyphenols containing diphenylpropane (C6-C3-C6);
they are secondary metabolites that are ubiquitously distributed throughout the plant
kingdom [5]. Recently, flavonoids have been a focus of research interest because of their
potential modulatory properties with respect to intestinal permeability [6].

Epicatechin (EPI) is a polyphenolic flavonoid that belongs to the flavan-3-ol group; it
is present in large amounts in tea, berries, and cocoa [7,8]. Importantly, EPI exhibits a wide
array of physiological activities, such as anti-oxidative [9,10], anti-inflammatory [11,12],
and anti-apoptotic [13,14] activities. Given these advantages, dietary EPI supplementation
may be beneficial for the gastrointestinal tract. For instance, EPI has been reported to protect
the gastrointestinal tract from the negative impacts of a high-fat diet [15,16]. However, to
date, no study has clearly reported the effects of dietary EPI supplementation on intestinal
barrier function in mice. Hence, further research is necessary to elucidate this.
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Therefore, this study assesses the effects of EPI supplementation on intestinal barrier in-
tegrity in mice and explores its underlying mechanisms. Our findings would provide valu-
able information on dietary intervention with EPI for improving intestinal barrier function.

2. Materials and Methods
2.1. Animal Management and Diet

A total of 36 healthy mice (4 weeks old, weighing 24–30 g) were bought from Changsha
Tianqin Biotechnology Co., Ltd. (Changsha, China) and acclimated for 1 week. Then, the
mice were divided into three groups (n = 12 per group). The groups were randomly
assigned to one of the three dietary treatments, namely a standard diet (control (CON)
group) or a standard diet supplemented with 50 mg/kg EPI (LEPI group) or 100 mg/kg
EPI (HEPI group) (purity >90%; Dalian Meilun Biotechnology Co., Ltd., Dalian, China).
All the mice were individually caged under controlled conditions (temperature 24 ± 1 ◦C,
humidity 50–60%, 12 h light–dark cycle) and provided with unlimited access to feed and
autoclaved water during the 3-week experimental period.

2.2. Assessment of Weight Gain

On days 1 and 22 (08:00 h), all the mice were weighed to calculate their average daily
gain (ADG) over the experimental period.

2.3. Sample Collection

After overnight fasting, eight randomly selected mice per group were anesthetized
using ether (08:00 h on day 22) and their blood samples were collected via heart puncture.
After being placed at room temperature for 30 min, the samples were centrifuged at 3000× g
at 4 ◦C for 10 min to acquire serum and then stored at −20 ◦C. After blood sampling,
the abdominal cavity was opened, and approximately 2 cm segments of the duodenum,
jejunum, and ileum were fixed in 4% paraformaldehyde buffer for evaluating intestinal
cell apoptosis. The samples were then flushed gently with ice-cold phosphate-buffered
saline (PBS). Following this, mucosal samples from the duodenum, jejunum, and ileum
were collected by scraping using a scalpel and frozen at −80 ◦C.

2.4. Measurement of Serum Parameters

Serum diamine oxidase (DAO) activity was measured using kits manufactured by
Nanjing Jiancheng Bioengineering Institute (Nanjing, China), and serum D-lactic acid
concentration was measured using ELISA kits manufactured by Jiangsu Meimian Industrial
Co., Ltd. (Yancheng, China). All assays were performed according to the specific procedures
provided in the kits.

2.5. Small Intestine Biochemical Analysis
2.5.1. Preparation of Intestinal Homogenates

Frozen duodenal, jejunal, and ileal mucosal samples were thawed, mixed with ice-cold
physiological saline at a ratio of 1:9 (w/v) and centrifuged for 10 min (3000× g at 4 ◦C)
to obtain supernatants. Then, the total protein concentration in the supernatants was
estimated using a total protein quantitative assay kit (Nanjing Jiancheng Bioengineering
Institute). The antioxidant-related indices and cytokine and cell apoptosis-related pro-
tein contents were normalized against the total protein concentration in each sample for
intersample comparison.

2.5.2. Determination of Intestinal Antioxidant Capacity

Duodenal, jejunal, and ileal catalase (CAT), superoxide dismutase (SOD), and glu-
tathione peroxidase (GSH-PX) activities and malondialdehyde (MDA) concentration were
determined based on the manuals provided by Nanjing Jiancheng Bioengineering Institute.
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2.5.3. Assessment of Intestinal Cytokine and Cell Apoptosis-Related Protein Contents

Duodenal, jejunal, and ileal interleukin-1β (IL-1β), IL-10, tumor necrosis factor-α (TNF-
α), interferon-γ (IFN-γ), B-cell lymphoma-2-associated X protein (Bax), B-cell lymphoma-2
(Bcl-2), TNF receptor 1 (TNFR1), cleaved cysteinyl aspartate-specific proteinase-3 (caspase-
3), cleaved caspase-8, and cleaved caspase-9 contents were assessed using ELISA kits
(Jiangsu Meimian Industrial Co., Ltd.). All operations were strictly manipulated according
to the manufacturer’s guidelines.

2.6. Detection of Intestinal Cell Apoptosis

Apoptosis was assessed by a terminal deoxynucleotidyl transferase (TdT)-mediated
deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL) assay using an in situ cell
death detection kit (Roche Diagnostics GmbH, Mannheim, Germany). In brief, the fixed
duodenal, jejunal, and ileal segments were dehydrated, embedded in paraffin, cut into 3
µm thick sections, dewaxed, rehydrated and then incubated with 20 µg/mL proteinase
K at 37 ◦C for 20 min. Subsequently, the sections were washed thrice with PBS before
permeabilizing with 0.5% Triton X-100 at room temperature for 10 min. Next, TdT buffer
containing dUTP was used to treat the sections at 37 ◦C for 2 h, followed by washing thrice
with PBS to stop the reaction. Following this, 4′, 6-diamidino-2-phenylindole (DAPI) was
used to stain the sections at room temperature for 5 min to detect cell nuclei. Finally, the
sections were sealed with antifade mounting medium and imaged under a fluorescent
microscope (Nikon Corporation, Tokyo, Japan). A total of six random regions were selected
from each section for counting the number of TUNEL-positive cells. The apoptotic index
was expressed as the proportion of apoptotic cells to total cells.

2.7. Western Blot Assay

Duodenal, jejunal, and ileal mucosal specimens were homogenized in RIPA buffer con-
taining protease inhibitor cocktail (Beyotime Institute of Biotechnology, Shanghai, China)
and then centrifuged at 12,000× g at 4 ◦C for 15 min to collect lysate supernatants. The total
protein concentrations in the lysates were assayed using the bicinchoninic acid method [17].
The proteins were then mixed with 5× sample-loading buffer (Beyotime Institute of Biotech-
nology) for denaturation at 98 ◦C for 10 min. Thereafter, equal quantities of proteins per
sample were resolved by sodium dodecyl sulphate–polyacrylamide gel electrophoresis
and transferred onto polyvinylidene fluoride (PVDF) membranes. The PVDF membranes
were then incubated with blocking buffer, i.e., 5% bovine serum albumin in Tris-buffered
saline containing 1% Tween-20 (TBS/T), at room temperature for 1 h. After rinsing thrice
with TBS/T, the PVDF membranes were probed with primary antibodies against occludin
(1:1000 dilution; Abcam plc., Cambridge, UK), zonula occludens-1 (1:1000 dilution; ZO-1;
Thermo Fisher Scientific, Inc., Waltham, MA, USA), or glyceraldehyde-3-phosphate dehy-
drogenase (1:1000 dilution; GAPDH; Cell Signalling Technology, Inc., Danvers, MA, USA)
at 4 ◦C overnight. Following this, the PVDF membranes were rinsed thrice with TBS/T
and incubated with a suitable secondary antibody at room temperature for 1 h. Finally,
the PVDF membranes were immersed in Clarity™ Western ECL Substrate (Bio-Rad Labo-
ratories, Inc., Hercules, CA, USA), visualized using a ChemiDoc™ XRS+ Imager System
(Bio-Rad Laboratories, Inc.), and analyzed using ImageJ software (version 1.8.0; National
Institutes of Health, Bethesda, MD, USA).

2.8. Statistical Analysis

All data were assessed by performing one-way analysis of variance followed by
Tukey’s multiple-range tests using SAS 9.0 (SAS Inst., Inc., Cary, NC, USA), with each
mouse serving as a statistical unit. The results were expressed as the means ± standard
errors. p < 0.05 was used to denote statistical significance among means.
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3. Results
3.1. Growth Performance

The effects of EPI supplementation on the growth performance of the mice are pre-
sented in Figure 1. EPI supplementation did not affect (p > 0.05) the ADG of the mice.
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Figure 1. Effects of epicatechin on the growth performance of mice. Data are expressed as the
means (12 mice/treatment), with standard errors represented by vertical bars. CON group: control
group—mice received a standard diet; LEPI group—mice received a standard diet supplemented with
50 mg/kg epicatechin; HEPI group—mice received a standard diet supplemented with 100 mg/kg
epicatechin; ADG—average daily gain.

3.2. Serum Indices

Table 1 reveals the variations in serum indices of the mice after EPI supplementation.
Compared with the CON group, the serum DAO activity and D-lactic acid concentration
were notably decreased (p < 0.05) in the LEPI and HEPI groups.

Table 1. Effects of epicatechin on the serum indices of mice †.

Items § Treatment Groups ‡
p-Value

CON LEPI HEPI

DAO, U/L 9.04 ± 0.25 a 7.48 ± 0.14 b 7.27 ± 0.16 b <0.001
D-Lactic acid, ng/mL 563.64 ± 8.17 a 488.49 ± 5.73 b 507.46 ± 4.32 b <0.001

a,b Mean values with different superscripts in the same row indicate a significant difference (p < 0.05). † Values are
the means of eight replicates per treatment. ‡ CON group: control group—mice received a standard diet; LEPI
group—mice received a standard diet supplemented with 50 mg/kg epicatechin; HEPI group—mice received a
standard diet supplemented with 100 mg/kg epicatechin. § DAO—diamine oxidase.

3.3. Abundance of Intestinal Tight Junction Proteins

As shown in Figure 2, supplementation with 50 and 100 mg/kg EPI increased (p < 0.05)
the duodenal, jejunal, and ileal abundances of occludin and ZO-1.
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Figure 2. Effects of epicatechin on the abundance of intestinal tight junction proteins in mice.
(A–C) Duodenal, jejunal, and ileal abundances of occludin, respectively. (D–F) Duodenal, jejunal,
and ileal abundances of ZO-1, respectively. Data are expressed as means (eight mice/treatment), with
standard errors represented by vertical bars. a–c Mean values with different superscripts indicate a
significant difference (p < 0.05). CON group: control group—mice received a standard diet; LEPI
group—mice received a standard diet supplemented with 50 mg/kg epicatechin; HEPI group—mice
received a standard diet supplemented with 100 mg/kg epicatechin; ZO-1—zonula occludens-1;
GAPDH—glyceraldehyde-3-phosphate dehydrogenase.

3.4. Intestinal Antioxidant Capacity

Dietary supplementation with 50 and 100 mg/kg EPI increased (p < 0.05) the duodenal
and jejunal CAT activities and ileal SOD activity (Table 2). Additionally, supplementation
with 100 mg/kg EPI increased (p < 0.05) the duodenal and jejunal GSH-PX activities.
Moreover, supplementation with either 50 or 100 mg/kg EPI lowered (p < 0.05) the MDA
contents in the duodenum, jejunum, and ileum.
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Table 2. Effects of epicatechin on the intestinal antioxidant capacity of mice †.

Items § Treatment Groups ‡
p-Value

CON LEPI HEPI

Duodenum
SOD, U/mg protein 70.90 ± 2.89 81.74 ± 3.50 79.20 ± 4.66 0.127
CAT, U/mg protein 46.56 ± 2.48 c 66.33 ± 2.88 b 78.54 ± 2.79 a <0.001

GSH-PX, U/mg protein 184.44 ± 4.55 b 201.16 ± 4.75 b 241.52 ± 7.83 a <0.001
MDA, nmol/mg protein 2.97 ± 0.18 a 1.66 ± 0.09 b 1.47 ± 0.10 b <0.001

Jejunum
SOD, U/mg protein 50.14 ± 1.88 53.99 ± 2.62 51.10 ± 2.15 0.461
CAT, U/mg protein 23.26 ± 0.91 b 29.07 ± 1.85 a 30.65 ± 1.58 a 0.006

GSH-PX, U/mg protein 170.46 ± 4.85 b 180.83 ± 3.37
a, b 185.56 ± 3.79 a 0.044

MDA, nmol/mg protein 1.97 ± 0.08 a 1.53 ± 0.07 b 1.38 ± 0.04 b <0.001
Ileum

SOD, U/mg protein 54.23 ± 2.76 b 71.78 ± 2.24 a 80.04 ± 2.60 a <0.001
CAT, U/mg protein 29.24 ± 1.29 30.53 ± 1.50 33.89 ± 1.88 0.123

GSH-PX, U/mg protein 127.92 ± 3.85 138.81 ± 5.06 141.77 ± 4.47 0.095
MDA, nmol/mg protein 2.69 ± 0.09 a 2.11 ± 0.10 b 2.01 ± 0.07 b <0.001

a–c Mean values with different superscripts in the same row indicate a significant difference (p < 0.05). † Values
are the means of eight replicates per treatment. ‡ CON group: control group—mice received a standard diet; LEPI
group—mice received a standard diet supplemented with 50 mg/kg epicatechin; HEPI group—mice received
a standard diet supplemented with 100 mg/kg epicatechin. § SOD—superoxide dismutase; CAT—catalase;
GSH-PX—glutathione peroxidase; MDA—malondialdehyde.

3.5. Intestinal Cytokine Contents

Dietary supplementation with 50 mg/kg EPI decreased (p < 0.05) the ileal IL-1β
content but increased (p < 0.05) the jejunal IL-10 content (Table 3). Moreover, dietary
supplementation with 50 and 100 mg/kg EPI lowered (p < 0.05) the duodenal, jejunal, and
ileal TNF-α contents. However, the duodenal, jejunal, and ileal IFN-γ contents remained
unchanged (p > 0.05) after supplementation with 50 or 100 mg/kg EPI.

Table 3. Effects of epicatechin on the intestinal cytokine contents of mice †.

Items § Treatment Groups ‡
p-Value

CON LEPI HEPI

Duodenum,
pg/mg protein

IL-1β 30.85 ± 1.38 32.75 ± 1.23 28.47 ± 1.13 0.075
IL-10 486.92 ± 12.63 517.91 ± 16.42 497.73 ± 12.89 0.308

TNF-α 309.87 ±7.39 a 230.81 ± 5.28 b 212.71 ± 9.55 b <0.001
IFN-γ 338.01 ± 9.43 324.94 ± 7.32 319.80 ± 8.59 0.315

Jejunum, pg/mg
protein
IL-1β 32.68 ± 1.18 30.68 ± 0.80 30.31 ± 0.85 0.193
IL-10 440.39 ± 11.10 b 535.18 ± 8.24 a 466.93 ± 14.38 b <0.001

TNF-α 325.84 ± 7.47 a 301.07 ± 6.86 b 297.19 ± 6.17 b 0.015
IFN-γ 310.94 ± 6.12 301.32 ± 7.30 294.26 ± 6.78 0.238

Ileum, pg/mg
protein
IL-1β 27.69 ± 1.32 a 22.74 ± 0.57 b 25.46 ± 1.12 a,b 0.011
IL-10 351.85 ± 12.71 353.51 ± 10.48 380.03 ± 9.19 0.147

TNF-α 231.54 ± 6.88 a 203.52 ± 5.97 b 194.74 ± 9.31 b 0.006
IFN-γ 240.08 ± 11.15 225.44 ± 8.35 234.89 ± 5.88 0.497

a,b Mean values with different superscripts in the same row indicate a significant difference (p < 0.05). † Values are
the means of eight replicates per treatment. ‡ CON group: control group—mice received a standard diet; LEPI
group—mice received a standard diet supplemented with 50 mg/kg epicatechin; HEPI group—mice received
a standard diet supplemented with 100 mg/kg epicatechin. § IL-1β—interleukin-1β; IL-10—interleukin-10;
TNF-α—tumor necrosis factor-α; IFN-γ—interferon-γ.
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3.6. Intestinal Cell Apoptosis

To assess the impacts of EPI on intestinal cell apoptosis, we observed intestinal cell
apoptosis using TUNEL staining. As shown in Figure 3, 50 and 100 mg/kg EPI decreased
(p < 0.05) duodenal, jejunal, and ileal cell apoptosis.
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Figure 3. Effects of epicatechin on intestinal cell apoptosis in mice. (A) Representative small intestinal
cross-sections of mice in the CON, LEPI, and HEPI groups after TUNEL staining (200×). Nuclei
were stained with DAPI (blue) and TUNEL (green) staining. (B–D) Quantification of apoptotic cells
in the duodenum, jejunum, and ileum. Data are expressed as means (eight mice/treatment), with
standard errors represented by vertical bars. a,b Mean values with different superscripts indicate a
significant difference (p < 0.05). CON group: control group—mice received a standard diet; LEPI
group—mice received a standard diet supplemented with 50 mg/kg epicatechin; HEPI group—mice
received a standard diet supplemented with 100 mg/kg epicatechin; DAPI—4′, 6-diamidino-2-
phenylindole; TUNEL—terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate
nick-end labelling.

3.7. Intestinal Cell Apoptosis-Related Proteins

Supplementation with 50 and 100 mg/kg EPI decreased (p < 0.05) the cleaved caspase-
3 and cleaved caspase-9 contents in the duodenum, jejunum, and ileum (Figure 4). In
contrast, supplementation with 100 mg/kg EPI increased (p < 0.05) the jejunal Bcl-2 content.
However, no changes (p > 0.05) were noted in the duodenal, jejunal, and ileal Bax, TNFR1,
and cleaved caspase-8 contents in the CON, LEPI, and HEPI groups.
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that EPI supplementation could improve intestinal barrier integrity by suppressing the 
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duction of intestinal anti-inflammatory cytokines. 

Figure 4. Effects of epicatechin on intestinal Bax (A), Bcl-2 (B), TNFR1 (C), cleaved caspase-3 (D),
cleaved caspase-8 (E), and cleaved caspase-9 (F) contents in mice. Data are expressed as means (eight
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mice/treatment), with standard errors represented by vertical bars. a,b Mean values with different
superscripts indicate a significant difference (p < 0.05). CON group: control group—mice received a
standard diet; LEPI group—mice received a standard diet supplemented with 50 mg/kg epicatechin;
HEPI group—mice received a standard diet supplemented with 100 mg/kg epicatechin; Bax—B-cell
lymphoma-2-associated X protein; Bcl-2—B-cell lymphoma-2; TNFR1—tumor necrosis factor receptor
1; cleaved caspase-3—cleaved cysteinyl aspartate-specific proteinase-3; cleaved caspase-8—cleaved
cysteinyl aspartate-specific proteinase-8; cleaved caspase-9—cleaved cysteinyl aspartate-specific
proteinase-9.

4. Discussion

The intestinal barrier is closely related to tight junctions, which are dynamic multi-
functional complexes that are located between epithelial cells and function as a critical
structure for paracellular permeability [18]. Tight junctions consist of transmembrane
proteins, such as occludin, and cytosolic proteins that are recruited to the apicolateral mem-
brane, such as ZO-1 [19,20]. We found that EPI supplementation increased the duodenal,
jejunal, and ileal abundances of occludin and ZO-1 (at 50 and 100 mg/kg). These findings
indicate that EPI supplementation could improve intestinal barrier integrity in mice. At
present, several blood parameters, such as DAO activity and D-lactic acid concentration,
are considered circulating markers for evaluating the degree of intestinal barrier damage.
Intestinal barrier disruption usually leads to the release of DAO and D-lactic acid into blood
circulation [21,22]. Accordingly, mice treated with EPI (50 and 100 mg/kg) exhibited a
decrease in serum DAO activity and D-lactic acid concentration, further confirming that
EPI supplementation could improve the intestinal barrier integrity in mice.

In addition to playing a crucial role in the modulation of intestinal inflammatory
responses, cytokines (both pro-inflammatory and anti-inflammatory cytokines) have an im-
portant effect on the regulation of intestinal barrier integrity [23,24]. Most pro-inflammatory
cytokines, such as IL-1β and TNF-α, can disrupt the intestinal barrier, thereby increasing
intestinal permeability [25,26]. We found that supplementation with 50 mg/kg EPI de-
creased the ileal IL-1β content, and supplementation with 50 and 100 mg/kg EPI decreased
the duodenal, jejunal, and ileal TNF-α contents in mice. These findings indicate that EPI
supplementation could improve intestinal barrier integrity by suppressing the release of
intestinal pro-inflammatory cytokines. On the other hand, IL-10, an anti-inflammatory
cytokine, can attenuate intestinal inflammatory injury [27]. We observed that supplemen-
tation with 50 mg/kg EPI increased the jejunal IL-10 content in mice. Intriguingly, EPI
supplementation may also improve intestinal barrier integrity by promoting the production
of intestinal anti-inflammatory cytokines.

Another pivotal factor contributing to intestinal barrier disruption is oxidative stress,
which is widely recognized as a state of imbalance between oxidation and antioxidation [28].
MDA is the primary product of lipid peroxidation and is usually considered an oxidative
stress marker [29,30]. We noted a decrease in duodenal, jejunal, and ileal MDA contents in
mice treated with EPI (50 and 100 mg/kg), indicating that intestinal oxidative damage was
attenuated by EPI supplementation. The activities of antioxidant enzymes, including SOD,
CAT, and GSH-PX, are important indicators of antioxidant capacity. SOD catalyzes the
conversion of superoxide into hydrogen peroxide, and CAT and GSH-PX convert hydrogen
peroxide into water [31,32]. Importantly, we found that supplementation with 50 and
100 mg/kg EPI increased the duodenal and jejunal CAT activities and ileal SOD activity,
and supplementation with 100 mg/kg EPI increased the duodenal and jejunal GSH-PX
activities in mice. These results suggest that EPI could alleviate intestinal oxidative damage
by enhancing antioxidant enzyme activities in the intestines of mice, thereby improving
intestinal barrier integrity.

Although cell apoptosis is essential for intestinal epithelial turnover and tissue home-
ostasis, excessive apoptosis can result in intestinal barrier damage [33]. Therefore, the
reduced duodenal, jejunal, and ileal cell apoptosis noted in our study after supplemen-
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tation with 50 and 100 mg/kg EPI indicates that EPI could improve intestinal barrier
integrity in mice through the inhibition of apoptosis. In general, cell apoptosis occurs via
the intrinsic pathway (mitochondria-dependent pathway) or the extrinsic pathway (death-
receptor-dependent pathway) [34]. The intrinsic pathway is regulated by the Bcl-2 family
and is mainly characterized by caspase-9 activation [35,36], while the extrinsic pathway is
mediated by membrane death receptors, such as TNFR1, and is mainly characterized by
caspase-8 activation [37,38]. Caspase-3 is an executioner caspase that is activated by these
two pathways and then initiates apoptosis [39,40]. We found that dietary supplementation
with 50 and 100 mg/kg EPI decreased cleaved caspase-3 and cleaved caspase-9 contents in
the duodenum, jejunum, and ileum of mice. These results indicate that EPI could repress
intestinal cell apoptosis in mice in a mitochondria-dependent manner.

5. Conclusions

In summary, our findings indicate that EPI was beneficial in enhancing intestinal
barrier integrity in mice. The underlying mechanisms may be closely related to the sup-
pression of intestinal inflammation and oxidative stress and the reduction in cell apoptosis.
These findings provide a foundation for developing EPI as a nutraceutical to improve
intestinal health.
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