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Abstract: Oil oxidation is the main factor limiting vegetable oils’ quality during storage, as it leads to
the deterioration of oil’s nutritional quality and gives rise to disagreeable flavors. These changes make
fat-containing foods less acceptable to consumers. To deal with this problem and to meet consumer
demand for natural foods, vegetable oil fabricators and the food industry are looking for alternatives
to synthetic antioxidants to protect oils from oxidation. In this context, natural antioxidant compounds
extracted from different parts (leaves, roots, flowers, and seeds) of medicinal and aromatic plants
(MAPs) could be used as a promising and sustainable solution to protect consumers’ health. The
objective of this review was to compile published literature regarding the extraction of bioactive
compounds from MAPs as well as different methods of vegetable oils enrichment. In fact, this review
uses a multidisciplinary approach and offers an updated overview of the technological, sustainability,
chemical and safety aspects related to the protection of oils.

Keywords: enrichment; extraction; natural antioxidants; oxidative stability; vegetable oils

1. Introduction

Vegetable oils (VOs) consumption has increased worldwide due to its health bene-
fits [1]. Triacylglycerols are the main constituents of lipids (~up to 99%) and important
storage lipids. These triglycerides are composed of a glycerol unit esterified by three fatty
acids whose proportions depend on the plant from which they are derived (soybean, olive,
argan, rapeseed, sunflower, peanut, etc.) [2,3]. Along with triglycerides, there is a very
important minority fraction (unsaponifiable matter, at least ~1%) namely polyphenols,
phytosterols, minerals, vitamins, resinous esters, etc. [4].

Thanks to this biochemical composition, vegetable oils play a very important role as
a source of energy for human metabolic processes, essential fatty acids, tocopherols, and
fat-soluble vitamins, as well as a structural role [5,6]. Oxidation is principally responsible
for the quality deterioration of industrial oils, causing loss of nutritional value and giving
rise to disagreeable odors. These make VOs and food containing VOs less acceptable to
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consumers [7]. Furthermore, lipid oxidation leads to certain toxic compounds, such as
reactive carbonyl compounds, which, in turn, generate progressive lipid peroxidation and
products. These are possibly unsafe for human health [7].

In addition, lipid oxidation level depends on a set of factors internal to VOs. Among
them, are the degree of unsaturation, the presence of antioxidant compounds (tocopherols,
polyphenols, etc.), and metals such as copper and iron. It depends also on oils’ external
factors including storage conditions (availability of dioxygen, temperature, and light
exposure) [8,9].

Many approaches can be used to enhance the stability oxidative of the oil throughout
processing and storage. Among them the prevention of light, dioxygen, and high tempera-
tures optimize oil extraction conditions to improve the content of bioactive compounds
and antioxidant compounds [10].

Along with natural antioxidant compounds present in oils. Oil oxidative stability and
quality can be improved using synthetic antioxidant compounds. Among these, butylated
hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertbutyl hydroquinone (TBHQ),
and propyl gallate (PG) are the most widely used. Although, there are doubts about their
health effects, and some evidence highlights the carcinogenic effects of these synthetic
compounds [7,11].

For this reason, other alternatives for enriching VOs have been proposed. In particular,
the use of natural antioxidants from secondary streams, food by-products, and agri-food
wastes. especially as food processing waste represents 30.6 million tonnes per year, 35% of
which come from fruit and vegetables [12]. However, these by-products require processing,
involving the addition of chemicals (solvents), so in addition to the extraction of phenolic
compounds. It is very likely that there will be an extraction of other undesirable compounds
making it necessary to look for more natural sources of antioxidants.

On the other hand, medicinal and aromatic plants (MAPs) seem to be a good target
for natural antioxidant compound extraction. Their use, since ancient times, by several
civilizations for their numerous health and curative properties [13]. Several studies were
devoted to the enrichment of oils with antioxidants from MAPs [14–18].

This review focuses on the enrichment of VOs with bioactive compounds from MAPs
to protect VOs from oxidation in the first instance. Based on a quantitative and qualitative
analysis of published works on the use of natural antioxidants to improve VOs’ oxidative
stability. This review highlights the role of antioxidants in improving the oxidative stability
of VOs, concentrating on their mode of action as well as the extraction methods and their
impacts in recovering antioxidants from MAPs as well as enrichment methods used to
evaluate the oxidative stability and efficacy of antioxidants.

2. Bibliometric Analysis
2.1. Database Choice

One of the most important steps in a bibliometric analysis is to select the appropriate
databases that are relevant to the research purpose (Figure 1). Bibliometric analysis is
restricted by the type of available information [19]. Thus, the information sources have
to be trusted and adapted to conduct such an analysis and provide the most efficient
decisions [20]. The Scopus and Web of Science (WoS) databases are both currently accessible,
and their utilization in literature is consequently widespread [19].

2.2. Indicators

After selecting the databases, the second step is to identify the appropriate indicators
to evaluate the resulting sample. The published papers present various types of bibliometric
indicators [21]. According to Gema et al. [19], there are three different types of bibliometric
indicators: (i) quality indicators (to measure impact); (ii) quantity indicators (to measure
productivity), and (iii) structural indicators (to measure connections) (Figure 2).
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2.3. Advanced Research (2000 Onward)

This review investigates the research areas of VOs oxidation along with MAPs’ an-
tioxidants. Our study was carried out in March 2022 using the Scopus and WoS databases.
It examines scientific research studies from 2000 onward. The date of publication of
the first paper on improving the oxidative stability of VO using plant extracts is listed
in both databases (Scopus and WoS). This bibliometric analysis covers the most com-
mon fields of knowledge, the journals with the most publications, the most prolific au-
thors, the most productive countries, the most cited studies, publications trends, docu-
ment types, and countries or territories of origin. To conduct our study, the advanced
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search string used for Scopus database is (TITLE-ABS-KEY-AUTH((“enriche*” OR “en-
hanc*” OR “improve*” OR “amelior*”) AND (“oxidative stability” OR “*oxidation*” OR
“shelf-life*” OR “shelf life*”) AND (“*phenol*” OR “antioxida*”) AND (“natural*”) AND
(“extract*”) AND (“oil*”) AND (“aromatic and medicinal plant*” OR “medicinal and
aromatic plant*” OR “AMP*” OR “MAP*” OR “plant*”)) AND NOT TITLE-ABS-KEY
(“meat*”) AND NOT TITLE-ABS-KEY (“mustard”) AND NOT TITLE-ABS-KEY (“rat*”)
AND NOT TITLE-ABS-KEY (“packaging”) AND NOT TITLE-ABS-KEY(“cheese*”)AND
NOT TITLE-ABS-KEY (“lamb?”) AND NOT TITLE-ABS-KEY (“sausage*”) AND NOT
TITLE-ABS-KEY (“International Multidisciplinary Scientific Geoconference SGEM”) AND
NOT TITLE-ABS- KEY (“silver”) AND NOT TITLE-ABS-KEY (“hamburger*”) AND NOT
TITLE-ABS-KEY(“mice”) AND NOT TITLE-ABS-KEY(“mouse”) AND NOT TITLE-ABS-
KEY(“potato”) AND NOT (“biodiesel”) AND NOT TITLE-ABS-KEY(“germination”) AND
NOT TITLE-ABS-KEY(“emulsion*”) AND NOT TITLE-ABS-KEY(“rice”) AND NOT TITLE-
ABS-KEY(“fish oil”) AND PUBYEAR < 2022 AND PUBYEAR > 1999).

However, for the WoS database, we have used the following string, (TS = (“enriche*”)
OR TS = (“enhanc*”) OR TS = (“improve*”) OR TS = (“amelior*”)) AND (TS = (“oxidative
stability”) OR TS = (“*oxidation*”) OR TS = (“shelf-life*”) OR TS = (“shelf life*”)) AND
(TS = (“*phenol*”) OR TS = (“antioxida*”)) AND TS = (“natural*”) AND TS = (“extract*”)
AND TS = (“oil*”) AND (TS = (“aromatic and medicinal plant*”) OR TS = (“medicinal
and aromatic plant*”) OR TS = (“AMP*”) OR TS = (“MAP*”) OR TS = (“plant*”)) NOT
TS = (“meat*”) NOT TS = (“mustard”) NOT TS = (“rat*”) NOT TS = (“packaging”) NOT
TS = (“cheese*”) NOT TS = (“lamb?”) NOT TS = (“sausage*”) NOT TS = (“International
Multidisciplinary Scientific Geoconference SGEM”) NOT TS = (“silver”) NOT TS = (“mice”)
NOT TS = (“mouse”) NOT TS = (“potato”) NOT TS = (“biodiesel”) NOT TS = (“ger-
mination”) NOT TS = (“emulsion*”) NOT TS = (“rice”) NOT TS = (“fish oil”)) AND
PY = (2000–2021). After, the outcomes were exported as an excel file according to the
used indicators.

2.4. Analysis

The research resulted in 92 and 82 publications in Scopus and WoS databases, respectively
(Figure 3). The most cited paper (157 times) was that of Bouaziz et al. [22], published in 2008
in Food Chemistry, addressing the effect of storage on refined and husk olive oils composition
and their stabilization by using natural antioxidants from ‘Chemlali’ olive leaves.
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The most prolific author was Şahin [23] with 3 documents (Figure 4). Her most cited
paper (17 times) dealt with the impact of olive extracts containing oleuropein on the quality
of virgin olive oil [23].
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Among the most cited publications, the work of Kammerer et al. [24] described the
recovery of polyphenols from plant food processing by-products and their application as
valuable food ingredients. Another one, published in the same year, is focused on the effect
of natural antioxidants extracted from animal and vegetable resources on the oxidative
stability of soybean oil [25].

Figure 5 shows the most productive countries or territories. According to Scopus
and WoS databases, Iran was the most productive country with 10 and 14 publications,
respectively, followed by Italy, Poland, the United States, and Tunisia. The main keywords
covered for documents reported from Iran are antioxidant(s), antioxidant activities, lipid
peroxidation, oxidative stability, and extraction. One of the most productive institutions was
the Gorgan University of Agricultural Sciences and Natural Resources, with 3 documents.
The most cited paper was that of Taghvaei et al. [25], which was formerly described.
However, another work reported by Hosseini and Jafari [26], published in Advances in
Colloid and Interface Science, introduces nano/microencapsulated bioactive ingredients
for prolonging the shelf-life of food products.

Figure 6 reports the distribution of documents by type according to the Scopus
database. It includes mainly “research article” with 76%, followed by “review article”
with 21%, and “conference paper” with 2%.

Table 1 represents the most productive journals in the enrichment of VOs with natural
antioxidants. According to the Scopus database, a total of 79 journals have published
research studies on enhancing the oxidative stability of VOs using plants between the
years 2000 and 2021. In this section, we have focused on journals with a minimum of
2 documents. There were only 11 journals that met the threshold, with the Journal of Food
Science, hosted by the Wiley-Blackwell publisher, reporting the highest number of papers,
research on oils enrichment with MAPs’ extracts with 6 outputs. Followed by the Journal
of Agricultural and Food Chemistry with 4 documents. The remaining journals include the
International Journal of Molecular Sciences, Food Chemistry, Journal of Food Processing
and Preservation, and Journal of Food Science and Technology, with 3 publications each.
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Of these 6 described journals, two are published by Wiley-Blackwell, while the Journal
of Agricultural and Food Chemistry is published by the American Chemical Society, and
Food Chemistry is hosted on Elsevier. Citations per journal can serve as a strong index
of influence and reach [27]. In terms of average citation per journal, the Journal of Food
Chemistry came out on top (109.33), followed by Food Research International and Interna-
tional Journal of Molecular Sciences with 58 and 40.33, respectively (Table 1). Of 11 journals
represented in Table 1, four are in the Elsevier database, and all journals address aspects of
agricultural and biological sciences.
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Table 1. Most productive journals in the enrichment of VOs with natural antioxidants.

Journal Publisher Total
Documents

Total
Citations

Average Citation
per Journal

Journal of Food Science Wiley-Blackwell 6 112 18.67

Journal of Agricultural and Food Chemistry American Chemical Society 4 155 38.75

Food Chemistry Elsevier 3 328 109.33

International Journal of Molecular Sciences MDPI * 3 121 40.33

Journal of Food Processing and Preservation Wiley-Blackwell 3 24 8.00

Journal of Food Science and Technology Springer Nature 3 34 11.33

European Journal of Lipid Science
and Technology Wiley-Blackwell 2 11 5.50

Food Research International Elsevier 2 116 58.00

Industrial Crops and Products Elsevier 2 57 28.50

Innovative Food Science and
Emerging Technologies Elsevier 2 74 37.00

Molecules MDPI * 2 12 6.00

* MDPI: Multidisciplinary Digital Publishing Institute (MDPI).

The bibliometric analysis software VOSviewer version 1.6.17 (Leiden, Netherlands)
was selected for this study instead of other similar ones, principally due to its professional
efficiency in analyzing clustered search results [28,29]. It examines words/terms contained
in abstracts and titles of published papers by splitting paragraphs into separate words
and phrases, connecting them to the citation data of the relevant papers. The results are
presented as a density map or term bubble map with default settings [7] (Figures 7 and 8).
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To facilitate the bubble map, words/terms occurring at a minimum of 5 times in the
publications were examined and visualized. Of the 1647 keywords, 76 met the selected
threshold, and 3 of them were manually eliminated. The obtained results are presented
in the form of network visualization and density diagrams. According to the terms and
density maps (Figures 7 and 8), three clusters are generated. Cluster 1 (35 items) includes
such terms as “alpha tocopherol”, “antioxidant activity”, “plant extract”, “lipid oxidation”,
“polyphenol”, “beta carotene”, and “flavonoid”. Cluster 2 (25 items) contains such key-
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words as “food preservation”, “food storage”, “olive oil”, “sunflower oil”, and “vegetable
oils”. Cluster 3 (13 items) consists of the following keywords “chemistry”, “hot tempera-
ture”, “heat,” “oxidation reduction”, “quercetin”, and “seed kernel.” Cluster 6 (4 items)
includes four keywords: corrosion, enzyme inhibition, inhibition, and steel.
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3. Vegetable Oils Oxidation

VOs and fats are important constituents of human consumption and are essential
components of our daily diet [30]. They are classified as vegetable or animal oils and fats
depending on their source. VOs represented the major part of the world’s production
in 2020/2021. In fact, VOs global production is 207 million metric tons [31]. The four
major VOs are palm, soybean, rapeseed, and sunflower [32] VOs obtained by solvent
extraction or mechanical expelling of oleaginous seeds (sunflower, soybeans, rapeseed, etc.)
or oleaginous fruit like olive and palm [30]. VOs quality is defined by both organoleptic
and compositional properties. These determine also agro-industrial preferences and con-
sumer acceptance [7]. The occurrence of off-odors and off-flavors in oils/fats is usually
associated with oxidative and/or hydrolytic degradations of triglycerides, and these major
degradation reactions are presented in Figure 9.
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Initiation phase: 
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Figure 9. Oxidative and hydrolytic degradation reaction pathways in VOs.
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Several studies have demonstrated that the principal quality attributes in VOs are their
oxidative stability. Indeed, the VOs oxidation (Figure 9) is a complex series of reactions
that result in smells, rancidity, and off-flavors [33]. This phenomenon is an important
factor responsible for VO quality during the storage and production process. It is also the
most important and prominent deleterious process in oils, which is related to the final
nutritional and sensory quality [34]. Therefore, the shelf life of VOs depends on their
oxidative stability [35,36]. Moreover, it is remarkable that throughout the oxidation process,
some toxic compounds, such as reactive carbonyl compounds can result in advanced lipid
peroxidation end products. These are possibly dangerous to human health [37]. Many
factors can contribute to the oil oxidation, including high temperature, storage conditions,
high dioxygen availability, fatty acids composition, and their level of polyunsaturated, as
well as the existence of pro-oxidants such as chlorophylls, heavy metals, and metal ions
(Fe3+ and Cu2+), [38,39]. The oil oxidation reactions are explained by the conventional
free radical chain phenomenon, which begins with radical reactions on unsaturated fatty
acids [40]. These reactions consist of three stages namely initiation followed by propagation,
and termination [41]. In fact, the initiation stage involves the monomolecular phase of
hydroperoxide generation along with peroxyl radical scavenging via antioxidants [42].
Whereas, the propagation stage consists of autocatalytic, monomolecular, and bimolecular
reactions [43]. Nevertheless, the termination stage is mainly defined by the decomposi-
tion of hydroperoxides on one hand and the increased formation of secondary oxidation
products on the other hand [41], as evidenced in Figure 10. The oxidation mechanism is
summarized in the following reactions [44]:
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Initiation phase:
RH + O2 → R• + HOO•

Propagation phase:

R• + O2 → ROO• ROO• + RH→ ROOH + R•

ROOH→ RO• + •OH

RO• + RH→ ROH + R•

•OH + RH→ H2O + R•

Termination phase:
R• + •R→ R-R

ROO• + ROO• → ROOOOR

Oxidative stability depends upon the balance of various extrinsic and intrinsic factors.
Among them are fatty acids unsaturation, environment conditions, composition of minor
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components, delivery techniques, and use of antioxidants. Lipid oxidation induces negative
effects on human health and also food quality. Therefore, efforts should be made to reduce
oxidation and enhance the oxidative stability of lipid products [45].

Improving the oxidative stability of VO is an excellent way to extend the shelf life
of oils. It allows also to reduce the content of off-flavors [10]. The various techniques
and methods used to enhance the stability of VOs and improve oxidative stability are
well documented. Firstly, modification of the fatty acid composition by natural selection
of plants modification is a possible way to improve the oxidative stability of VOs [46].
Secondly, blending VOs with different fatty acid compositions is suggested as one of
the simplest methods to improve both the quality and stability of VOs [47]. Thirdly,
other authors have reported that the processing technique can improve VO oxidative
stability. Indeed, Matthäus (2012), has mentioned that the virgin oils obtained by cold
pressing are extremely popular due to their typical color, taste, and flavor, and are very
rich in natural antioxidants [48]. In addition to this, roasting is a positive treatment that
has a strong impact on VO quality with regard to appearance flavor, color, texture, and
also the stability [49], especially in virgin oils like argan [50], cactus [49], and sesame
oils [51]. Finally, many industries use synthetic or natural antioxidants, to improve VO
stability, especially those which are refined. However, several scientific studies asso-
ciated synthetic antioxidants with health risks due to their carcinogenesis effects [7].
Recently, various new studies develop and validate safe and sustainable methods, al-
ternatives to synthetic antioxidants, to enhance VOs’ oxidative stability with the use
of extracts obtained, via green methods, from MAPs, food industry side streams, and
by-products [7].

4. Antioxidants: A Masterpiece of Mother Nature

One of the main problems in food preservation is rancidity, which is linked partially
to the oxidation of unsaturated fatty acids in edible oils during processing, transportation,
storage, and final preparation of edible Vos [52,53]. Many methods have been developed in
order to control the rate and extent of lipid oxidation in foods, and then ensure the proper
preservation of food products containing fats, which remains a fundamental objective
for the food industry [54]. Antioxidants can be used as an option to have a longer shelf
life of fatty products by inhibiting the initiation and propagation of free radicals and
minimizing the formation of degradation compounds [55]. Antioxidants are described
as “small-amount compounds able to prevent the production of rancidity or other flavor
alterations in meals owing to oxidation or greatly delaying the oxidation of readily oxidized
components such as lipids [56]. Antioxidants can be classified, depending on their mode of
action, into several groups. Some of them act as free radical scavengers, as these compounds
can also interfere with the oxidation process as free radical terminators, and sometimes
they act as metal chelators that catalyze the oxidation of lipids [45,57]. These compounds
could be natural or synthetic [58].

4.1. Synthetic Antioxidants

Exogenous synthetic antioxidants are compounds created through chemical pro-
cesses [58]. Antioxidants can prevent or slow down food oxidation, ameliorate food
stability, and prolong food storability [59]. Synthetic antioxidants can be used in foods,
among which phenolic antioxidants are more frequent [60], namely BHA, BHT, PG, and
TBHQ (Figure 11) [61]. Although, these phenolic compounds generally are listed as “ac-
cepted as safe”, various safety issues have been raised. Several published studies have
found a link between long-term consumption of synthetic antioxidants and a variety of
health concerns, including gastrointestinal disorders, skin allergies, and in some circum-
stances, an increase in cancer risk [56,62].
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4.2. Natural Antioxidants

Recently, a remarkable interest to replace synthetic antioxidants with natural com-
pounds’ antioxidant properties is an increasing trend to replace synthetic antioxidants,
with natural antioxidants, which are of safety concern [63]. Thus, fruits, vegetables, grains,
and MAPs are known to contain various bioactive compounds that are found to be well-
associated with great antioxidant power [64]. MAPs have been used for treating human
diseases since ancient memory. According to the World Health Organization (WHO), 80%
of the world’s population relies on traditional medicine for their primary health care [65].

In this regard, the antioxidant properties of MAPs have been studied throughout the
world as part of recent scientific developments [66]. Due to the fact that they possess a wide
and diversified assortment of organic compounds that may play crucial roles and produce a
specific physiological action [67]. Natural antioxidants derived from plants can be classified
into three principal classes namely; phenolic compounds, vitamins, and carotenoids [68].
Among MAPs with antioxidant activity known worldwide, there are plants from several
botanical families, such as Lamiaceae (sage, rosemary, oregano, basil, marjoram, mint,
thyme, etc.), Apiaceae (fennel, cumin, caraway, etc.), Zingiberaceae (ginger, turmeric, etc.),
Ginkgoaceae (ginkgo), Asteraceae (chamomile), and Myrtaceae (eucalyptus) [69].

4.2.1. Phenolic Compounds

Phenolic compounds are regarded as the most significant and abundant class of
phytochemical compounds in the plant kingdom [70]. These phenolic compounds are
ranked as secondary metabolites distributed in different plants, including roots, seeds,
leaves, fruits, stems, etc. [71]. These molecules are generated by the plant to defend itself
or to promote growth under unfavorable conditions [72]. Phenolic compounds contain
numerous structural variants having one common structural feature, a phenol (an aromatic
ring bearing at least one hydroxyl substituent), but their derivatives depend on the number
of phenol subunits [73]. Based on their structure, phenolic compounds are divided into
3 major groups namely phenolic acids, flavonoids, and non-flavonoids (stilbenes and
lignans), as shown in Figure 12 [74]. In addition, phenolic acids and flavonoids are the most
important groups of secondary metabolites and bioactive compounds in plants [75]. The
bioactivity of phenolic compounds is based on their prospective hub of natural antioxidant
activity [76]. This plays a role in scavenging free radicals and reactive oxygen and nitrogen
species (ROS/N), and inhibiting enzymes responsible for free radicals formation [72,77].
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4.2.2. Phenolic Acids

The term “phenolic acids” usually the non-flavonoid molecules with a carboxylic
acid group [78], which is divided mainly into two sub-groups: benzoic acid derivatives
or hydroxybenzoic (C1–C6 backbone), and cinnamic acid derivatives or hydroxycinnamic
(C3–C6 backbone) (Figure 13) [79]. Hydroxycinnamic acids, more common than hydrox-
ybenzoic acids, which are found only in trace amounts (1 ppm) [80]. Ferulic, caffeic,
p-coumaric, and sinapic acids are the four most prevalent hydroxycinnamic acids. The
four most prevalent hydroxybenzoic acids, on the other hand, are p-hydroxybenzoic,
protocatechuic, vanillic, and syringic acids [78,81].
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4.2.3. Flavonoid Compounds

Flavonoids (the term is derived from the Latin word “flavus”, which means yellow). It
provides the coloring of flowers by producing yellow or red/blue pigmentation in shoots,
leaves, buds, petals, and fruits [82]. This pigmentation is intended to attract pollinators
within the flowers. Flavonoids are part of the polyphenolic compounds (They include
more than 6000 among more than 8000 phenolic compounds present in plant foods), and
constitute a large family of plant secondary metabolites [83]. They are physiologically
active agents in plants and are becoming of great scientific interest for their health bene-
fits [84]. The antioxidant mechanisms of flavonoids could be characterized by using direct
scavenging of oxygen free radicals or excited oxygen species, chelation properties, and the
inhibition of oxidative enzymes [85]. Flavonoids are classified into the following categories:
flavanols, flavones, flavanones, isoflavones, and anthocyanidins, following the variety
of the species, the edaphoclimatic conditions, plant tissues, growing conditions, and the
degree of maturity [86].
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4.2.4. Non-Flavonoid Phenolic Compounds

Tannins, frequently referred to as tannic acid, naturally belong to the non-flavonoid
phenolics found in many plants [87]. They are often chemically divided into two main
groups: hydrolysable and condensed tannins [83]. Condensed tannins are structurally
more complex and uniform than hydrolysable tannins [83]. Stilbenes, lignans, and stilbene
derivatives are also a typical class of phenolic compounds found in plants. In general, all of
these various molecules possess remarkable antioxidant and radical scavenging properties
in plants [80,88].

There are several bioactive phenolic compounds with antioxidant functions natu-
rally occurring in plants. Among them, antioxidant vitamins (A, C, and E), carotenoids,
coenzyme Q, lycopenes, and phenolic compounds (phenolic acids, flavonoids, flavonols,
anthocyanins, tannins, and lignins) [89].

• Carotenoids

Carotenoids, known also as tetraterpenoids (holding at least 40 carbons and an exten-
sive conjugated double bond system), are natural organic non-polar pigments of yellow,
orange, and red color. They are mainly produced in the plastids of medicinal plants [90].
Carotenoids are large in numbers (more than 700), six of them (β-carotene, β-cryptoxanthin,
α-carotene, lutein, lycopene, and zeaxanthin) are the main carotenoids having antioxidant
activity [91]. β-carotene has potential biological antioxidant activities owing to its chemical
structure and its interaction with biological membranes [92]. They have the ability to scav-
enge radicals such as hydroxyl, peroxyl, alkoxyl, and the hydroxyperoxide anion generated
from processes such as lipid peroxidation [93]. In addition to their antioxidant capacities,
they can be used as food colorants [61].

• Vitamins tocopherols and tocotrienol

Vitamins are one of the most interesting lipid-soluble primary defense antioxidants,
especially vitamin E [69]. Vitamin E is a generic term for all tocopherols and tocotrienols.
In nature, vitamin E occurs in four tocopherol isomers (α-, β-, γ-, and δ-tocopherol) and
four tocotrienol isomers (α-, β-, γ-, and δ-tocotrienol) [94]. All of these molecules have
antioxidant activity as well. Although, α-tocopherol is chemically and biologically the most
active [95]. α-tocopherol plays an important role in the antioxidant defense network of
plants due to its superb capacity to scavenge ROS [69]. Table 2 summarizes the content of
selected antioxidant compounds identified in many MAPs.

Table 2. Phenolic compounds and flavonoids concentration identified in MAPs.

Plants Compounds Concentrations Reference

Glycyrrhiza glabra L. Phenolics and terpenoids 4.94 ± 0.43 g/100 g [64]

Rauwolfia serpentina (L.) Benth Alkaloids 2.06 ± 0.11 g/100 g [64]

Geranium sanguineum L. Catechins and proantho-cyanidines 2.1 mg/kg [65]

Dracocephalum moldavica L. Rosmarinic acid 247.95 ± 24.78 mg/g
[65]Dracocephalum moldavica L. Chlorogenic acid 1.46 ± 2.76 mg/g

Dracocephalum moldavica L. Pigenin-7-O-glucoside 6.55 ± 2.20 mg/g

Ficus microcarpa L. fil Protocatechuic acid 6.60 ± 0.20 mg/g dry extract

[65]
Catechol 11.1 ± 0.00 mg/g dry extract

P-vinylguaiacol 4.40 ± 0.07 mg/g dry extract
Vanillin 4.27 ± 0.02 mg/g extract

Syringaldehyde 8.96 ± 0.29 mg/g extract

Hibiscus cannabinus L. Flavanoid content 82.11 mg/g extract [66]

Trigonella arabica Delile.
Tannin content

2 ± 0.47 mg TA/g [67]

Trigonella berythea Boiss. & Blanche 9 ± 0.47 mg TA/g [67]
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Table 2. Cont.

Plants Compounds Concentrations Reference

Origanum vulgare L.ssp. hirtum (Link) Rosmarinic acid 116.7 g/kg dry extract
[80]Carvacrol 94.6 ± 21.16 g/kg dry extract

Origanum vulgare L. Rosmarinic acid 12.88 mg/g plant

[80,88]
Chlorogenic acid 2.10 mg/g plant

Hyperoside 1.05 mg/g dry extract
Isoquercitrin 0.71 mg/g dry extract

Salvianolic acid A 66.4 ± 1.7 g/kg dry extract
[80]Satureja thymbra L. Cafeic acid 2.69 ± 0.1 g/kg dry extract

Taxifolin 4.28 ± 0.03 g/kg dry extract
[80]Thymus capitatus (L.) Hoffm. and Link Eriodictyo 2.36 ± 0.12 g/kg dry extract.

5. Enrichment of Oils with Natural Antioxidants

Here, VOs fortified with natural bioactive compounds are discussed. Despite their
natural content of antioxidants such as tocopherols, tocotrienols, phenolic compounds,
carotenoids, and sterols, oils and fats miss sufficient oxidative stability. In general, low
oxidative stability is due to a major problem, known as oxidation. This induces oil quality
deterioration, and it leads to health problems like colds, cancer, heart disease, mutagenicity,
and other diseases [96]. In order to preserve the high nutritional value of oils and improve
their oxidative stability and their shelf life, many approaches are used. Adding synthetic
compounds such as BHT, BHA, PG, and TBHQ is one of the most common strategies [97].
Recently, because of the safety concerns of such synthetic compounds, there is a strong
tendency to use natural bioactive compounds extracted from plants [97–100]. Along with
plant MAPs extracts, essential oils are also used to prevent lipid oxidation and to flavor
oily products [101,102]. Enrichment of edible VOs and other products is also practiced as
functional foods, which are appreciated by consumers thanks to their benefits for health.
Indeed the product is enriched with nutrients, and the flavor is ameliorated by transfer-
ring aromatic compounds into the food matrix [102]. This practice is rapidly growing
worldwide [61,103]. Many plants presenting interesting sensory and phytochemical pro-
files such as rosemary, lavender, sage, laurel, oregano, menthe, basil, lemon, and thyme,
among others, are used for this purpose. In this context, several types of flavored oils with
different products (vegetables, herbs, spices, mushrooms, and fruits) are commercialized
recently [103–105]. Nowadays, by-products from fruit and vegetable processing such as
flower, kernel, peel, leaf, and roots showing a high content of bioactive compounds like
phenolic acids, flavonols, anthocyanidines, flavonones, carotenoids, and glycoside are used
as a principal source of natural antioxidants, to enhance oil stability [106]. Another new
technique to fight against oil oxidation is the use of cereal bran extract [107]. Many studies
have focused on the enrichment of edible oils with natural antioxidants.

5.1. Olive Oil

Olive oil is one of the most important sources of fat in the Mediterranean diet [108]
and is known to be rich in unsaturated fatty acids and unsaponifiable compounds with
important properties such as cardioprotective properties [109]. To preserve these properties,
several studies have been carried out on olive oil oxidative stability using natural bioactive
compounds from plants [106,110–112]. Indeed, Dairi et al. [110] reported that phenolic
compounds from Myrtus communis L. inhibit phospholipid peroxidation in olive oil, and
olive oil enriched with this plant might be a potential functional food. Blasi et al. [106],
have found that adding carotenoid extract from Lycium barbarum L. can help to enhance
the stability oxidative of extra virgin olive oil (EVOO). Hernández-Hernández et al. 2019
also found similar results using the extract of cocoa bean husk rich in theobromine and
virgin olive oil jam [111]. In a similar manner, Montesano et al. 2019 demonstrated that
the enrichment of EVOO with a carotenoid-rich extract from Lycium barbarum L. increases
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the nutritional value and shelf-life of added-oil, protecting EVOO natural antioxidants
throughout long-term storage [112]. By-products were also used as a natural source of
bioactive compounds to enrich olive oil [113]. Olive mill waste water (OMWW) was
considered by several authors as the natural origin of bioactive compounds [114–116]. The
authors of these studies concluded that crude phenolic concentrate from fresh OMWW
significantly reduced the oxidation of heated oils by the α-tocopherol oxidation, and the
formation of undesirable compounds. Dairi et al. reported that EVOO enriched with
myrtle phenolic leaf extracts present better antioxidant activity than EVOO added with
BHT, indeed EVOO supplemented by myrtle extract increased the loss of DPPH radical by
factors of 107.8%, instead of 9.9% for BHT [110], according to the authors more research
is required to explore the bioabsorption, bioavailability, and interactions between these
chemicals found in myrtle enriched-EVOO, after intake. These results confirmed that
OMWW produced during olive processing could be an important source of bioactive
compounds. Essential oils from peppermint (Micromeria fruticose L.), oregano (Origanum
onites L.), thyme (Thymus vulgaris L.), and laurel (Laurus nobilis L.) were also used to enrich
olive oil [103]. It was proven that the main components of essential oil, like carvacrol,
eucalyptol, and pulegone were transferred into olive oil samples [117].

5.2. Soybean Oil

The enrichment of soybean oil is extensively studied. Several studies have been
previously carried out with plant extracts to prevent oxidative deterioration. Among
them, olive leaves [118], some aromatic plants [119], rosemary, rambutan, fruit peel [120],
grape seed [121], cocoa bean shell [122], coffee husk [123], peanut skin [124], Cressa cretica
L. leaves [125], goji berry [126], marjoram, thyme, ginger, turmeric [127], oregano [15],
watermelon [96]. It has been shown that soybean oil enriched with olive leaf extract
showed lower peroxide value and a lower amount of secondary product compared to
the control [118]. Phuong et al. (2019) reported that the addition of rambutan extract
delayed the oxidation process, as TBHQ, and the obtained fried potatoes in the fortified oil
exhibit a low level of thiobarbituric acid (TBA) [120]. The work published by Kozłowska;
Gruczyńska (2018) and Yang et al. (2016) show that the addition of polyphenols, extracted
from Theobroma cacao L., Thymus vulgaris L., Rosmarinus officinalis L., and coffee husk as
antioxidants in oils effectively prevent their degradation and delay the degradation of
tocopherols and polyunsaturated fatty acids. They also decrease the generation of free
fatty acids, and reduce the peroxide value, but increase the antioxidant activity [15,122].
These studies suggested the potential use of these plant extracts as an effective alternative
to synthetic antioxidants.

5.3. Sunflower Oil

Enrichment of sunflower oil also has been studied using different sources of natu-
ral antioxidants. Indeed, extracts from OMWW and olive pomace (OP) were used [128].
According to this study, extracts of these two products retarded VO oxidation during deep-
frying. Similar trends were observed with extracts of spinach (Spinacia oleracea L.) [127,129],
marjoram (Origanum majorana L.), thyme (Thymus vulgaris L.), oregano (Origanum vul-
gare L.) [15], sesame seeds [130], mango peel [131], tomato peel [132], avocado (Persea
americana Mill. Lauraceae cv. Hass) and olive leaves [133]. The results found in these
studies showed that globally the enrichment of sunflower oil with different natural antioxi-
dants ameliorate oil stability. Indeed, spinach extract and mango peel exhibit significant
effectiveness in oxidative stabilization and are beneficial for the thermal stability of sun-
flower oil. It has been demonstrated that the oxidative stability of sunflower oil (SFO)
samples enriched with thyme and oregano extracts was enhanced compared to the con-
trol samples without the addition of herbal plant extracts and artificial antioxidants [15].
Sesame seed extracts tested by Hussain et al. (2018) could stabilize SFO and inhibits its
thermal deterioration by improving its hydrolytic stability, inhibiting lipid oxidation, and
reducing the loss of polyunsaturated fatty acids [130]. Jiménez et al. (2017) demonstrate
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that the addition of avocado (Persea americana Mill. Lauraceae cv. Hass) hydroalcolic extract
showed a prooxidant effect, while olive (Olea europaea L. cv. Arbequina) hydroalcoholic leaf
extracts reduce the formation of polar compounds and showed an anti-polymeric and an
antioxidant effect [133].

5.4. Other VOs

Other VOs were also studied, flaxseed oil enriched with carotenoids from sea buck-
thorn pomace [134]. The main results of this study indicated that the nutritional value,
quality, and stability of the enriched oil were improved. Canola oil also was enriched
with extracts of different plants like basil, oregano, rosemary, and sage. According to
the obtained results, methanolic oregano extract seemed to provide strong antioxidant
substances that protect the polyunsaturated fatty acids [135].

Avocado, olive leaf [133], and Teucrium polium L. extracts were also tested on canola
oil [136]. These extracts showed a good capacity to retard oil oxidation and deterioration.
Rapeseed oil, corn oil, peanut oil, olive pomace oil, and grape seed oil enriched with
carotenoids coming from dry tomato waste. The results obtained indicate that enriched oils
show high content of carotenoids, and in some oils, the oxidative and thermal stability was
improved, while in others, an increase of peroxide value and a decrease in induction time
was seen [99].

6. MAPs Extracts for Vegetable Oils Enrichment

MAPs are considered perfect sources of natural antioxidants, such as phenolic sub-
stances, usually referred to as polyphenols, which are ubiquitous components of plants
and herbs [137]. More than 8000 phenolic compounds have been reported as naturally
occurring substances from plants [72]. Other types of substances in plants, such as phe-
nolic acids, phenolic triterpenes, carotenoids, diterpenes, and flavonoids, are interesting
bioactive compounds with several health properties (antioxidant, antimicrobial, antifun-
gal, and anti-inflammatory activities) [72]. MAPs serve as an indigenous source of new
compounds with therapeutic value and can also be involved in drug development [138].
Herb extracts were used as natural food additives in ancient traditions to improve sensory
characteristics thanks to their health properties. The principal components found in plants
correspond to four important biochemical classes namely polyphenols, terpenes, glycosides,
and alkaloids [139], and many natural antioxidant compounds. These are now used in
medical and pharmaceutical products as substitutes for artificial antioxidants, which are
suspected to be a major cause of carcinogenesis [72]. The use of MAPs in foods is an excel-
lent strategy to enhance the flavor and the aroma of various foods since plant extracts are
rich in phytochemicals, which are of particular importance due to their health-promoting
effects [119,139]. Plants extracts have been exploited to enrich VOs with natural antioxi-
dants, as discussed in Salta et al. [140]. For instance, oregano in cottonseed oil, rosemary,
and sage extracts in both palm oil and rapeseed oil, ethanolic extract of summer savory
in sunflower oil, methanolic extract of tea leaves and oat extracts in cottonseed oil, and
spinach powder in soybean oil. Likewise, leafy vegetable extracts (cabbage, coriander
leaves, hongone, and spinach) in sunflower, as well as olive leaves, which are very studied
to enrich edible oils such as olive oil [140], virgin olive oil [23], and other VOs (sunflower,
soybean, palm, etc.) [140,141]. Olive leaves are rich in oleuropein a natural product of the
secoiridoid group [142], known for its blood pressure-lowering effect and most abundant
phenolic compounds in olive leaves [143,144]. Many studies were conducted to enrich
oils with olive leaf extracts [145–147]. Extracts from species belonging to the Lamiaceae
family have been reported in several studies for their antioxidative activity [148]. Rose-
mary was used in traditional medicine as a stimulant and mild analgesic, and it has been
considered one of the most functional herbs for treating poor circulation, inflammatory
diseases, headaches, and physical and mental fatigue [119]. Its extracts have been used in
food preservation, as they prevent oxidation and microbial contamination [148] and also
as an additive to enrich VOs, rosemary extract’s effectiveness was evaluated generally for
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oils during deep fat-fraying by oils such as soybean and palm oils [149,150] and also for a
mixture of sunflower, soybean, and palm oils [151]. Thymus species are well recognized
for their antispasmodic, sedative, antioxidant, and antibacterial characteristics and are
frequently used in the food sector as herbal teas, aromatic, flavoring agents (condiment
and spice), and medicinal plants. The preservative effect of thyme (Thymus schimperi R.)
was evaluated on soybean oil, butter, and meat, and it was found to increase the induction
time of the foods [152]. Phenolic acids, flavonoids, and phenolic monoterpenes, bioactive
compounds from thyme extract were used to flavor corn refined oil enhancing its oxidative
stability and antioxidant activity [153]. Oregano covers approximately 60 species known
as oregano in the world [154]. High content of phenolic compounds and essential oils in
oregano confers to the plant its strong antioxidant character [155], as well as other biological
activities such as antimicrobial activities [156]. It was macerated in olive oil in order to
improve its enrichment with antioxidants from the plant [157], and also its essential oil was
used to flavor olive oil [16]. Laurel is a plant species from the Lauraceae family, native to the
Mediterranean region, dried leaves, also known as bay leaves, and essential oil are used as
a valuable spice and flavoring agent in the culinary and food industry [158,159].

Laurel essential oil effects on virgin olive oil were studied by Taoudiat et al. [104].
These authors reported that the oxidative stability of oil samples supplemented with plant
extracts was improved compared to samples without the addition of herbal plant extracts.
Other plants were investigated to enrich and improve oils, such as pomegranate, pistachio,
walnut, savory, etc. Table 3 summarizes different plants, oils enriched, and the main results
of the enrichment reported.

Table 3. Most plants used for vegetable oils enrichment.

Plant Common
Name

Scientific
Name Part Used Oil Enriched Concentration Main Results Reference

Olive tree Olea europaea
L.

Leaves

Sunflower oil

200 mg of TPC of
methanol extract/kg

of oil

Increase in TPC (nd-155 mg
CAE), AA (282–504 mg TE) and

OS (1.3–2 h).
[140]

400–2400 ppm
(juice)

Improvement of oil quality
during heating process
(viscosity, acid value,

peroxide value).

[160]

Corn oil
1000–1500 ppm
(ethanol-water

extract)

TPC (18.00 ± 0.09–172.57 ± 0.53
ppm), AA (1.72–23.85%), TCC

(nd-3.64 ± 0.01 mg β
carotene/kg-oil)

[161]

Refined olive oil plus 500 µL of extract
(ethanol-extract)

Increase in total polyphenol area
(from 0.1 ± 0.1 to 22.5 ± 0.4) [141]

Olive oil

1 g of milled
leaves/10 mL of oil

Enrichement of oil with
14.45 ± 3.35 µg/mL

of Oleuropein.
[146]

20 kg of fruits with 5
L of water olive

leaves extract (OLE)

OLE enhanced TPC about 10%
(150.9 ± 11.3 µg GAE/g of oil) [162]

3% of leaves extract
(methanol extract)

Increase in TPC and
antioxidant activity [163]

Refined olive oil
400 ppm of

chlorophyll pigment
(ethanol extract)

Incresase in chlorophyll content
of oil enriched (1.46 ± 0.08 to

4.13 ± 0.02 mg/kg)
[145]

Refined
Soybean oil

Palm oil
Maize oil

Rapeseed oil
Extra virgin oil

olive oil

200 and 400 µg/mL
of phenols

(ethanol extract)

Additional stability and
impovement quality parameters

and transfert of oleuropein to
target oils

[147]
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Table 3. Cont.

Plant Common
Name

Scientific
Name Part Used Oil Enriched Concentration Main Results Reference

Rosemary Rosmarinus
officinalis L.

Leaves

Chia oil 1000 mg/kg
(ethanol-eau extract)

Improvement of the oxidative
stability From an induction
period of 0.43 ± 0.01 h to

1.30 ± 0.06 h [164]

Flax oil 1000 mg/kg
(ethanol-eau extract)

Improvement of the oxidative
stability From an induction
period of 0.37 ± 0.02 h to

1.17 ± 0.20 h

Hemp oil

20 mg of rosemary
leaves extract

(ethanol, methanol;
acetone; ether)/100 g

of oil

Improvement of the oxidative
stability From a peroxide value
of 105.93 ± 0.12 mEqO2/kg to

98.70 ± 0.50 mEqO2/kg for
enriched hemp oil

[165]

Sunflower and
soybean mixture oil

Ethanol extract
(Concentration not

determined)-

Improvement of the oxidative
stability Enriched oils keeps the

lower peroxide value, acidity
and saturated fatty acids

[151]

Commercial
rosemary

extract with
a very high

carnosic
acid

content of
70%

Soybean oil

400 mg/kg of
commercial rosemary

extract with a very
high carnosic acid

content of 70%

Improvement of the oxidative
stability From an induction

period of 2.2 ± 0.22 h to
3.4 ± 0.18 h From a peroxide

value of 23.72 ± 0.51 mEqO2/kg
17.32 ± 0.15 mEqO2/kg

[117]Cotton oil

Improvement of the oxidative
stability From an induction

period of 1.88 ± 0.2 h to
3.35 ± 0.15 h From a peroxide

value of 19.47 ± 0.18 mEqO2/kg
16.53 ± 0.24 mEqO2/kg

Rice bran oil

Improvement of the oxidative
stability From an induction

period of 3.83 ± 0.07 h
6.22 ± 0.21 h From a peroxide

value of 29.45 ± 0.61 mEqO2/kg
19.00 ± 0.19 mEqO2/kg

Leaves Virgin olive oil 5% (w/v) of
leaves/oil

Increase in the content of free
fatty acids from 0.42 ± 0.01

g/100 g to 0.57 ± 0.02 g/100 g
From an induction period of

3.75 h to 4.5 h

[166]

Oregano Origanum
vulgare L.

Leaves

Soybean oil
0.01%, 0.03% and

0.07% (Ethanol/water
(7/3) extract)

Improvement of
oxidative stability

(tON/◦C = 155.22 ± 0.42 at
0.01% to 159.35 ± 0.69 at 0.07%)

[15]

Sunflower oil
400 ppm

(Aqueous–ethanolic
extract)

Increase in antioxidant activity [167]

Extra virgin
olive oil

10, 20 and 40 g of
extract obtained by

infusion/L

Improvement of
oxidative stability [14]

Laurel Laurus nobilis
L.

Essential
oil

Extra-virgin
Olive oil

0.01% of essential oil
(volume of essential
oil/volume of extra

virgin olive oil)

Improvement of
oxidative stability [104]

Thyme
Thymus

schimperi R.
Leaves and

flowers Soybean oil 0.1 and 0.2% (Ethanol
extract)

Increase in the induction time of
soybean oil from 1.92 to 3.25 h

Increase in the protection factor
from 1.00 ± 0.042 to 1.69 ± 0.010

[152]
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Table 3. Cont.

Plant Common
Name

Scientific
Name Part Used Oil Enriched Concentration Main Results Reference

Thymus
vulgaris L.

Soybean oil 0.01%, 0.03% and
0.07%

Improvement of the oxidative
stability (From tON of

145.86 ± 0.47 to 156.86 ± 0.84
at 0.07%)

[15]

Refined corn oil 5 g/40 mL of oil

Increase in the TPC from
23.63 mg/100 g to 53.99 mg/100 g
Increase in antioxidant activity
from 100.66 mg GAE/ 100 g to

185.22 mg GAE/100 g

[168]

Basil
Ocimum

basilicum L. Leaves

Olive oil 150 g of basil leaves/1
L of oil

Increase in Linalool and
Eugenol ercentages [169]

Soybean oil
3000 mg of basil

ethanol extract/kg
of oil

Improvement of
oxidative stability [170]

Sunflower oil
100 ppm and 400 ppm
ofaqueous–ethanolic

extract

Increase in antioxidant activity
at 400 ppm [167]

Pomegranate Punica
granatum L. Juice Pomegranate

seed oil
(0%, 25%, 50%, 75%,
and 100%) of juice

TPC (0.72–6.4 mg gallic acid/g)
at 100% [171]

Pistachio Pistacia spp.

Kernels

Virgin pistachio oil
Walnut oil -

TPC = 407 ± 7 mg/kg gallic acid
DPPH = 13 ± 1 44 ± 3 mmol/kg

Trolox Improvement of the
oxidative stability

[172]

Walnut Juglans nigra
L.

Virgin pistachio oil
Walnut oil -

TPC = 339 ± 6 mg/kg gallic acid
DPPH = 44 ± 3 mmol/kg Trolox

Improvement of the
oxidative stability

[172]

Peppermint Mentha
piperita L.

Leaves

Refined rapeseed
and Sunflower oils

100 ppm–400 ppm of
aqueous–ethanolic

extract

Decreasing in DPPH antioxidant
activity for rapeseed oil

Increase in DPPH antioxidant
activity for sunflower oil

[167]

Savory Satureja
thymbra L.

Refined rapeseed
and Sunflower oils

Higher antioxidant activity at
400 ppm [167]

Sage Salvia
officinalis L. Sunflower oil

Higher antioxidant activity at
100 ppm than oil supplemented

by BHA
[167]

Catnip Nepeta cataria
L.

Leaves and
flowering

parts

Sunflower oil 600 and 1200 ppm
of acetone extract

Increase the production of
hydroperoxides for both

concentrations An increase in
the formation of hexanal for
600 ppm and a decrease for

1200 ppm

[173]
Hyssop Hyssopus

officinalis L.

An increase in the production of
hydroperoxides for 600 ppm
and a decrease for 1200 ppm

A decrease in the formation of
hexanal for both 600 ppm and

1200 ppm

Lemon balm Melissa
officinalis L.

Decrease the production of
hydroperoxides for both 600 and

1200 ppm A decrease in the
formation of hexanal for both

600 ppm and 1200 ppm

Pepper Capsicum
annuum L. -

Extra virgin
olive oil

10, 20 and 40 g of
powder/L of oil

Improvement of
oxidative stability [14]

Garlic Allium
sativum L. - 20, 30 and 40 g of

powder/of oil
Improvement of

oxidative stability [14]

AA = Antioxidant activity, BHA = Butylated hydroxyanisole, CAE = Catechin acid equivalent, DPPH = 2,2-diphenyl-
1-picrylhydrazyl, GAE = Galic acid equivalent, TCC = Total carotenoid content, TE = Trolox equivalent, TPC = Total
phenolic content, TON = Thermoxidation onset temperature OLE = Olive leaves extract, OS = Oxidative stability.
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7. Extraction Methods of Antioxidants from Medicinal Plants and Enrichment of
Vegetable Oils
7.1. Extraction Methods of Antioxidants from MAPs

After the collection of MAPs, the extraction of the antioxidant substances represents
the first step in the enrichment of oil (Figure 14) [174,175].

Foods 2022, 11, x FOR PEER REVIEW 22 of 38 
 

 

 
Figure 14. Extraction and enrichment methods of antioxidants from MAPs. 

Extraction efficiency is influenced by several factors, such as the extraction tempera-
ture, the concentration of the extraction solvent, the extraction pH, and the extraction time, 
among others [176–178]. Solvent is one of the most critical factors, the selection of these 
products is based on the chemical nature and polarity of the antioxidant compounds to be 
extracted. The selection of solvents can be generally divided into two groups. These are 
polar and moderately polar solvents, just like water, methanol, ethanol, propanol, acetone, 
and their aqueous mixtures for the extraction of water-soluble antioxidants like phenolic 
compounds, flavonoids, and anthocyanins [179,180]. While familiar organic solvents, like 
mixtures of hexane with acetone, methanol, ethanol, or mixtures of ethyl acetate with ac-
etone, methanol, and ethanol, have been used for the extraction of fat-soluble antioxi-
dants, namely carotenoids [181,182]. The most commonly used extraction methods can be 
grouped into conventional (hot water bath, maceration, and Soxhlet extraction) [183], and 
non-conventional procedures [184]. The first is traditional methods, with high solvent 
consumption, accomplished at the level of small research or by small production compa-
nies [76]. Non-conventional methods are modern and use high energy inputs/processing 

Figure 14. Extraction and enrichment methods of antioxidants from MAPs.

Extraction efficiency is influenced by several factors, such as the extraction tempera-
ture, the concentration of the extraction solvent, the extraction pH, and the extraction time,
among others [176–178]. Solvent is one of the most critical factors, the selection of these
products is based on the chemical nature and polarity of the antioxidant compounds to be
extracted. The selection of solvents can be generally divided into two groups. These are
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polar and moderately polar solvents, just like water, methanol, ethanol, propanol, acetone,
and their aqueous mixtures for the extraction of water-soluble antioxidants like phenolic
compounds, flavonoids, and anthocyanins [179,180]. While familiar organic solvents, like
mixtures of hexane with acetone, methanol, ethanol, or mixtures of ethyl acetate with
acetone, methanol, and ethanol, have been used for the extraction of fat-soluble antioxi-
dants, namely carotenoids [181,182]. The most commonly used extraction methods can
be grouped into conventional (hot water bath, maceration, and Soxhlet extraction) [183],
and non-conventional procedures [184]. The first is traditional methods, with high solvent
consumption, accomplished at the level of small research or by small production compa-
nies [76]. Non-conventional methods are modern and use high energy inputs/processing
capacity to improve the efficiency and/or selectivity of the extraction [185], (ultrasound, mi-
crowave, pressurized liquids, enzymatic hydrolysis, high hydrostatic pressure, supercritical
fluids, and pulsed electrical field) [186].

7.1.1. Conventional Extraction Methods

• Soxhlet extraction

The Soxhlet method is the most frequent method for the extraction of bioactive com-
pounds from vegetables [187]. The Soxhlet extractor was invented by Franz von Soxhlet in
1879 [188]. The main application of this apparatus is in chemistry to dissolve weakly soluble
compounds from solid matrices. It permits an unattended and unmanaged operation and
efficiently recycles a slight volume of solvent to dissolve a greater volume of material [187].
Soxhlet extraction depends widely on the properties of the matrix and particle size as
internal diffusion can be a limiting step of the extraction, solvents used during the Soxhlet
extraction must have the necessary properties such as selectivity, solvation, distribution
coefficient, density, interfacial tension, recoverability, and chemical reactivity. A co-solvent
can be added to raise the polarity of the liquid phase [189]. Among the advantages of
Soxhlet extraction, is that the sample is repeatedly brought into contact with a solvent.
This allows the shifting of the transfer equilibrium. In addition, the system remains at a
relatively high extraction temperature due to the effect of the heat applied to the distillation
flask, reaching some extraction cavities. Also, there is no need for filtration after leach-
ing [190]. However, Soxhlet extraction has a number of disadvantages, such as the long
extraction time (6 h), exposure to dangerous and flammable liquid organic solvents, and
the possibility of toxic emissions throughout extraction. Solvents used in the extraction
system must be of high purity, which can increase the extraction price. This procedure
is not considered eco-friendly and could participate in the pollution problem compared
to a conventional extraction method like supercritical fluid extraction [191]. The perfect
sample for Soxhlet extraction is also constrained to a dry, finely separated solid [76] as well
as many factors such as solvent-to-sample ratio, temperature, and agitation speed need to
be taken into account for this technique [192].

• Maceration, infusion, percolation, and decoction

Maceration requires soaking plants (coarse or powdered) in a container sealed with
a solvent (called a menstruum) and left at room temperature for a minimum period of
3 days with frequent agitation until the soluble matter has dissolved [193]. The mixture is
then filtered, and the solid residue is pressed to extract most of the occluded solutions, the
filtered and pressed liquid obtained is mixed and separated from impurities by filtration.
The final filtered liquid is evaporated and concentrated [194].

Infusion and decoction share the same principle with maceration; both are immersed
in boiled or cold water [193]. In contrast, the maceration time is shorter in the case of
infusion. For decoction, the sample is boiled in a given volume of water for a specified
time. Decoction is only suitable for the extraction of thermostable compounds, and hard
plant material, among others. Decoction is only adapted for the extraction of thermostable
compounds, and hard plant materials. Decoction usually contains more fat-soluble com-
pounds than maceration and infusion. A unique piece of equipment called a percolator is
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used in percolation, another extraction method with a similar basic principle [195]. Dry
powdered samples are placed into the percolator, added to boiling water, and macerated
for 2 h. The percolation process is usually performed at a moderate rate until the extraction
is completed before evaporation. It is recommended that the extraction is completed before
evaporation to obtain a concentrated extract.

• Hydro distillation

Hydro distillation is a conventional method of extracting bioactive compounds, princi-
pally essential oils from plants [196,197]. Hydrodistillation includes three main physico-
chemical processes namely hydrodiffusion, hydrolysis, and thermal decomposition [198].
At high extraction temperatures, some volatile constituents can be lost. This limits its use for
the extraction of thermolabile substances. There are three kinds of hydrodistillation [199]
called water-steam distillation, water distillation, and steam distillation. Regarding hy-
drodistillation, the vegetable material is first put into a compartment of the still, then
sufficient water is added and then boiled. As an alternative, steam is injected directly into
the plant material [200]. Although, as positive points of this kind of extraction method; it
can be performed without using organic solvents and can be carried out before dehydration
of the matrices used for extraction [198]. The main drawbacks of this method are the long
extraction time, possible chemical changes in terpenes’ structures, and the loss of some
polar molecules owing to the applied heat [198,201].

7.1.2. Non-Conventional Extraction Methods

• Ultrasound-assisted extraction (UAE)

UAE has been commonly adopted in the last three decades as an important extraction
efficient in pharmaceutical and food industries [202]. The mechanism is founded on the
phenomenon of cavitation. The propagation of ultrasound in liquid systems is through
a series of compressional and rarefaction waves, which can induce the production of
cavitation bubbles within fluids [203,204]. The diameters of such bubbles expand over
a few cycles until reaching a critical threshold, at which time they collapse and release
a tremendous amount of energy, resulting in extraordinary temperatures (5000 K) and
pressure (1000 atmospheres) at ambient temperature. During UAE, high temperature and
pressure would destroy the cell walls of plant material, which facilitates the release of
bioactive compounds from the plant cell walls and improve mass transport. The frequency,
intensity, temperature, and duration of the ultrasound have a direct impact on the extraction
frequency, and yields. In addition, solvent type and volume as well as sample characteristics
such as sample particle size and moisture content are also important factors for an efficient
extraction [205]. Compared to conventional methods, ultrasonic extraction has shown
several advantages in terms of extraction yields and time [206].

• Microwave assisted extraction (MAE)

MAE involves three phases [207]: the detachment of solutes from the active sites from
the solid matrix under elevated temperature and pressure; diffusion of the solvent through
the solid matrix; and release of the solutes from the matrix into the solvent. Microwave
frequency is set between 300 MHz and 300 GHz. In order to warm up quickly under
microwave radiation, the solvent has to be of a high dielectric constant (which measures
the efficiency at which absorbed microwave energy can be transformed into heat within
a material when an electric field is applied) [208]. The advantage of this technique is the
reduction in extraction time and solvent volume compared to the conventional method
(maceration and Soxhlet extraction). By using appropriate conditions, in order to avoid
thermal degradation, better recoveries have been observed in the MAE method [209].

This approach, however, is restricted to small phenolics such as phenolic acids (gallic
acid and ellagic acid), quercetin, isoflavin, and trans-resveratrol thanks to their stability
at microwave heating conditions of up to 100 ◦C for 20 min. Additional cycles of MAE
resulted in a drastic decrease in the yield of phenolics and flavonoids. The yield of phenolics
and flavanones decreased, mainly owing to the oxidation of the compounds [210]. Tannins
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and anthocyanins may not be suitable for MAE, as they are potentially subject to high-
temperature degradation [211].

• Supercritical fluid extraction (SFE)

SFE, as an environmentally sustainable technique, has been widely used recently [212].
Over the critical pressure and temperature, the solvent may enter the supercritical state,
which has both liquid-like (solvent power, negligible surface tension) and gas-like (high
diffusivity and low viscosity) characteristics [212,213]. SFE uses solvents at temperatures
and pressures beyond their critical points. Compared to normal liquids, supercritical liquid
fluids can achieve improved transport qualities, which diffuse rapidly via solid materials,
and thus achieve quicker extraction rates [200]. The strength of supercritical solvents can be
easily modified by changing the pressure, temperature, or by adding modifiers to reduce
the extraction [214].

• Pressurized liquid extraction (PLE)

PLE is based on the use of solvents at elevated pressure and temperature to extract
the desired component from the different matrices [174,215]. By increasing pressure, the
temperature of the solvent in the liquid state may be higher than its boiling point at normal
temperature, which could increase mass transfer and improves the solubility of analytes.
By elevating pressure, the temperature of the solvent in the liquid state may be higher than
its boiling point at normal temperature, which can increase mass transfer and improve the
solubility of analytes. This extraction method may be performed over a temperature range
of 21 to 200 ◦C and a pressure range of 35 to 200 bars [174]. If water is used as a solvent,
PLE is also known as subcritical water extraction (SWE) [216]. As the water temperature
is increased to 200–250 ◦C in SWE, it may be kept in a liquid state, whilst the dielectric
constant (ε) of water is reduced from 80 to 25, which is similar to the dielectric constant of
some organic solvents like methanol or ethanol [174,217].

• Enzyme-assisted extraction (EAE)

EAE is a potentially green extraction method due to the soft extraction conditions and
its eco-friendship [218].

Enzymes are characterized by their high specificity and efficiency. They have the
ability to degrade compositions and destroy the structural continuity of the plant cell wall,
this latter promotes the liberation of bioactive constituents. Among the used enzymes, in
this extraction method, are hemicellulase, cellulase, pectinase, and β-glucosidase. These
enzymes could be extracted from different sources such as fungi, bacteria, fruit and veg-
etable extracts, or animal organs [183,218]. Several studies have demonstrated that EAEs
improve the extraction performance of antioxidants, especially phenolics, flavonoids, and
carotenoids [219–221].

• High hydrostatic pressure extraction (HHPE)

HHPE is for very high cold isostatic hydraulic pressure ranging from 100 to 800 MPa
and more [222]. HHPE is a new approach used for active constituents extracted from
natural biomaterials. The advantage of this method is to improve mass exchange ratios,
boosting cell permeability, as well as the diffusion of secondary metabolites in accordance
with changes in phase transitions [223]. HHPE has been applied for the extraction of
ginsenosides from Korean red ginseng [224], flavonoids from propolis [225], polyphenols
from green tea leaves [186], and anthocyanins from grape by-products [223]. The use
of HHPE has been shown to be very efficient, compared to conventional or other novel
extraction methods by offering high extraction efficiencies and high extraction selectivity,
as well as shorter time (1 min for most studies) and requiring less energy [186].

• Pulsed electric field system (PEFS)

PEFS is a technique founded on the use of short-period pulses of high electrical field
intensity (0.1–50 kV/cm) at ambient temperature [226]. The goal of PEFS applications is
to make cell membranes permeable to improve the transfer of components from inside
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the cells [227]. Electrical fields of a few to hundred microseconds are able to intimate the
formation of pores in the cell membrane, called also “electroporation”. On this basis, subse-
quent extraction of bioactive molecules can be performed [228]. Different investigations
and advantages of pulsed electric field treatment have been found to enhance the extrac-
tion of bioactive compounds (antioxidants, tocopherols, polyphenols, and phytosterols)
from various fruits, vegetables, and agricultural wastes [229,230]. Table 4 presents some
examples of extraction methods for natural antioxidants.

Table 4. Examples of extraction methods of natural antioxidants.

Extraction Method Plant Main Compounds Main Results (Extract) Reference

Soxhlet extraction Spearmint
(Mentha spicata L.) Flavonoids Catechins = 0.144 mg/g [187]

Maceration Summer savory
(Satureja hortensis L.)

Phenols
Flavonoids

Anthocyanins

TPC = 125.34 ± 0.13 mg GAE/g
TFC = 16.27 ± 0.34 mg RU/g

TAC = 115.21 ± 0.95 mg C3G/g
[231]

Micro-waves assisted
extraction

Pistacia leaves
(Pistacia lentiscus L.) Phenols TPC = 149.39 ± 8.11 mg GAE/g [232]

Ultrasound assisted
extraction

Rosemary leaves
(Rosmarinus officinalis L.) Phenols TPC = 2040 ± 40 ppm GAE

TPC = 35.0 mg GAE/g [233,234]

Supercritical Fluid
extraction

Rosemary
(Rosmarinus officinalis L.)

Carnosol
Carnosic acid EC50 (DPPH) = 0.23 mg/mL [235,236]

Pressurized liquid
extraction

Spinach
(Spinacia oleracea L.)

Tocopherols
Tocotrienols

α-T = 284 ± 13 µg/kg
β-T = 8 ± 0.1 µg/kg
γ-T = 83 ± 3 µg/kg

[236]

High hydrostatic
pressure extraction

Green tea
(Camellia sinensis L.) leaves Phenols Yield of polyphenols at

4 min = 30.7 ± 0.8% [237]

Pulsed electric field Norway spruce
(Picea abies L.) Phenols TPC = 8.52 g GAE/100 g [238]

Enzyme-assisted
extraction

Stevia
(Stevia rebaudiana (Bert.) Flavonoids Catechins = 89–102 g/100 g [239]

GAE = galic acid equivalent, EC = effective concentration, TPC = total phenolic content, TFC = total flavonoid
content, TAC = total antioxidant capacity, DPPH = 2,2-diphenyl-1-picrylhydrazyl, α-T, β-T, and γ-T = α-, β-, and
γ-tocopherols.

7.2. Enrichment Methods for VOs with MAPs

The enrichment of edible VOs with antioxidant substances can be achieved in different
ways [204,240].

• Enrichment by natural maceration

One of the methods that can be carried out is enrichment by maceration is an old
and easy-to-carry-out principle [17]. It allows extraction of liposoluble active ingredients
by simple pressing, by mixing plant extracts in a fatty substance that acts as a natural
solvent [241]. Valerija et al. have used it to enrich refined rapeseed oil with phenols and
chlorophylls from olive leaves. Healthy leaves were sampled from the olive branches and
washed in distilled water four times, three forms (whole, cut, and crushed) of fresh or
dried olive leaves were prepared for maceration in oil ovens. The maximum total phenolics
(220.4 ± 5.3 mg/kg) was achieved in VOs with fresh whole leaves after seven days of
maceration, but the conversion of chlorophylls to oils was most effective when crushed and
steam-bleached leaves were macerated for 28 days (79.10 ± 1.14 mg/kg) [242].

• Enrichment by ultrasound-assisted maceration

Recently, new techniques have been developed for more efficiency regarding oil
enrichment [157]. Namely, the enrichment of oils using ultrasounds; this method has
shown good extraction results since it allows penetration and mass transfer [240]. Thanks
to the cavitation principle that fosters the formation of tiny bubbles subjected to rapid
adiabatic compression and expansion [190]. Achat et al. [190] adopted the ultrasonic
maceration method to enrich olive oil with phenolic compounds from olive leaves under
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the following conditions: temperature of 16 ◦C, ultrasonic power of 60 W, and sonication
time of 45 min.

• Enrichment during oil extraction

In the same context, the study of Sanmartin et al. proposed a green, efficient, and
innovative enrichment procedure. In the experimental conditions adopted, citrus and
olive leaves are crushed and cryo-macerated with the olives during the extraction of oil. A
higher antioxidant content was calculated in the enriched olive oils compared to the control
sample, and a high concentration of oleuropein was detected in the olive oil extracted
in the presence of the olive leaf (+50% in the olive oil). The organoleptic profiles of the
enriched olive oils were also profitably improved in terms of overall pleasantness and odor
complexity, compared to the control [48].

• Enrichment with essential oil

Another technique aims at enriching VOs with an essential oil obtained from plants,
as was done by Asensio et al. [16]. To this end, olive oil was flavored with oregano
essential oils (OEO). Olive oil samples were spiked with 0.05% OEO and stored under
dark and light conditions for 126 days. Samples with OEO showed low values of lipid
oxidation indicators (UV absorption coefficients: K232, K269, peroxide value, and anisidine
value), especially in the dark. Olive oil with OEO in dark displayed a low peroxide value
(18.71 mEqO2 kg−1) [16].

• Other techniques

Meanwhile, Medina et al. [147] have enriched various refined oils with phenolic
extracts of olive leaves and olive pomace, by applying an alternative enrichment technique
consisting of first preparing ethanolic extracts of olive leaves and pomace, adding them to
refined oils, and finally evaporating the ethanol from the two-phase system. A significant
improvement in the quality and stability parameters of the enriched oils was recorded [147].
Comparable results were found by Kozłowska and Gruczyńska [15] who evaluated the
oxidative stability of sunflower and soybean oils enriched with plant extracts (marjoram,
thyme, and oregano) using the same procedure.

On the other hand, Şahin et al. investigated the enrichment of corn oil with polyphe-
nols by adding olive and lemon balm leaves extracts. After evaporation of the solvent in the
extraction step, the extracts were dried and then partially dissolved in corn oil by a solid-
liquid extraction method. The total phenolic content has been improved by 9.5 and 2.5 times
compared to pure corn oil, and the antioxidant activity of the oil enriched with olive and
lemon balm leaves extracts was found to be almost 14 and 6 times higher, respectively, than
those of the untreated oil, and therefore the improved oil stability (18%) [161].

8. Conclusions

Here, we highlighted the use of aromatic and medicinal plant extracts to improve the
nutritional value and oxidative stability of vegetable oils. The bibliographic analysis carried
out for this paper revealed a significant number of articles describing the importance of
antioxidants in protecting edible oils against autoxidation. Edible VOs enriched with
natural antioxidants extracted from MAPs have also been reported to have considerable
antioxidant activity and thermal stability. The utilization of natural antioxidants extracted
with durable and sustainable techniques from MAPs is an innovative way of achieving
a circular economy and responding to consumer needs for natural and healthier foods.
However, it is important to choose the appropriate extraction and enrichment methods,
and subsequently the most effective concentrations for a functional food design. Moreover,
further works concerning the bioactive compounds of extracts showed significant effects on
the stability of vegetable oils should be investigated, determining the mechanisms related
to their effects.
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1. Şahin, S.; Elhussein, E.; Gülmez, Ö.; Kurtulbaş, E.; Yazar, S. Improving the Quality of Vegetable Oils Treated with Phytochemicals:

A Comparative Study. J. Food Sci. Technol. 2020, 57, 3980–3987. [CrossRef] [PubMed]
2. Oey, S.B.; van der Fels-Klerx, H.J.; Fogliano, V.; van Leeuwen, S.P.J. Effective Physical Refining for the Mitigation of Processing

Contaminants in Palm Oil at Pilot Scale. Food Res. Int. 2020, 138, 109748. [CrossRef] [PubMed]
3. dos Santos, M.T.; Gerbaud, V.; Le Roux, G.A.C. Ternary Blends of Vegetable Oils: Thermal Profile Predictions for Product Design.

In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; 24 European Symposium on Computer Aided
Process Engineering; Elsevier: Amsterdam, The Netherlands, 2014; Volume 33, pp. 1465–1470.

4. Verhé, R.; Verleyen, T.; Hoed, V.V.; Greyt, W.D. Influence of Refining of Vegetable Oils on Minor Components. J. Oil Palm Res.
2006, 4, 168–179.

5. Combe, N.; Rossignol-Castera, A. Huiles végétales et friture. Cah. Nutr. Diététique 2010, 45, S44–S51. [CrossRef]
6. Ganesan, K.; Sukalingam, K.; Xu, B. Impact of Consumption and Cooking Manners of Vegetable Oils on Cardiovascular

Diseases—A Critical Review. Trends Food Sci. Technol. 2018, 71, 132–154. [CrossRef]
7. Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini,

M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849.
[CrossRef]

8. Bodoira, R.M.; Penci, M.C.; Ribotta, P.D.; Martínez, M.L. Chia (Salvia hispanica L.) Oil Stability: Study of the Effect of Natural
Antioxidants. LWT 2017, 75, 107–113. [CrossRef]

9. Sakar, E.H.; Gharby, S. Olive Oil: Extraction Technology, Chemical Composition, and Enrichment Using Natural Additives; IntechOpen:
London, UK, 2022; ISBN 978-1-80355-442-6.

10. Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to Increase the Oxidative Stability of Cold Pressed Oils. LWT 2019, 106,
72–77. [CrossRef]

11. Carocho, M.; Ferreira, I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Com-
pounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [CrossRef]

12. Muik, B.; Lendl, B.; Molina-Díaz, A.; Ayora-Cañada, M.J. Direct Monitoring of Lipid Oxidation in Edible Oils by Fourier Transform
Raman Spectroscopy. Chem. Phys. Lipids 2005, 134, 173–182. [CrossRef]

13. Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants:
Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [CrossRef] [PubMed]

14. Gambacorta, G.; Faccia, M.; Pati, S.; Lamacchia, C.; Baiano, A.; La Notte, E. Changes in the Chemical and Sensorial Profile of
Extra Virgin Olive Oils Flavored with Herbs and Spices During Storage. J. Food Lipids 2007, 14, 202–215. [CrossRef]
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Selected Edible Oils. Molecules 2018, 23, 1746. [CrossRef]

37. Guillén, M.D.; Ruiz, A. Monitoring the Oxidation of Unsaturated Oils and Formation of Oxygenated Aldehydes by Proton NMR.
Eur. J. Lipid Sci. Technol. 2005, 107, 36–47. [CrossRef]

38. Gharby, S.; Harhar, H.; Guillaume, D.; Haddad, A.; Matthäus, B.; Charrouf, Z. Oxidative Stability of Edible Argan Oil: A Two-Year
Study. LWT—Food Sci. Technol. 2011, 44, 1–8. [CrossRef]

39. Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [CrossRef]
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59. Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, Food Processing and Health. Antioxididants 2021, 10, 433. [CrossRef] [PubMed]
60. Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic

Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [CrossRef] [PubMed]
61. Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry

Applications. Molecules 2019, 24, 4132. [CrossRef] [PubMed]
62. Ong, G.; Kasi, R.; Subramaniam, R. A Review on Plant Extracts as Natural Additives in Coating Applications. Prog. Org. Coat.

2021, 151, 106091. [CrossRef]
63. Tripathi, R.; Mohan, H.; Kamat, J.P. Modulation of Oxidative Damage by Natural Products. Food Chem. 2007, 100, 81–90.

[CrossRef]
64. Rajurkar, N.S.; Hande, S.M. Estimation of Phytochemical Content and Antioxidant Activity of Some Selected Traditional Indian

Medicinal Plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [CrossRef]
65. Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod.

Process. 2011, 89, 217–233. [CrossRef]
66. Patel, V.; Patel, P.; Kajal, S.S. Antioxidant Activity of Some Selected Medicinal Plants in Western Region of India. Adv. Biol. Res.

2010, 4, 23–26.
67. Jaradat, N.A.; Shawahna, R.; Hussein, F.; Al-Lahham, S. Analysis of the Antioxidant Potential in Aerial Parts of Trigonella Arabica

and Trigonella Berythea Grown Widely in Palestine: A Comparative Study. Eur. J. Integr. Med. 2016, 8, 623–630. [CrossRef]
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Savory Extracts Prepared by Novel Extraction Methods Resulted in Enhanced Biological Activity. Ind. Crops Prod. 2017, 109,
875–881. [CrossRef]

232. Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia Lentiscus Leaves as a Source of Phenolic
Compounds: Microwave-Assisted Extraction Optimized and Compared with Ultrasound-Assisted and Conventional Solvent
Extraction. Ind. Crops Prod. 2014, 61, 31–40. [CrossRef]

233. Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted Extraction of Rosemary Antioxidants with Green Solvents. J.
Food Eng. 2012, 109, 98–103. [CrossRef]

234. Bellumori, M.; Innocenti, M.; Binello, A.; Boffa, L.; Mulinacci, N.; Cravotto, G. Viñas. Comptes Rendus Chim. 2016, 19, 699–706.
[CrossRef]

http://doi.org/10.1002/pca.631
http://doi.org/10.1186/1752-153X-1-13
http://www.ncbi.nlm.nih.gov/pubmed/17880743
http://doi.org/10.3390/antiox10121967
http://www.ncbi.nlm.nih.gov/pubmed/34943070
http://doi.org/10.1016/j.biortech.2014.10.030
http://doi.org/10.3390/molecules18067194
http://www.ncbi.nlm.nih.gov/pubmed/23783457
http://doi.org/10.1016/j.jare.2013.09.002
http://doi.org/10.1016/j.trac.2015.01.018
http://doi.org/10.2991/ic3me-15.2015.72
http://doi.org/10.1016/j.fbp.2013.01.006
http://doi.org/10.1016/j.foodres.2014.05.066
http://doi.org/10.1080/01496395.2015.1085881
http://doi.org/10.1002/jctb.1153
http://doi.org/10.1016/j.ifset.2007.06.002
http://doi.org/10.1002/jsfa.5710
http://doi.org/10.1016/j.jfoodeng.2008.06.002
http://doi.org/10.1016/j.foodres.2014.04.024
http://doi.org/10.1016/j.ifset.2006.07.001
http://doi.org/10.1016/j.indcrop.2017.09.063
http://doi.org/10.1016/j.indcrop.2014.06.035
http://doi.org/10.1016/j.jfoodeng.2011.09.029
http://doi.org/10.1016/j.crci.2015.12.013


Foods 2022, 11, 3258 35 of 35

235. Babovic, N.; Djilas, S.; Jadranin, M.; Vajs, V.; Ivanovic, J.; Petrovic, S.; Zizovic, I. Supercritical Carbon Dioxide Extraction of
Antioxidant Fractions from Selected Lamiaceae Herbs and Their Antioxidant Capacity. Innov. Food Sci. Emerg. Technol. 2010, 11,
98–107. [CrossRef]

236. Viñas, P.; Bravo-Bravo, M.; López-García, I.; Pastor-Belda, M.; Hernández-Córdoba, M. Pressurized Liquid Extraction and Disper-
sive Liquid-Liquid Microextraction for Determination of Tocopherols and Tocotrienols in Plant Foods by Liquid Chromatography
with Fluorescence and Atmospheric Pressure Chemical Ionization-Mass Spectrometry Detection. Talanta 2014, 119, 98–104.
[CrossRef]

237. Xi, J.; Shen, D.; Zhao, S.; Lu, B.; Li, Y.; Zhang, R. Characterization of Polyphenols from Green Tea Leaves Using a High Hydrostatic
Pressure Extraction. Int. J. Pharm. 2009, 382, 139–143. [CrossRef]

238. Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of Pulsed Electric Fields on Polyphenols Extraction from Norway Spruce Bark.
Ind. Crops Prod. 2016, 80, 50–58. [CrossRef]

239. Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30, 37–44.
[CrossRef]

240. Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct Enrichment of Olive Oil in
Oleuropein by Ultrasound-Assisted Maceration at Laboratory and Pilot Plant Scale. Ultrason. Sonochemistry 2012, 19, 777–786.
[CrossRef] [PubMed]

241. Turon, F. Recettes de macérâts huileux: Intérêt pour la cosmétique. OCL 2004, 11, 411–413. [CrossRef]
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