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Abstract: Limosilactobacillus fermentum is ubiquitous in traditional fermented vegetables, meat prod-
ucts, and the human gut. It is regarded as a “generally recognized as safe” organism by the US Food
and Drug Administration. So far, the genetic features and evolutionary strategies of L. fermentum
from the human gut and food remain unknown. In this study, comparative genomic analysis of
224 L. fermentum strains isolated from food and human gut (164 L. fermentum strains isolated from
human gut was sequenced in our lab) was performed to access genetic diversity and explore ge-
nomic features associated with environment. A total of 20,505 gene families were contained by
224 L. fermentum strains and these strains separated mainly into six clades in phylogenetic tree
connected with their origin. Food source L. fermentum strains carried more carbohydrate active
enzyme genes (belonging to glycosyltransferase family 2, glycoside hydrolase family 43_11, and
glycoside hydrolase family 68) compared with that of human gut and L. fermentum derived from
food showed higher ability to degrade xylulose and ribose. Moreover, the number of genes encoding
otr(A), tetA(46), lmrB, poxtA, and efrB were more abundant in food source L. fermentum, which
was consistent with the number of CRISPR spacers and prophages in L. fermentum of food source.
This study provides new insight into the adaption of L. fermentum to the food and intestinal tract
of humans, suggesting that the genomic evolution of L. fermentum was to some extent driven by
environmental stress.

Keywords: genomic analysis; Limosilactobacillus fermentum; source; adaptation; carbohydrate metabolism

1. Introduction

Limosilactobacillus fermentum is a facultatively anaerobic, gas-producing, and obligately
heterofermentative bacterium [1]. In 1901, some basic physiological and biochemical char-
acteristics (cellular morphology, nutritional requirement, and carbohydrate fermentation)
of this strain were described for the first time in Bergey’s Manual of Systematic Bacteriology;
it can actively ferment sugars, such as glucose, fructose, sucrose, lactose, mannose, and
ribose, but usually shows little or no fermentation of xylose, cellobiose, and trehalose [2].
L. fermentum can convert the carbohydrates in food to acid to alter flavor, prolong shelf
life, and improve nutritional quality. It is used as a common starter culture in traditional
fermentation of fruits and vegetables [3,4]. Furthermore, it was regarded as a “generally
recognized as safe” organism by the US Food and Drug Administration in 2013. Accu-
mulating evidence has shown that L. fermentum is ubiquitous in the intestinal tract of
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humans [5]. In 2017, Duar synthesized the habitat and phylogenetic analysis of Lactobacillus
and speculated that L. fermentum could have experienced a change in host-adapted lifestyle
(existing in invertebrate or vertebrate hosts) to a free-living lifestyle (mainly isolated from
the environment and plant) [6].

Phenotypic and biochemical characteristics were the main criteria for the differentia-
tion of L. fermentum in the next few decades after it was discovered; it was reclassified and
differentiated from L. reuteri and L. cellobiosus in 1980 and 2004, respectively [7]. Molecular
techniques involving randomly amplified polymorphic DNA, amplified 16S rDNA restric-
tion analysis, and ribotyping were developed in the 1990s and have been applied to identify
Lactobacillus at the species level [8]. L. fermentum belonged to the genus Lactobacillus and
it was reclassified as a new genus Limosilactobacillus in 2020 [9]. L. fermentum can now be
directly identified without culturing based on the bacterial 16S ribosomal RNA amplicon
with advances in high-throughput DNA sequencing [10]. The rapid development in DNA
sequencing from the late 20th century to the 21st century has made the whole-genome
sequencing of L. fermentum possible, proving to be both time- and cost-saving [11]. Since
2008, more and more genomes of L. fermentum strains have become accessible from the
National Coalition Building Institute database [12]. The genetic diversity of L. fermentum
strains isolated from different geographical areas or food-types was performed by Tong
Dan et al. using phylogenetic analysis based on multilocus sequence typing [13]. Our
previous research also showed that L. fermentum strains isolated from human fecal samples
clustered into three distinct clades in the phylogenetic tree [12]. Duar et al. analyzed the
evolution and natural history of nearly 200 Lactobacillus spp. and Pediococcus spp. and
showed that Lactobacillus genus with the same ecological niche clustered together in the
phylogenetic tree, which provided valuable information for the industrial and therapeutic
applications of certain genera [6]. Qing Li and Michael also showed that vertebrate-adapted
lactobacilli (L. reuteri, L. delbrueckii, L. salivarius, and so on) harbored some special character-
istics (tetracycline resistence, degrade sucrose to glucans and fructans, acid resistance, and
so on) compared with insect-adapted lactobacilli [14].

Research shows that L. fermentum is commonly used in food and biotechnology. For
example, Zhang et al. show that L. fermentum accounts for 22.6% of strains in traditional
fermented yak milk and can produce bacteriocin-like substance to inhibit the growth of
spoilage microorganisms in milk [15]. Fei Huang et al. show that L. fermentum can ferment
longan polysaccharides and produce arabinose, galactose, rhamnose, and mannose and
thus improve solubility and reduce the viscosity and particle size of longan pulp [16]. Xue
Zhang et al. find that Harbin red sausage fermented with L. fermentum instead of nitrite
has more free amino acids and these strains are alternative for producing pink, cured color
through converting Mb(Fe3+) to cured meat pigment NO-Mb(Fe2+) [17]. Irene Falasconi
et al. indicate that L. fermentum can be used as starter cultures for sourdough since they
can produce exopolysaccharide, CO2, amylase, and form acidification [18]. In addition,
L. fermentum has also been shown to ferment vegetable [19] and fruit juice [20,21] and can
increase the total phenolic and total flavonoid contents, prevent spoilage, and improve the
shelf life of food. The physiological characteristics of lactobacilli, including the structure
of exopolysaccharides [22] and lactic acid production [23], have been shown to directly
influence the texture and flavor of fermented foods. Rodolphe et al. also showed that
clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies
could be applied to alter some genes of food microbiota to control spoilage bacteria and
pathogens and improve the taste and sensory properties of food products [24].

Evidence has also shown that L. fermentum can act as a probiotic and provide health
benefits in humans and animals. Luciana et al. showed that the health-promoting properties
of L. fermentum in cancer and neurodegenerative and metabolic disorders may be due to
their antioxidant properties [25]. L. fermentum strains have shown significant potential
as a therapeutic tool for pathogenic infection [26], colitis [27], cardiovascular disease [28],
and hepatic injury [29]. Products such as cheese, yogurt, beverages, capsules, and pills
containing L. fermentum strains (including L. fermentum CECT5716, PCC, and ME-3) have
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begun to dominate the global probiotics market [7]. Researchers have indicated that the
metabolites (exopolysaccharides [30], antimicrobial compounds [31], bile salt hydrolase [32],
organic acid, and lactase [33]) produced by probiotics in the host tissue may modulate host
biology and disease processes. Genes related to the synthesis of bile salt hydrolase [32],
branched short-chain fatty acids [34], reuterin, and cobalamin [35] have been clarified.

Since probiotic properties and fermentation characteristics of L. fermentum are inti-
mately linked to specific genes in the strain, it is essential to understand the genomic traits
of L. fermentum strains. Furthermore, the nutrition characteristics, temperature, pH, oxygen,
osmotic pressure, and redox potential [34] of human gut and fermentation food could
affect the evolutionary change of L. fermentum and it is harbored in both environments [35];
whether this difference would cause the loss or occurrence of specific genes is still unknown.
In this study, comprehensive genomic analysis of 224 L. fermentum strains derived from
the human gut and food (164 were isolated from the gut of humans in our lab and 60 were
obtained online) were collected, and the genes encoding orthologous proteins, antibiotic
resistance, carbohydrate-active enzymes, CRISPR/Cas9, virulence factors, and prophage in
L. fermentum were analyzed.

2. Materials and Methods
2.1. Genome Sequence

A total of 164 L. fermentum strains were isolated from 153 healthy Chinese human
gut (samples WX111-WX115 were from the same person, samples HN112, HN14-HN1110
were from the same person) and Fast DNA Spin Kit was used to extract the DNA of
L. fermentum strains [36]. Then, the DNA amplicons were sequenced using the Illumina
Hiseq 10 platform (San Diego, CA, USA). Sixty L. fermentum genomes were obtained from
the NCBI microbial genome database. The basic information of these strains is provided in
Table S1.

2.2. Average Nucleotide Identity Values, Pan-, and Core-Genome, and Phylogenetic Analyses

Average nucleotide identity (ANI) was calculated using Python and pan and core
genomes were analyzed using PGAP 1.2.1 [37]. OrthoMCL1.4 was used to analyze orthol-
ogous genes, and the maximum likelihood method was used to perform a phylogenetic
analysis of 224 L. fermentum strains (based on 615 orthologous genes).

2.3. Clusters of Orthologous Groups (COGs) Analysis

The genomes of 224 L. fermentum strains were uploaded to BLAST against all annotated
Clusters of Orthologous Groups (COGs) in the COG database (https://www.ncbi.nlm.nih.
gov/COG (accessed on 5 June 2021)). The dominant COGs in each clade are shown in
Table S2.

2.4. Carbohydrate Metabolism

The genomes of 224 L. fermentum strains were uploaded to BLAST against all annotated
CAZyme proteins in the Carbohydrate-Active enZyme (CAZy) database. These genomes
were also uploaded to BLAST and annotated against sequences in the non-redundant
protein sequence database (NR), and the enzymes involved in carbohydrate metabolism
were analyzed.

2.5. Antibiotic Resistance Genes (ARGs)

Antibiotic resistance genes (ARGs) of 224 L. fermentum strains were annotated using
the Comprehensive Antibiotic Research Database (CARD) (http://arpcard.mcmaster.ca
(accessed on 6 July 2021)).

2.6. CRISPR-Cas Systems

CRISPR loci in L. fermentum strains were characterized using CRISPRFinder (https:
//crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index (accessed on 6 July 2021)).

https://www.ncbi.nlm.nih.gov/COG
https://www.ncbi.nlm.nih.gov/COG
http://arpcard.mcmaster.ca
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
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2.7. Prophage Identification

Prophage prediction of L. fermentum strains relied on similarity searches against a
database of prophage genes (http://phaster.ca/ (accessed on 9 August 2021)).

2.8. Statistical Analysis

PERMANOVA and pairwise comparison analysis was used to analyze the difference
between groups (* p < 0.05, ** p < 0.01, and *** p < 0.001). The data of the ANI, pan and
core genomes, COGs analysis, carbohydrate metabolism, ARGs, CRISPR-Cas systems, and
prophage identification were visualized using R (ggplot2 package). Microsoft PowerPoint
and Adobe Illustrator were used to visualize and assemble the pictures.

2.9. Data Deposition

The genomes of 164 L. fermentum strains screened in our lab were sequenced and
uploaded to the Sequence Read Archive database in NCBI Data Bank with biosample
accession numbers SAMN15891013-SAMN15891179.

3. Results
3.1. Genetic Diversity and Phylogenetic Analysis of 224 L. fermentum Strains

The nucleotide-level genomic similarity between the coding regions of every two
genomes of L. fermentum strains in this study was greater than 97% (Figure 1A). The
similarities, differences, and relationships between the genomes of 224 L. fermentum strains
are presented in the Venn diagram in Figure 1B; 615 genes were shared by the genomes of
all L. fermentum, and 11–525 unique genes were present in each strain. Pan-genome analysis
revealed that the number of pan genes increased sharply as the genome of L. fermentum
strains increased, and 20,505 gene families existed in the genomes of 224 L. fermentum
strains. Compared with the pan-genome curve, the core-genome curve decreased flatly
and 502 core genes were shared by the genomes of 224 L. fermentum strains (Figure 1C).

On the phylogenetic tree, 224 L. fermentum strains were divided into six clades (clades
I, II, III, IV, V, and VI) (Figure 2). Of the 60 L. fermentum strains obtained from NCBI,
22 L. fermentum strains were derived from human fecal samples and 35 L. fermentum strains
were isolated from food sources (Table S1). L. fermentum strains belonging to clades III and
IV mostly originated from food sources, while L. fermentum strains isolated from the human
gut mainly clustered in clades I, II, and VI. Clade V included L. fermentum strains with half
human and half food sources.

http://phaster.ca/
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Figure 1. The genomic and genetic characteristics of 224 L. fermentum. (A) Average nucleotide iden-
tity scores of 224 L. fermentum. The color gradation from light red to dark red indicates an increase 
in genome similarity; (B) Venn diagram of the homologous clusters of 224 L. fermentum; (C) Pan− 
and core−genome of 224 L. fermentum. The abscissa axis represents the number of genomes of L. 
fermentum and the vertical axis represents the number of pan− and core−genomes. 

 
Figure 2. Phylogenetic analysis of 224 L. fermentum isolated from human intestinal tract and food 
based on 615 orthologous genes. The genome origin is annotated with orange and blue circles and 
the isolation source of L. fermentum strains is notated with yellow, blue, and purple stripes. 

3.2. Analysis of Clusters of Orthologous Groups (COGs) in L. fermentum Strains 
A total of 1434 clusters of orthologous groups were harbored by the genome of 224 

L. fermentum strains in the COG database. Principal coordinates analysis (PCoA) of COG 
between six phylogenetic clades showed that orthologous groups of proteins in the 

Figure 1. The genomic and genetic characteristics of 224 L. fermentum. (A) Average nucleotide identity
scores of 224 L. fermentum. The color gradation from light red to dark red indicates an increase in
genome similarity; (B) Venn diagram of the homologous clusters of 224 L. fermentum; (C) Pan- and
core-genome of 224 L. fermentum. The abscissa axis represents the number of genomes of L. fermentum
and the vertical axis represents the number of pan- and core-genomes.
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Figure 2. Phylogenetic analysis of 224 L. fermentum isolated from human intestinal tract and food
based on 615 orthologous genes (All strains mainly clustered into phylogenetic clade I, II, III, IV, V,
and VI). The genome origin is annotated with orange and blue circles and the isolation source of
L. fermentum strains is notated with yellow, blue, and purple stripes.
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3.2. Analysis of Clusters of Orthologous Groups (COGs) in L. fermentum Strains

A total of 1434 clusters of orthologous groups were harbored by the genome of
224 L. fermentum strains in the COG database. Principal coordinates analysis (PCoA) of
COG between six phylogenetic clades showed that orthologous groups of proteins in the
genomes of clades I and II were more similar and proteins in clade VI were differentiated
from those of any other groups (Figure 3A). PERMANOVA and pairwise comparison
results showed no significant difference between clades III and IV (Figure 3B). Among all
COG functional categories, genes categorized as mobilome, prophages, and transposons
(functional categories of X in COGs) varied the most between different clades, and these
genes in clades III and IV were significantly higher than those in any other clade (Figure 3C).
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Figure 3. Clusters of orthologous groups (COGs) in the genome L. fermentum strains distributed in
phylogenetic clades I, II, III, IV, V, and VI separately. (A) Principal coordinates analysis (PCoA) of
COGs in the genome of L. fermentum strains in 6 main phylogenetic clades; (B) PERMANOVA and
pairwise comparison analysis COGs in the genome of L. fermentum strains in 6 phylogenetic clades;
(C) the violin plots show the number of genes annotated with diverse COG functional categories in
L. fermentum in the phylogenetic clades I, II, III, IV, V, and VI and * indicate a significant difference in
functional categories X between different group (** p < 0.01, *** p < 0.001).

Analysis of functional categories enriched in L. fermentum genome may provide new
ideas for identifying the environmental characteristics or stress. Based on the above results,
we observed significant differences in L. fermentum genomes of human and food source.
Then, LEfSe analysis of COG categories in two groups of L. fermentum genomes was per-
formed and the result showed that the number of dominant COG functional categories
belonging to human source L. fermentum and food source L. fermentum were 31 and 74,
respectively. Food source L. fermentum strains were relatively lower than that of human
source and they contained significantly low dominant COG categories (Table S2). Re-
markably, some functional genes belonging to COG category of mobilome, prophages,
and transposons were widely shared by L. fermentum strains of food source. Among
these, genes annotated as COG2826, COG3328, COG2801, COG0675, COG1943, COG2963,
COG3464, COG3436, and COG3293 were all related to transposase and were most differ-
entially distributed in the food source L. fermentum genomes. Compared to food source,
human gut source L. fermentum genomes had significantly more genes annotated as energy
production and conversion, amino acid transport, and metabolism. Dominant COG cate-
gories sorted by LDA (linear discriminant analysis) score greater that 2.5 were COG1309



Foods 2022, 11, 3135 7 of 17

(DNA-binding protein), COG1028 (NAD(P)-dependent dehydrogenase), COG0538 (isoc-
itrate dehydrogenase), COG0531 (serine transporter YbeC), COG0716 (Flavodoxin), and
COG1063 (threonine dehydrogenase or related Zn-dependent dehydrogenase). Overall,
compared to food source L. fermentum strains, human source L. fermentum genomes con-
tained significantly more dominant COG categories, such as functional categories of C, E,
G, K, L, and R.

3.3. Identification of Carbohydrate Metabolism in L. fermentum Strains

CAZyme families included in the genomes of L. fermentum strains were glycoside hy-
drolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs), and carbohydrate
-binding modules (CBMs). Among these, glycosyltransferase family 2, glycosyltransferase
family 4, glycoside hydrolase family 73, and carbohydrate-binding module family 50 were
major families in genomes of both two groups of L. fermentum strains. CAZyme families of
food source and human feces source L. fermentum strains were comparative analyzed by
PERMANOVA and pairwise comparison and result showed that CAZyme genes in group
of food source were significantly higher than that of human gut source. A relatively large
number of glycoside hydrolases not yet assigned to a family (GH0) were included in human
feces source L. fermentum strains (Figure 4A). In order to find out whether or not there
is a statistically significant difference between two L. fermentum groups, LEfSe analysis
with a Kruskal–Wallis test was used. Of 38 CAZyme families, 22 CAZyme families were
significantly different between the human sources and food sources. The number of glyco-
side hydrolase family 3, glycoside hydrolase family 13_20, and glycoside hydrolase family
13_29 was common in human-derived L. fermentum, but they were rare in food-derived
strains (Figure 4B), while glycosyltransferase family 2, glycoside hydrolase family 43_11
and glycoside hydrolase family 68 were dominant in “food source” L. fermentum strains.
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Figure 4. Genes encoding carbohydrate-active enzymes (CAZy) in the genome of L. fermentum strains
isolated from human gut and food. (A) Stacked bar chart of carbohydrate-active enzyme (CAZy)
categories in the genome of L. fermentum derived from different sources and * indicate a significant
difference in the number of CAZys between different group (*** p < 0.001); (B) heatmap of the number
of specific CAZy categories in the genome of L. fermentum strains from human gut and food. (The
items of CAZy category with LDA score greater than 2 using linear discriminant analysis effect size
analysis are listed).
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Based on the non-redundant protein sequence database (NR), the enzymes involved
in carbohydrate metabolic pathways are presented in Figure 5A. Related genes encoding
enzymes involved in the metabolism of L-arabinose, D-galactose, D-glucose, D-ribose,
D-mannose, maltose, melibiose, manninotriose, sucrose, stachyose, lactose, and raffinose
were present in almost all L. fermentum strains (more than 220). Genes encoding enzymes
(xylose isomerase [EC: 5.3.1.5], XylA; beta-glucosidase [EC: 3.2.1.21], bglX; dextransucrase
[EC: 2.4.1.5], and oligo-1,6-glucosidase [EC: 3.2.1.10]) involved in the metabolism of D-
xylose, cellobiose, and sucrose were strain-specific and their existence was unrelated to the
isolation source of L. fermentum strains. L-ribulose-5-phosphate 4-epimerase [EC: 5.1.3.4]
was ubiquitous in the genome of L. fermentum strains from different sources (Figure 5B). For
example, the abundance of genes encoding AraD [EC: 5.1.3.4] and bglX [EC: 3.2.1.21] was
significantly higher in L. fermentum of human source than food source, while the coverage
of genes involving XylA and deoB [EC: 5.4.2.7] in food-derived L. fermentum was higher
than that of human-derived.
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Figure 5. Metabolism of carbohydrates and related metabolic pathways of L. fermentum. (A) Schematic
representation of CAZy in the metabolic pathway of the 224 L. fermentum strains. The solid lines
indicate that more than 220 L. fermentum strains contained the enzyme. The dotted lines meant
that the enzyme was present in fewer than 220 L. fermentum strains and the number of strains
containing the enzyme is denoted by the dotted line; (B) number of genes encoding the enzymes
(L-arabinose isomerase [EC: 5.3.1.4], araA; L-ribulose-5-phosphate 4-epimerase [EC: 5.1.3.4], araD;
beta-glucosidase [EC: 3.2.1.21], bglX; oligo-1,6-glucosidase [EC: 3.2.1.10], malL; beta-galactosidase [EC:
3.2.1.23], lacZ; xylose isomerase [EC: 5.3.1.5], XylA; deoxyribose-phosphate aldolasebeta-glucosidase
[EC: 4.1.2.4], deoC; phosphopentomutase [EC: 5.4.2.7], deoB) in the genome of L. fermentum strains
from different sources.
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3.4. Characteristic of Antibiotic Resistance Genes in L. fermentum Strains

The genomes of 224 L. fermentum strains were annotated using the Comprehensive
Antibiotic Resistance Database (CARD) and a total of 58 antibiotic resistance gene cate-
gories were found in the genomes of 224 L. fermentum strains. Based on LEfSe analysis
with a Kruskal–Wallis test, 19 significantly different antibiotic resistance gene families
were shown in Figure 6. Of note, antibiotic resistance gene family otr(A) (tetracycline
antibiotic) and tetA(46) (tetracycline antibiotic) were almost exclusively found in food
source L. fermentum strains. Number of genes belonging to card category lmrB (lincosamide
antibiotic), poxtA (tetracycline antibiotic, phenicol antibiotic, and oxazolidinone antibiotic),
and efrB (fluoroquinolone antibiotic, rifamycin antibiotic, macrolide antibiotic) were also
dominant in L. fermentum strains in food. For human-derived L. fermentum strains, antibiotic
resistance gene family pmrA (fluoroquinolone antibiotic), bcrA (peptide antibiotic), arlR
(fluoroquinolone antibiotic), vanRF (glycopeptide antibiotic), and mdtG (phosphonic acid
antibiotic) were all more abundant.
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3.5. Identification of CRISPR-Cas Systems in L. fermentum Strains

CRISPRs and cas genes in the genomes of 224 L. fermentum strains were analyzed. The
genomes of 210 L. fermentum strains contained at least one CRISPR, and the genomes of
159 L. fermentum strains included Cas genes (Table S3). Five CRISPR subgroups (Types IE,
IIA, IIC, IIIA, and IC) were identified in 224 L. fermentum strains and class 1 Type IE was
the most abundant subtype, followed by class 2 Type IIA (Table S3). Except for class 2 Type
IIC, the abundant of CRISPR Types IE, IIA, IIIA, and IC were all higher in L. fermentum of
food source compared with human gut source. Remarkably, L. fermentum strains of food
source had significantly more CRISPR class 2 Type IIA and class 3 Type IIIA, which were
almost 2.5 to 4 times more than that in L. fermentum derived from human gut (Figure 7).
Phylogenetic analysis of Cas1 and Cas2 (differing by CRISPR subtype) showed that Cas1
and Cas2 genes variably distributed in L. fermentum that had nothing to do with their origin
(Figure S1).

Spacers are small fragments of foreign DNA incorporated into bacteria’s own CRISPR
loci to avoid invasion by alien species. On the phylogenetic tree, spacers of L. fermentum
clustered into nearly 50 phylogenetic groups (Figure 8A). Distinct spacers sequence of
L. fermentum are color-coded in the branches of the phylogenetic tree and more abundant
spacer sequences were contained in L. fermentum of human gut source. Some spacers
were only owned by human source L. fermentum strains. The spacers gene abundance
of 224 L. fermentum strains was analyzed using PERMANOVA and pairwise comparison
and the number of spacers showed significant difference between two source groups. The
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number of spacers in food source L. fermentum was significantly higher than that in human
gut source L. fermentum (Figure 8B).
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from human gut and food.
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3.6. Identification of Prophages in L. fermentum Strains

The number of prophages in L. fermentum strains predicted to be “intact” using
PHASTER are shown in Figure 9. PHAGE_Lactob_LfeSau and PHAGE_Lactob_LF1 were
the most abundant prophages in all L. fermentum strains and food source L. fermentum con-
tained more abundant PHAGE_Staphy_SPbeta_like. Furthermore, less common prophages
such as PHAGE_Paenib_Xenia, PHAGE_Lactob_phiPYB5, and PHAGE_Lactob_phig1e
were distributed sporadically in L. fermentum of both sources. PHAGE_Lactob_JCL1032
and PHAGE_Lactob_521B were found only in “human gut source” L. fermentum strains.
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Figure 9. Identification of prophages in L. fermentum. Heatmap of the number of prophages in the
genome of L. fermentum strains derived from human gut and food.

4. Discussion

Research has shown that Lactobacillus species populate nutrient-rich habitats, such
as fermented plant matter and in animals (both vertebrates and invertebrates, including
humans) [6]. It is generally believed that microbes constantly evolve through gene variants
and horizontal gene transfer between distinct microbes to face a range of selective pressures
in a variety of ecological environments [38]. In this study, the average percentage identity
between nucleotide sequences of 224 L. fermentum strains was more than 97%, while
the Venn diagram showed that the maximum number of specific genes of L. fermentum
reached 525 (Figure 1). Pan- and core-genome analyses also showed that as the number
of L. fermentum strains increased, the number of pan genes increased and the number of
core genes continued to shrink. Research also showed that lactobacilli in distinct habitats
could evolve with their environment and generate unique genes [14]. We speculated
that if the number of sources of L. fermentum increased, the curves of pan and core genes
would become steeper. Good et al. showed that molecular evolution in Escherichia coli was
dynamic, driven by the accumulation of mutations, and constantly created new genetic
opportunities for adaptation of strains [39]. This may also explain the growing number of
pan genes and numerous unique genes in the genome of L. fermentum strains.

Phylogenetic analysis of L. fermentum strains derived from human gut and food (such
as yogurt, dairy, sourdough, kimchi, fermented plant material, and fermented meat) was
conducted in this study, and 224 L. fermentum strains were mainly clustered into six clades
(Figure 2). Most of the L. fermentum strains isolated from the human gut clustered in clade
II, while the rest were mainly found in clades I, V, and VI. Research over the past few
decades has clarified that symbiotic microbes and their metabolites (SCFAs, endotoxins,
peptidoglycans, and polysaccharide antigens) play a crucial role in defending against
pathogen colonization, host physiology (immunoregulation), and metabolism, which is
widely believed to be a result of coevolution [40]. Many factors, such as exposure to xeno-
biotics and host diet [41], may provide the host with unique selective pressures on its gut
microbiota [42]. Filannino et al. showed that lactic acid bacteria in plant foods participated
in a series of reactions (fatty acid metabolism, carbon metabolism, nitrogen metabolism, and
phenolic metabolism) through specific bacterial enzymes (such as linoleate isomerase, fatty
acid hydratases, mannitol dehydrogenase, reductase, and amine dehydrogenase), and the
fermentation process relies on the rapid adaptation and metabolic capability of Lactobacillus
with available nutrients [43]. Since the ecological environment of the human intestinal tract
and food are distinct, the phylogenetic analysis of our study may illustrate the niche-specific
adaptation of L. fermentum strains to different habitats. Batstone et al. explored whether the
host could actively choose more cooperative microbial strains through a cross-inoculation
experiment and the results showed that rhizobia rapidly adapted and gave preference
to its original legume genotype, evolved to be more beneficial, and the process was not
affected by host selection [44]. It is possible that the separation of L. fermentum strains from
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different sources is also the result of long-term coevolution between L. fermentum and its
sources. We have to admit that, unfortunately, the number of food L. fermentum strains
was lower than that of human feces strains. Based on the current studies, we think that the
impact of the number of strains from different origin on our results was limited. Marko
Verce et al. showed that 28 L. fermentum isolated from mammal tissues, milk, and plant
material fermentations clustered into five clades and was independent of their sources [45].
Another study by Oh et al. indicated that evolution of L. reuteri lineages was adaptive for
the different host species, although the sample numbers from different host were unequal
(humans (n = 35), mice (n = 35), rats (n=26), pigs (n = 41), chickens (n = 26), and turkeys
(n = 5)) [46]. Although phylogenetic analysis revealed that L. fermentum strains isolated
from the human gut and food clustered separately, clade V contained L. fermentum strains
from both sources; additionally, these host-specific clusters (I, II, VI, human source; III, IV,
food source) contained some strains originating from other hosts. Pennisi reported that the
widest range of microbes was found in soil and free-living samples, followed by plants,
algae, and carnivores, and microbes could spread across host and habitats [47]. Pasolli et al.
analyzed the relevance between 666 food source microbiomes and 154,723 human sample
microbiomes and speculated that food was the main source of lactic acid bacteria in the
human gut [48]. Food and the human gut could be regarded as open systems, and some
L. fermentum might have been recently introduced and transient in the temporary environ-
ment. This may explain why some L. fermentum strains were promiscuous in host-specific
clades.

The COG database, Initially created in 1997, has undergone a series of updates, cur-
rently including complete genomes of 122 archaea and 1187 bacteria, and is a popular
tool for annotation of functional proteins [49]. An average of 2000 coding sequences was
contained in 224 L. fermentum strains, and approximately 1400 COGs were annotated in
the genome of these L. fermentum strains (Table S1). pCoA, PERMANOVA, and pairwise
analysis of COGs in L. fermentum strains showed that significant differences existed between
the food source and human source clades, and we believe that this could presumably reveal
their relationship. Genes involved in mobilomes, prophages, and transposons (functional
categories of X in COGs) were significantly higher in food source clades (III and IV). Carr
et al. showed that mobile genetic elements often move via horizontal gene transfer within a
community [50] and studies have also shown that microbes in plants are more diverse than
those in the human gut [47]. Wibowo et al. analyzed the microbial genomes from palae-
ofaeces samples and present-day human gut samples and indicated that mobile genetic
elements in human gut microbiomes decreased over time [51].

Since the huge difference existed between human gut source and food source
L. fermentum in both evolution and homologous genes, we then focused our attention
on the specific differential genes belonging to unique environment. L. fermentum strains
derived from human gut source contained significantly more dominant COG categories
and these main COG classes were related to various functions including energy production
and conversion (C), amino acid transport and metabolism (E), carbohydrate transport and
metabolism (G), transcription (K), replication, recombination, and repair (L), and general
function prediction only (R) (Table S2). Hao Luo analyzed the Ka/Ks ratio of genes in
functional categories of COGs and found that genes in functional categories of G, H, I,
J, K, and L were more evolutionarily conserved and were more essential in coping with
strong selective pressure [52]. Perhaps the genome-scale differences in L. fermentum were
due to the individual evolution in host gut niche, reflecting the specific host physiology or
dietary habits [53]. Food source L. fermentum had more genes encoding transposase. We
speculated that the microbiota was more complex in the food than those in the human
gut, and L. fermentum strains from food sources were more easily exposed to the mobile
genetic elements.

Unique metabolic capacity is highly associated with the adaptation of microorganisms
to their specific niche [54]. CAZy analysis showed that a total of 38 carbohydrate active
enzyme families existed in 224 L. fermentum strains and the distribution of these enzymes
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contained in L. fermentum was previously unknown. Research shows that L. crispatus [55]
and L. reuteri [46] had 59 and 54 kind of carbohydrate active enzyme families (GHs, GTs,
PLs, CEs, AAs, and CBMs). Compared to these Lactobacillus species, L. fermentum had
a simpler set of carbohydrate enzyme families and GT2, GT4, GH73, and CBM50 were
major families. A previous report showed that dominant carbohydrate enzyme families
in L. plantarum were CBM50, GH1, GH2, and GT4 [56], which may indicate that the
distribution of carbohydrate varied between different Lactobacillus species. The abundance
of these families in L. fermentum with different sources were also discrepant and the number
of genes encoding enzymes for degrading carbohydrates in food source L. fermentum was
statistically richer than that of human gut source, which may imply that food source
L. fermentum had stronger metabolic function. Carbohydrate-active enzyme families GT2,
GH 43_11, and GH 68 were more abundant in food source L. fermentum strains and human
gut L. fermentum strains had a higher number of enzymes in families GH3, GH13_20, and
GH13_29, while there was little variation on the kinds of carbohydrate active enzyme
families in L. fermentum of two groups. Hehemann et al. showed that seaweeds are
an important daily diet item in Japan, and that genes coding for porphyranases and
agarases in Zobellia galactanivorans (a member of the marine Bacteroidetes in seaweeds) were
transferred to Japanese gut bacteria [57]. Maria et al. also showed that host’s diet is a
key evolutionary force shaping gut microbiota and influences the evolution trend of gut
symbionts [58]. The genomic diversity of human feces source L. fermentum may also be
associated with differences in the host’s diet. This suggests that the enzymes involved in
the metabolism of carbohydrates in the microbiota of the human gut are inextricably linked
to that of food. Then, the metabolic pathways of some common sugars and genes encoding
AraD (arabinose), bglX (cellobiose), XylA (xylose) and deoB (ribose) were separately more
abundant in certain sources. Martino et al. showed that the diet of the host could shape the
evolutionary direction of its symbiotic bacteria [58]. Whether the difference of nutritional
environment leads to the result needs to be further studied.

Genes conferring resistance to daptomycin (cls, pgsA), isoniazid and triclosan (fabI), fos-
fomycin (GlpT and murA), fluoroquinolones (gyrA and gyrB), mupirocin (mupB and mupA),
amoxicillin (PBP2x), kirromycin (EF-Tu), rifampicin (rpoB), and fusidic acid (fusA) were
found in almost all L. fermentum strains in this study. A previous report showed that mobile
genetic elements were highly related to the spread of antimicrobial-resistance genes [50].
We have mentioned that genes involved in mobilome, prophages, and transposons were
dominant in L. fermentum strains isolated from food and this may be linked to antibiotic
resistance genes. The common use of pesticide adjuvants in agricultural activities [59]
may be one of the reasons for the larger number of antibiotic resistance genes in food
source L. fermentum. The number of genes related to resistance to tetracycline antibiotic
(otr(A), tetA(46), and poxtA), lincosamide antibiotic (lmrB), fluoroquinolone, rifamycin, and
macrolide antibiotic (efrB) was relatively high in food source L. fermentum strains and the
genes (pmrA, bcrA, arlR, vanRF, and mdtG), which confer resistance to fluoroquinolone antibi-
otic, peptide antibiotic, fluoroquinolone antibiotic, glycopeptide antibiotic, and phosphonic
acid antibiotic, were prominently present in human gut source L. fermentum. Sommer
et al. showed that the evolution of antibiotic resistance was driven by mutations and
horizontal gene transfer between different bacteria and horizontal gene transfer was the
major factor [60]. Debroas et al. indicated that viruses connected to putative pathogens
(Enterobacterales and Vibrionaceae) were the major medium to transfer antibiotic resistance
genes [61]. Therefore, the difference in antibiotic resistance genes between distinct clades
may be due to the use of antibiotics [62], the presence of viruses, and bacterial diversity in
the environment.

CRISPRs and CRISPR-associated Cas genes could prevent the microbiota from bacterio-
phage and foreign DNA infections and were an important defense strategy for bacteria [63].
Of the 224 L. fermentum strains, 210 (over 90%) contained at least one CRISPR. Sun et al.
analyzed the presence of CRISPR loci in 213 Lactobacillus strains, and their results showed
that 62.9% of the strains contained the CRISPR loci [64]. Subtype IE CRISPR-Cas systems
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were most common in L. fermentum and Cas (Cas1 and Cas2) protein sequence comparison
showed that the Cas genes were randomly distributed in the phylogenetic tree independent
of their origin (Figure S1). Studies have also shown that Cas1 and Cas2 are the most con-
served protein components in the CRISPR-Cas systems [63,65]. A previous report indicated
that of the six types of CRISPR-Cas systems (Types I, II, III, IV, V, and VI), Type I was
most widely distributed in bacilli [66]. Our results showed that the number of spacers dif-
fered between certain origins and food source L. fermentum had significantly more spacers.
Cantabrana et al. showed that CRISPR spacers could be exploited to provide insights into
host–phage interactions within a niche [67]. The proportion of strains containing phage
was the highest in food source L. fermentum, which may be linked to the large number of
spacers within (Figure 9). However, since the number of food L. fermentum strains was
lower than that of human feces strains, we could not rule out the possibility that this was
the reason for some spacers only found in human source L. fermentum strains. In addition,
prophage Staphy_SPbeta_like, which was of Staphylococcus origin, was dominant in food
source L. fermentum, which may indicate the existence of Staphylococcus in certain niches.
Prophage Lactob_LF1 [68] and Lactob_LfeSau [69], previously reported to be present in the
genome of L. fermentum, were abundant in all of these L. fermentum strains.

5. Conclusions

In summary, our results showed that 224 L. fermentum strains contained 20,505 pan
gene families and 615 core gene families. These strains mainly clustered into six clades (I,
II, III, IV, V, and VI) in the phylogenetic tree and there was a tendency of clustering with
origin (human gut and food). Homologous genes related to mobilomes, prophages, and
transposons were dominant genes in L. fermentum strains derived from food and human gut
source L. fermentum had more genes with various functions. Furthermore, genes belonging
to carbohydrate enzyme family GT2, GH 43_11, and GH 68 were more abundant in food
source L. fermentum strains and family GH3, GH13_20, and GH13_29 were commonly seen
in human gut L. fermentum strains. The number of genes encoding otr(A), tetA(46), poxtA,
lmrB, and efrB was relatively high in food source L. fermentum strains and the genes referring
to pmrA, bcrA, arlR, vanRF, and mdtG were prominently present in human gut source
L. fermentum. The number of CRISPR spacers in “food source” L. fermentum was significantly
higher than that in human gut source L. fermentum and food source L. fermentum contained
more abundant prophage of PHAGE_Staphy_SPbeta_like, which could provide strong
evidence for the adaptive capacity and evolution process of L. fermentum strains in different
niches. In general, the genomic and metabolic analysis of food source and human feces
source L. fermentum may provide valuable information for the industrial and therapeutic
applications of L. fermentum in the future.
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