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Abstract: Canarium album fruit has great potential to be consumed as a raw material not only for
food but also medicine. The diverse active metabolites composition and content of C. album fruits
greatly affect their pharmacological effects. However, up to now, there has been no report on the
global metabolome differences among fruits from distinct C. album cultivars. In our present study, by
using non-targeted metabolomics techniques, we identified 87 DAMs (differentially accumulated
metabolites) including 17 types of flavonoids from fruits of four different C. album cultivars. KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that the flavone
and flavonol biosynthesis- and flavonoid biosynthesis-related DAMs were major factors determining
their metabolome differences. Comparative transcriptomic analysis revealed that 15 KEGG pathways
were significantly enriched by genes of the identified 3655 DEGs (differentially expressed genes)
among different C. album cultivars. Consistent with the metabolome data, flavonoid biosynthesis-
related DEGs, including eight key structural genes (such as FLS, CCoAOMT, CHI, C4H, DFR, LAR, and
C3′H, etc.) and several regulatory transcription factor (TF) genes (including 32 MYBs and 34 bHLHs,
etc.), were found to be significantly enriched (p < 0.01). Our study indicated that the differential
expression of flavonoid biosynthesis-related genes and accumulation of flavonoids played dominant
roles in the various metabolome compositions of fruits from different C. album cultivars.

Keywords: Canarium album; flavonoid; metabolomics; transcriptomics; gene expression

1. Introduction

Canarium album, belonging to the Burseraceae family, is a typical tropical and subtrop-
ical fruit tree originated from China and is mainly cultivated in the Fujian, Guangdong,
Guangxi, Sichuan, Chongqing, and Zhejiang provinces of China [1]. Its fruit has a thick
flavor and sweet aftertaste, and is very popular in these areas. In addition to its edibility,
C. album fruit also has good medicinal values and is recorded as an important traditional
Chinese medicine material in the Compendium of Materia Medica compiled by Shizhen Li.
Recent reports have also proved that C. album fruit contains many active ingredients. Its
extract could prevent obesity development, ameliorate metabolic dysfunction in diabetes,
alter the gut microbiota composition, and ameliorate the metabolic abnormalities associated
with fatty liver under high-fat challenge [2–5]. Sitoindoside I, amentoflavone, tetrahydroa-
mentoflavone, protocatechuic acid, and benzofuran neolignans in fruit of C. album have
anti-inflammatory effects [6,7], while the polysaccharide and ethyl acetate in it could be,
respectively, exploited as valuable antioxidant and antibacterial components [8,9]. Besides,
some phenylpropanoids of C. album fruit show remarkable anti-neuroinflammatory and
antidiabetic activities [10]. It can be seen that C. album fruit has high medicinal value
because of the abundant and diverse active metabolites, which are the basis for their
pharmacological effects. Currently, studies on C. album metabolites focus mainly on the
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extraction method improvement, pharmacological activity analysis of specific components,
and quantitation of some known compounds, and so on. For instance, He et al. modified
the microwave-assisted extraction method of polyphenols and identified the main polyphe-
nol components of C. album [11]. Yang et al. obtained ten known metabolite compounds,
such as ellagic acid, gallic acid, and scopolamine, from C. album fruits by using repeated
chromatography [12]. Chen et al. isolated isocorilagin and methyl brevifolincarboxylate
from C. album [13,14]. It should be noted that the metabolite type and content differences in
fruits from different cultivars greatly influence their functional activities [15]. However,
the global metabolome differences among fruits from different C. album cultivars and their
underlying mechanism have received much less attention.

With the rapid development of molecular biology technologies, metabolomic and
transcriptomic analyses have been widely used in the studies of genes that regulate the
metabolite biosynthesis of plants [16]. By integrating the data generated from both tech-
niques, it is possible to reveal the differences in metabolic components between different
biological samples and to clarify the underlying molecular mechanisms [17–19]. The
metabolomics technology is a powerful tool that can be used to explore the differences in
composition and content of metabolic components in different samples, and to clarify the
mechanism underlying certain phenomena, such as fruit quality formation, biotic/abiotic
stress responses, variety specificity, and so on [20]. Using an integrated analysis of the
transcriptome and metabolome, Zhao et al. revealed the changes in the accumulation
of metabolites and the expression of metabolites biosynthesis-related genes during fruit
ripening of Lycium ruthenicum and L. barbarum, and laid a foundation for the exploration
of genetic color variation mechanisms [21]. Jia et al. explored the key genes regulating
white petal color in Brassica napus and provided important insights into the molecular
mechanisms of the carotenoid metabolism pathway associated with color variations in
rapeseed petals [22]. Bai et al. compared the differences in Pinus massoniana xylem with
high, medium, and low resin-yielding capacities, and proposed that PKc-, and LRR-RLK-
related regulatory and metabolic pathway may play key roles in oleoresin biosynthesis [23].
Zhu et al. identified the active component differences in different Angelica sinensis varieties,
and established the flavonoid regulation network, which provided references for flavonoid
production and variety selection of A. sinensis [24].

Transcriptomic techniques have been successfully applied in the study of C. album [25,26].
However, up to now, no metabolomic research has reported the metabolome differences in
different C. album cultivars, which has greatly limited the development of biotechnological
applications for this valuable fruit crop. In the present study, to provide a scientific basis
for directional breeding, germplasm innovation, and the use of C. album, the differential
metabolic components of fruits from four main traditional cultivars, C. album. cv. ‘Changy-
ing’ (C), ‘Tanxiang’ (T), ‘Huiyuan’ (H), and ‘Zilaiyuan’ (Z), were analyzed and compared
by using non-targeted metabolomics technology, and the molecular mechanism as well as
the DEGs (differentially expressed genes) directly or indirectly regulating the biosynthesis
of DAMs (differentially accumulated metabolites) were clarified through the integration of
transcriptomics and metabolomics data. The results obtained in this study will be helpful
for understanding the underlying mechanism of differential metabolite accumulations in
different C. album cultivars and can provide a basis for the future highly active compounds
focused on C. album breeding.

2. Materials and Methods
2.1. Materials

Fruits of C. album. cv. ‘Changying’ (C), ‘Huiyuan’ (H), ‘Tanxiang’ (T), and ‘Zilaiyuan’
(Z) were collected from Fuzhou Germplasm Repository of Chinese Olive of Agriculture
Ministry of China (26◦07′36.70” N, 119◦20′16.12” E). For each cultivar, 30 full ripe fruits
(tender and crisp pulps, strong flavor, sweet aftertaste, visually consistent appearance and
size, and green or yellow-green peel) were harvested from the four different sides of the
crown of each tree, with a total of five trees used for each cultivar. After washing the fruit
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surface three times using sterile water, the fruits were then quickly frozen in liquid nitrogen,
and stored in a −80 ◦C ultra-low temperature freeezer until further use.

2.2. Non-Targeted Metabolomics Analysis
2.2.1. Sample Preparation

Fruit pulp was first cut into pieces of a uniform size of about 1.0 cm × 1.0 cm using
a ceramic knife. Then, 200 mg of pulp was placed into a 2 mL Eppendorf tube, before
0.6 mL of 2-chlorophenylalanine (purity ≥ 98.5%, Aladdin, Shanghai, CHN) and methanol
(purity ≥ 99.0%, Thermo, Waltham, MA, USA) were added. After mixing for 30 s, 100 mg
of glass beads was added and the mixture was placed into a SCIENTZ-48 tissue grinder
(SCIENTZ, Ningbo, CHN) at 60 Hz for 90 s. The sample was subsequently treated with
ultrasound at room temperature for 15 min before centrifugation at 12,000 rpm at 4 ◦C for
10 min. Then, 300 µL of supernatant was then filtered using a 0.22 µm membrane and the
filtered solution was added to the detection bottle. Finally, 20 µL each sample was mixed with
QC (quality control) samples to correct for any deviation in the results of the analysis while the
remaining samples were analyzed by LC–MS (liquid chromatography–mass spectroscopy).

2.2.2. Chromatographic Conditions

Chromatographic detection was performed using an UltiMate 3000 liquid chromato-
graphic system (Thermo, Waltham, MA, USA) consisting of a chromatographic column
(ACQUITY UPLC® HSS T3; 2.1 mm × 150 mm, 1.8 µm) and an automatic sampler set
at a temperature of 8 ◦C. Gradient elution of analytes was carried out at a flow rate of
0.25 mL/min with 0.1% of formic acid in water (A) and 0.1% of formic acid (LC–MS grade,
TCI Shanghai, CHN) in acetonitrile (purity ≥ 99.9%, Thermo, Waltham, MA, USA) (B) or
5 mM of ammonium formate (purity ≥ 99.9%, Sigma, Saint Louis, MO, USA) in water (C)
and acetonitrile (D). After equilibrating the column, an injection volume of 2 µL per sample
was used, with the following gradient elution procedure: 0~1 min, 2% B/D; 1~9 min,
2~50% B/D; 9~12 min, 50~98% B/D; 12~13.5 min, 98% B/D; 13.5~14 min, 98%~2% B/D;
14~20 min, 2% B-positive model (14~17 min, 2% D-negative model).

2.2.3. Mass Spectrometry Conditions

For mass spectrometry analysis, a Thermo Q Exactive HF-X (Thermo, Waltham, MA,
USA) mass spectrometer was used, with positive and negative ion spray voltages of
3.50 kV and 2.50 kV, respectively, as well as a sheath gas and an auxiliary gas flow rates
of 30 arb and 10 arb, respectively. The capillary temperature was 325 ◦C while the full
scanning was carried out at a resolution of 60,000, using a scanning range of 81~1000. The
secondary cracking was carried out in HCD (high-energy collision dissociation) mode,
using a collision voltage of 30 eV, and any unnecessary MS/MS information was removed
by dynamic exclusion.

2.2.4. Data Analysis

For data analysis, the different cultivars were divided into four groups labelled as C,
T, H, and Z, with each having four biological replicates. The total ion flow diagrams of
all samples in positive and negative ion modes were subjected to baseline filtering, peak
identification, integration, retention time correction, peak alignment, and normalization by
Progenesis QI in order to obtain a data matrix of the retention times, the mass charge ratios
(m/z), and the peak intensities. After importing this data matrix into SIMCA software, PCA
(principal component analysis) and PLS-DA (partial least squares discriminant analysis)
were performed. Based on the VIP (variable importance in projection) scores for the
first principal component of the OPLS-DA (orthogonal projections to latent structures
discriminant analysis), DAMs in different samples were screened using the criteria of
VIP value > 1.0 and p value < 0.05 [27,28]. Metabolites were mainly identified based
on their chromatographic peak retention times and their mass-to-charge (m/z) ratios, as
available in the public databases provided with the Progenesis QI software (http://www.
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hmdb.ca/ (accessed on 18 January 2021) and http://www.lipidmaps.org/ (accessed on
18 January 2021)) and BioNovoGene (Suzhou, CHN). Metabolic pathways of DAMs were
also investigated using the KEGG database (http://www.genome.jp/KEGG/pathway.html
(accessed on 18 January 2021 )).

2.3. RNA Sequencing
2.3.1. Total RNA Extraction and Detection

Total RNA was extracted from fruit of C. album using the E.Z.N.A.™ Plant RNA Kit
(Omega, Norcross, GA, USA), and its quality was examined using agarose gel electrophore-
sis to check for DNA contamination and confirm the integrity of RNA samples. The
purity of the samples was then determined by TU-1810 spectrophotometer (Puxi, Beijing,
CHN), with the quality eventually assessed using an Agilent 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA).

2.3.2. Library Preparation for RNA-Seq

Illumina’s NEB Next® UltraTM RNA Library Prep Kit (NEB, Ipswich, MA, USA)
was used to construct the RNA library. mRNA with polyA tails was first enriched by
Oligo (dT) magnetic beads, before fragmentation with divalent cations present in the NEB
Fragmentation Buffer. Using fragmented mRNA as template and random oligonucleotides
as primers, the first cDNA strand was then synthesized in a M-MuLV reverse transcriptase
system. After degrading the RNA strand with RNaseH, the second cDNA strand was
synthesized from dNTPs in a DNA polymerase I system. The purified double-stranded
cDNA was subsequently repaired at both ends, before adding a tail and the sequencing
connectors. cDNA with length of about 250~300 bp were screened with AMPure XP beads
for PCR amplification and purified again to obtain the library, which was quantified using
a Qubit2.0 Fluorometer. Inserts of appropriate sizes were used to construct libraries, which
were diluted to 1.5 ng/µL and subjected to quality control using an Agilent 2100 bioanalyzer.
qRT-PCR (quantitative real-time PCR) was then performed to accurately quantify the DNA
concentration in the library. Eventually, different libraries were pooled according to the
requirements for Illumina-Hiseq sequencing to generate 150 bp paired-end reads.

2.3.3. Data Analysis

After import into CASAVA, the sequenced reads were converted to fastq format and
clean data were obtained by removing adapter and low-quality sequences. The Q20 and
Q30 scores, along with the GC content of clean data, were calculated. DESeq2 software
was used for differential expression analysis between two samples to screen for DEGs.
For this purpose, adjusted p values and |log2

foldchange| were used to set the threshold for
significant differential expression. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway enrichment analyses were performed by clusterProfiler.

2.3.4. Identification of MBW (MYB- bHLH-WD40) Complex Genes from
Transcriptome Data

The MBW complex is composed of MYB, bHLH and WD40, and regulates many bio-
logical and physiological processes in plants. To analyze its potential role in the flavonoid
synthesis of C. album, the MYB, bHLH, and WD40 genes were retrieved from our transcriptome
data. TBtools were then used to align the sequences of these screened MYB, bHLH, and WD40
genes with corresponding gene sequences that have been demonstrated to regulate flavonoid
synthesis in other plant species, including Arabidopsis [29,30], P. pyrifolia [31], Solanum lycop-
ersicum [32,33], Narcissus tazetta [34], Chrysanthemum morifolium [35], P. bretschneideri [36],
Populus tremula × tremuloides [37], Ginkgo biloba [38,39], Plagiochasma appendiculatum [40],
Punica granatum [41], Camellia sinensis [42], etc., to identify candidate gene members. Finally,
candidate genes were further screened based on their fold change among samples (≥2.0 or
≤0.5) and abundance (FPKM (fragments per kilobase million) ≥ 10.0).

http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.lipidmaps.org/
http://www.genome.jp/KEGG/pathway.html
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2.3.5. qRT-PCR Verification

The expression of eighteen selected DEGs, including six MYB transcription factors, four
bHLH transcription factors, and eight functional genes involved in flavonoid biosynthesis
(i.e., FLS, CCoAOMT, CHI, C4H, DFR, LAR, and C3′H), were verified using qRT-PCR
analysis by using ACTB7 gene of C. album as internal reference. TransStart® Top Green
qPCR SuperMix (Transgen Biotech, Beijing, CHN) was used for qRT-PCR with the following
components: 10 µL of 2 × TransStart® Top Green qPCR SuperMix, 0.4 µL of Passive
Reference Dye (50×), 0.2 µM of each primer, 0.5 µM of cDNA template, and ddH2O to
make up to a final volume of 20 µL. The primer sequences used for amplifying the selected
genes are shown in supplemental data Table S1. In addition, the cDNA of different samples
was mixed in equal amounts, and then diluted to create a concentration gradient as follows
in order to obtain the standard curve: 10−1, 40−1, 160−1, and 640−1. An appropriate
annealing temperature was also selected according to the amplification efficiency and the
qRT-PCR amplification was eventually performed under the following conditions: pre-
denaturation at 94 ◦C for 30 s; and 40 cycles of denaturation at 94 ◦C for 10 s, annealing
for 15 s, and extension at 72 ◦C for 10 s. The samples were kept at 94 ◦C for 15 s and then
60 ◦C for 15 s, before raising the temperature to 94 ◦C at a rate of 0.11 ◦C/s for 15 s, to draw
the melting curve, with the relative expression of the screened genes in different samples
detected by Roche LightCycler480 (Roche, Rotkreuz, Switzerland). Microsoft Excel 2016
and SPSS 19.0 were used for statistical analysis.

3. Results
3.1. Quality Control (QC) Analysis of Metabolome Data

According to the chromatograms in the LC–MS (supplemental data Figure S1), the
sample signals were strong and the peak resolutions were high, indicating that the stability
of the LC–MS detection system was good and the data were reliable. PCA reflects the
original state of metabolomics data, and can be used to visualize the data characteristics
and variations among different cultivars. According to the PCA score plot analysis results
(Figure 1A), the R2

X value was found to be 0.541, indicating that the composition and
concentration of metabolites in fruits from the different cultivars varied a lot. Moreover,
the four biological replicates of the same cultivar were clustered together, indicating that
the metabolomic data were repeatable and very reliable. In particular, Z and H clustered
relatively close to each other, with even some partial overlap, indicating that the metabolite
composition in the fruits of the ‘Huiyuan’ and ‘Zilaiyuan’ cultivars was quite similar.
The metabolomics data for the cultivars T and C were distributed in the first quadrant
and fourth quadrant. respectively, thereby suggesting that the metabolic components of
‘Changying’ and ‘Tanxiang’ fruits differed a lot.

To better distinguish the metabolomes of the four C. album cultivars, a PLS-DA was
applied. The results of the PLS-DA scores and permutation tests are shown in Figure 1B.
The results were similar to those of PCA analysis, with Z and H samples clustering close
together but far away from the other cultivars, thereby again indicating that the metabolic
components of ‘Zilaiyuan’ and ‘Huiyuan’ fruits were similar. The model coefficients Q2 and
R2

Yvalues for different cultivars were both higher than 0.93 (0.939 and 0.987, respectively),
indicating that the model had good prediction ability and was suitable for the data analysis.
Through the permutation test, it was found that the Q2 point of the model from left to
right was lower than the original Q2 point at the rightmost end, while the intercept of
the Q2 regression line was −0.58 (Figure 1C), which again confirmed that the model was
very reliable.
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Figure 1. QC analysis results of metabolomics of different C. album cultivars. (A) PCA score plot for
the 21,438 metabolites found in this study. (B) PLS-DA score and permutation test plots of the total
21,438 metabolites. (C) Displacement inspection result diagram. The yellow, blue, green, and red dots
represent C. album cv. ‘Zilaiyuan’ (Z), ‘Huiyuan’ (H), ‘Tanxiang’ (T), and ‘Changying’ (C), respectively.
The abscissa and ordinate represent the first and the second principal components, respectively.

3.2. Screening of Differentially Accumulated Metabolites (DAMs) among Fruits from Different
C. album Cultivars

By using a VIP value of > 1.0 as a criterion, we identified a total of 87 DAMs among
the four C. album cultivars (p < 0.05). These DAMs included metabolites belonging to
flavonoids, amino acids, organic acids, sugars, plant hormones, and polyphenols, and so
on (Table 1, supplemental data Table S2). After raising the criterion to a VIP value of > 1.5,
only 41 DAMs remained. Based on OPLS-DA, the pairwise comparison of DAMs between
varieties further showed that there were 71, 33, and 72 DAMs between C and H, C and T,
and C and Z, respectively, while 52 and 51 different DAMs were identified between T and
H, and T and Z, respectively. Moreover, 29 types of DAMs were identified between H and
Z. The results indicated that metabolome difference was the largest between ‘Changying’
and ‘Zilaiyuan’, and the smallest between ‘Huiyuan’ and ‘Zilaiyuan’.



Foods 2022, 11, 2527 7 of 20

Table 1. Differential metabolites in the comparison of different cultivars.

Metabolites
H vs. C T vs. C Z vs. C H vs. T Z vs. T Z vs. H

VIP p VIP p VIP p VIP p VIP p VIP p

(−)-Epigallocatechin * 1.064 0.061 0.175 0.885 0.825 0.312 1.325 0.030 1.266 0.030 0.950 0.312
(+)-Pinoresinol 1.064 0.061 0.922 0.112 1.267 0.030 1.371 0.030 1.491 0.030 0.763 0.194

(1S,2R,4S)-(-)-Bornyl acetate 0.664 0.194 0.544 0.470 1.469 0.030 0.431 0.665 1.494 0.030 1.593 0.030
(2S)-Liquiritigenin * 1.125 0.021 0.479 0.312 1.198 0.021 1.146 0.021 1.252 0.021 NA NA

(S)-Abscisic acid 0.864 0.030 1.105 0.112 1.351 0.030 0.364 0.665 1.403 0.030 1.576 0.030
10-Hydroxydecanoic acid 1.188 0.030 1.627 0.030 1.345 0.030 1.397 0.030 1.271 0.030 0.070 0.665

1-Dehydro-[6]-gingerdione 1.295 0.030 1.251 0.030 1.220 0.030 1.083 0.112 0.915 0.194 0.859 0.112
1H-Indole-3-acetamide 1.357 0.030 1.399 0.030 1.346 0.030 1.364 0.030 1.417 0.030 0.972 0.312

1-O-Galloyl-beta-D-glucose 1.051 0.030 0.154 0.885 0.963 0.061 0.753 0.030 0.734 0.030 0.950 0.112
2,3,4,4,6-

Peptahydroxychalcone
4-O-glucoside

1.278 0.021 1.121 0.194 1.377 0.021 1.269 0.021 1.365 0.021 NA NA

4-Acetamidobutanoic acid 1.262 0.030 1.295 0.030 1.267 0.030 0.571 0.312 0.049 0.470 1.016 0.112
4-Methoxyflavanone 0.601 0.312 0.578 0.885 1.449 0.030 0.391 0.665 1.339 0.030 0.347 0.885

6-Phosphogluconic acid 1.334 0.021 NA NA 0.938 0.021 1.336 0.021 1.067 0.021 NA NA
9(S)-HPOT 1.260 0.030 0.255 1.000 1.358 0.030 1.046 0.030 1.126 0.030 1.415 0.030

Acacetin 1.259 0.030 0.709 0.665 1.399 0.030 0.317 1.000 1.206 0.030 0.805 0.312
Alanine 1.353 0.030 1.650 0.030 1.210 0.030 1.393 0.030 1.449 0.030 1.574 0.030

Alpha-Linolenic acid 1.176 0.030 1.340 0.061 1.398 0.030 0.404 0.312 1.194 0.030 1.104 0.030
Apigenin * 1.296 0.030 1.477 0.030 1.414 0.030 0.981 0.112 1.259 0.030 0.950 0.194
Apocynin 1.271 0.030 1.141 0.061 1.343 0.030 1.194 0.030 1.187 0.061 0.284 0.665

Aromadendrin * 1.347 0.030 1.637 0.030 1.427 0.030 1.198 0.030 0.610 0.470 0.989 0.112
Ascorbate 1.229 0.030 0.600 0.470 1.121 0.030 1.106 0.030 1.121 0.030 1.484 0.030

Astragalin * 0.279 0.301 0.633 0.453 1.452 0.030 0.519 0.301 1.358 0.021 1.308 0.021
Azelaic acid 1.319 0.030 0.844 0.312 1.418 0.030 0.892 0.194 0.935 0.312 0.989 0.112
Betonicine 1.364 0.030 1.301 0.061 1.352 0.030 1.387 0.030 1.216 0.061 0.729 0.665
Catechol 1.268 0.030 0.804 0.312 1.399 0.030 0.029 0.312 0.230 0.312 1.273 0.061

Chlorogenic acid * 0.105 0.885 1.429 0.030 1.333 0.030 1.294 0.030 0.363 0.194 1.190 0.030
Chrysoeriol 1.339 0.030 1.513 0.030 1.316 0.030 0.260 1.000 0.942 0.194 0.099 0.665

Cinnamaldehyde 1.346 0.021 1.434 0.030 1.451 0.021 1.125 0.021 1.210 0.021 NA NA
cis-Aconitic acid 0.602 0.312 1.254 0.061 1.235 0.030 1.029 0.061 0.973 0.061 1.397 0.030
Citramalic acid 1.182 0.030 0.130 1.000 0.804 0.194 1.148 0.030 0.803 0.112 1.593 0.030

Citric acid 1.341 0.030 0.043 0.665 1.468 0.030 1.261 0.030 1.437 0.030 0.247 1.000
Costunolide 1.164 0.030 0.871 0.194 1.099 0.030 1.134 0.030 1.153 0.030 1.396 0.030

Cucurbitacin E 1.247 0.021 NA NA 1.240 0.021 1.270 0.021 1.261 0.021 1.450 0.030
D-Maltose 1.125 0.021 NA NA 1.283 0.021 1.145 0.021 1.304 0.021 1.570 0.030
Ellagic acid 1.211 0.030 1.426 0.030 1.279 0.030 0.410 0.312 0.008 1.000 1.388 0.030

Epicatechin * 1.209 0.030 0.471 0.885 0.981 0.112 1.145 0.061 0.078 0.312 0.104 0.312
Estragole 1.151 0.030 1.044 0.112 1.278 0.030 0.524 0.665 0.757 0.470 1.313 0.030
Eugenol 1.374 0.021 0.222 0.312 1.480 0.021 1.081 0.069 1.163 0.069 NA NA
Fraxetin 0.978 0.030 1.377 0.030 1.203 0.030 1.220 0.030 0.371 0.470 0.023 1.000

Fructose-1P 1.272 0.021 0.300 0.665 1.353 0.021 1.222 0.021 1.335 0.021 NA NA
gamma-Aminobutyric acid 1.281 0.030 1.414 0.030 1.191 0.030 1.378 0.030 1.407 0.030 0.763 0.194

Garbanzol * 0.507 0.312 1.523 0.030 0.884 0.312 1.100 0.061 1.218 0.061 1.217 0.030
Genistein 1.173 0.030 1.440 0.030 1.260 0.030 1.355 0.030 1.481 0.030 1.571 0.030
Genistin 0.799 0.194 1.448 0.030 1.349 0.030 1.156 0.030 0.353 0.312 1.104 0.030

Glycylleucine 1.236 0.030 1.358 0.030 1.393 0.030 0.690 0.312 1.265 0.030 1.576 0.030
Herniarin 1.280 0.030 1.042 0.194 1.414 0.030 0.312 1.000 0.643 0.312 1.397 0.030

Hydroxypyruvic acid 1.302 0.021 0.653 0.665 1.403 0.021 1.252 0.021 1.346 0.021 NA NA
Indoleacetic acid 1.369 0.030 1.649 0.030 1.383 0.030 1.385 0.030 1.346 0.030 0.396 0.47

Isopentenyl pyrophosphate 1.360 0.021 1.421 0.030 1.448 0.021 1.168 0.021 1.275 0.021 NA NA
Kaempferide * 0.988 0.021 0.830 0.312 0.610 0.453 0.504 0.301 0.415 0.301 1.088 0.021
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Table 1. Cont.

Metabolites
H vs. C T vs. C Z vs. C H vs. T Z vs. T Z vs. H

VIP p VIP p VIP p VIP p VIP p VIP p

Kaempferol * 1.342 0.030 0.118 0.312 0.125 0.470 0.796 0.194 0.252 0.885 0.291 1.000
Lamiide 1.353 0.030 0.255 0.665 1.482 0.030 0.467 0.312 0.743 0.312 0.660 0.665

L-Arginine 0.875 0.030 1.607 0.030 0.784 0.665 1.127 0.030 1.101 0.030 NA NA
L-Asparagine 1.207 0.021 1.394 0.030 1.301 0.021 1.367 0.021 1.470 0.021 NA NA

L-Cystine 1.323 0.021 0.665 0.470 1.425 0.021 0.941 0.021 1.012 0.021 NA NA
Leucopelargonidin * 1.123 0.030 NA NA 1.288 0.030 1.223 0.030 1.357 0.030 0.245 0.885

L-Histidine 1.144 0.021 1.207 0.112 1.233 0.021 1.151 0.021 1.238 0.021 NA NA
Limonene-1,2-diol 1.174 0.021 0.647 0.470 1.265 0.021 1.200 0.021 1.291 0.021 0.859 0.112

L-Isoleucine 1.221 0.021 0.903 0.194 1.473 0.021 1.224 0.021 1.514 0.021 0.888 0.194
L-Leucine 1.231 0.021 1.444 0.030 1.326 0.021 1.220 0.021 1.312 0.021 0.173 0.665
L-Lysine 0.858 0.112 1.453 0.030 1.163 0.030 1.148 0.030 0.339 0.665 1.008 0.061

L-Ribulose 0.900 0.194 0.903 0.194 1.032 0.030 0.442 0.665 0.752 0.112 NA NA
Luteolin * 1.141 0.030 0.182 0.665 0.783 0.194 1.291 0.030 0.580 0.885 0.389 1.000

Malvidin 3-glucoside 1.412 0.030 1.662 0.030 1.510 0.030 0.617 0.312 1.355 0.030 1.498 0.030
meso-2,6-

Diaminoheptanedioate 1.368 0.030 1.585 0.030 1.384 0.030 1.396 0.030 1.453 0.030 0.336 0.470

myo-Inositol 1.236 0.030 0.591 0.312 1.388 0.030 1.321 0.030 1.465 0.030 0.247 1.000
Myricetin * 1.102 0.021 0.789 0.312 1.172 0.021 1.129 0.021 1.233 0.021 NA NA
Naringenin

7-O-beta-D-glucoside 1.299 0.030 1.343 0.061 1.075 0.030 1.339 0.030 1.320 0.030 1.491 0.030

Norsanguinarine 1.159 0.030 0.046 0.665 1.034 0.061 1.015 0.061 0.724 0.194 1.138 0.312
Palmitoleic acid 1.354 0.030 0.610 1.000 1.460 0.030 1.114 0.030 1.200 0.030 0.973 0.030

p-Coumaroyl quinic acid * 1.310 0.030 1.279 0.030 1.350 0.030 1.147 0.061 1.537 0.030 1.079 0.030
Pelargonic acid 1.219 0.030 1.081 0.112 1.164 0.030 1.299 0.030 1.322 0.030 1.284 0.030

Perillic acid 1.002 0.112 1.306 0.061 0.988 0.312 1.204 0.030 1.184 0.061 0.010 0.665
Procyanidin B2 1.123 0.030 1.312 0.030 0.968 0.030 0.577 0.312 1.056 0.112 1.491 0.030

Pulegone 1.311 0.030 0.485 0.665 1.255 0.030 1.291 0.030 1.230 0.030 0.441 0.885
Qing Hau Sau 1.078 0.030 1.089 0.061 1.182 0.030 1.173 0.030 1.268 0.030 0.396 0.470

Quercetin * 1.326 0.030 1.660 0.030 1.239 0.030 0.675 0.112 0.562 0.885 0.432 0.665
Quercetin 3-O-glucoside * 1.019 0.014 1.634 0.030 1.396 0.030 1.145 0.030 0.406 0.665 0.347 0.885

Raucaffricine 1.366 0.030 1.544 0.030 1.431 0.030 1.307 0.030 1.142 0.061 1.348 0.030
Salicylic acid 1.054 0.030 0.212 1.000 0.987 0.112 0.981 0.030 0.919 0.112 0.972 0.312

Silibinin 1.345 0.030 0.792 0.312 0.988 0.112 1.343 0.030 0.900 0.312 0.403 0.47
Syringin 1.181 0.021 1.482 0.030 1.272 0.021 1.349 0.021 1.451 0.021 NA NA

Taxifolin * 1.136 0.030 0.592 0.312 1.287 0.030 0.411 1.000 0.736 0.194 1.474 0.030
trans-Cinnamate 1.295 0.030 1.438 0.030 1.403 0.030 0.509 0.665 0.748 0.112 1.316 0.030

Uridine 1.339 0.021 1.489 0.030 1.443 0.021 1.176 0.021 1.265 0.021 NA NA
Vaccenic acid 1.095 0.021 0.988 0.061 1.179 0.021 1.328 0.021 1.429 0.021 NA NA
Xanthyletin 1.184 0.030 0.572 0.665 1.345 0.030 0.993 0.061 1.144 0.030 1.085 0.112

Note: the underlined values indicate that the corresponding metabolite was significantly different between the
two cultivars, when using criteria VIP > 1.0 and p < 0.05. * indicates flavonoids. NA indicates the values were
not detected.

Significant differences in the contents of alanine and genistein were found among
all the four cultivars. The results of the pairwise comparisons showed that the content of
1-O-galloyl-beta-D-glucose, epicatechin, kaempferol, norsanguinarine, and salicylic acid
differed significantly only between ‘Changying’ and ‘Huiyuan’, and the L-ribulose content
differed greatly only between ‘Changying’ and ‘Zilaiyuan’. Interestingly, a series of some
unreported metabolites, including qing hau sau, genistin, (+)-pinoresinol, fraxetin, and
eugenol, were also identified in the fruits of C. album.

3.3. KEGG Pathway Enrichment Analysis of DAMs and Screening of DAFs (Differentially
Accumulated Flavonoids)

In total, 39 enriched pathways were identified through KEGG pathway enrichment
analysis of DAMs (Figure 2). Pathways with an impact value greater than 0.1 were
then screened, which included flavone and flavonol biosynthesis, alpha-linolenic acid
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metabolism, tryptophan metabolism, flavonoid biosynthesis, lysine biosynthesis, glyoxy-
late and dicarboxylate metabolism, pentose and glucuronate interconversions, ascorbate
and aldarate metabolism, phenylalanine metabolism, terpenoid backbone biosynthesis, the
citrate cycle, the pentose phosphate pathway, and arginine and proline metabolism. The
impact value of the flavone and flavonol biosynthesis pathway was the highest (0.440),
whereas flavonoid biosynthesis enriched the most abundant DAMs, suggesting that DAFs
contributed the highest to the metabolome differences among C. album cultivars.
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Figure 2. Influence of differential metabolites on the metabolic pathways of distinct C. album cultivars.
Each dot represents a metabolic pathway. Ordinate values indicate the significance of metabolites
enriched in this pathway, with higher values reflecting greater significance levels. The abscissa
indicates the influence level of DAMs on the metabolic pathway; the values and dots of highly
influenced metabolic pathways are larger.

In total, 17 DAFs were identified; among them, 12, 7, and 11 of these DAFs were found
when comparing C with H, T, and Z, respectively. Similarly, 7 and 7 different DAFs were
identified between T, and H and Z, respectively. However, only 6 DAFs were identified
between H and Z (Table 1). These results indicated that great differences in flavonoid
components existed between ‘Changying’ and ‘Huiyuan’. The identified DAFs between
C and H included (2s)-liquiritigenin, apigenin, aromadendrin, epicatechin, kaempferol,
leucopelargonidin, luteolin, myricetin, p-coumaroyl quinic acid, quercetin, quercetin 3-o-
glucoside, and taxifolin. Of them, the contents of (2s)-liquitigenin and myricetin in H were
16.5- and 13.9-fold of that in C, respectively, suggesting that they were main flavonoids
resulting in the metabolome differences between ‘Huiyuan’ and ‘Changying’.

3.4. Comparative Transcriptomic Analysis
3.4.1. Overview of the RNA-Seq Data

To further reveal the molecular mechanisms of significant metabolites, especially
flavonoids differences between ‘Changying’ and ‘Huiyuan’, a comparative transcriptomic
analysis of ‘Changying’ (T_C) and ‘Huiyuan’ (T_H) fruits was performed. As shown in
Table 2, the Q20 and Q30 values of all the cDNA libraries were greater than 98% and 93%,
respectively, and the base error rate was less than 0.03%. Furthermore, the N50 and N90
values of the transcripts were 2331 bp and 760 bp, respectively, and the N50 and N90 values
of genes were 2036 bp and 495 bp, respectively. These transcriptome data for C. album were
therefore of good quality and satisfied the requirements for subsequent analysis.
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Table 2. Quality analysis of RNA sequencing data for the ‘Changying’ (T_C) and ‘Huiyuan’ (T_H)
cultivars.

Sample Raw Reads Clean Reads Clean Bases Error (%) Q20 (%) Q30 (%) GC Content (%)

T_C1 22,741,237 21,927,175 6.58 G 0.02 98.16 94.26 44.30
T_C2 22,753,116 21,910,412 6.57 G 0.03 98.03 93.99 44.17
T_C3 22,262,027 21,498,628 6.45 G 0.02 98.22 94.48 44.39
T_H1 22,897,426 22,263,553 6.68 G 0.03 98.01 93.96 44.64
T_H2 23,830,992 22,859,162 6.86 G 0.02 98.08 94.17 44.61
T_H3 22,397,559 21,655,410 6.50 G 0.02 98.14 94.29 44.79

3.4.2. Identification and Enrichment Analysis of DEGs

By using a q value of < 0.05 and a |log2
fold change| of > 1.0 as thresholds, the DEGseq

method was applied to screen for DEGs between ‘Changying’ and ‘Huiyuan’ fruits. Com-
pared with T_H, 3665 DEGs (1762 downregulated and 1903 upregulated) were identified in
T_C (supplemental data Table S3). After classifying these DEGs into cellular component
(CC), molecular function (MF), or biological process (BP) terms based on GO enrichment
analysis (Figure 3), a total of 3060 enriched GO terms were identified. From the aspect
of BP, 15 types of biological processes were significantly enriched, with the largest num-
ber of DEGs involving in oxidation–reduction processes. From the aspect of MF, 15 GO
terms were significantly enriched, including 1172 catalytic activity-related DEGs, as well as
more than 300 DEGs involved in transferase activity, oxidoreductase activity, and adenyl
nucleoside binding. From the aspect of CC, only three GO terms were identified to be
significantly enriched.
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KEGG enrichment analysis of DEGs identified a total of 106 enriched pathways, and
15 of them were found to be significantly enriched (p < 0.05) (Table 3). The significantly
upregulated and downregulated DEGs, along with their corresponding pathways, can be
presented as follows:

• 22 upregulated and 22 downregulated DEGs involved in plant hormone signal trans-
duction;

• 9 upregulated and 7 downregulated DEGs involved in carotenoid biosynthesis;
• 14 upregulated and 15 downregulated DEGs involved in phenylpropane biosynthesis;
• 30 upregulated and 3 downregulated DEGs involved in plant pathogen interaction;
• 8 upregulated and 2 downregulated DEGs involved in flavonoid biosynthesis;
• 5 downregulated and 7 upregulated DEGs involved in ABC transport;
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• 9 fatty acid elongation related and 14 fatty acid biosynthesis related DEGs, for which 8
and 2 DEGs, respectively, were inhibited;

• 8 genes were found to be inhibited and 19 genes were induced in glycolysis/gluconeogenesis;
• Among the 15 galactose metabolism related DEGs, 5 DEGs were downregulated;
• Stilbenoid, diarylheptanoid, and gingerol biosynthesis contained 1 downregulated

gene and 4 upregulated genes;
• Among the 12 and 9 DEGs involved in phenylalanine metabolism and tryptophan

metabolism, 7 and 1 DEGs were upregulated, respectively;
• 1 upregulated and 3 downregulated DEGs involved in limonene and pinene degradation;
• 5 out of 6 DEGs involved in sesquiterpenoid and triterpenoid biosynthesis were induced.

Table 3. KEGG enrichment analysis of DEGs identified between ‘Changying’ and ‘Huiyuan’ fruits.

KEGG Pathways ID Input Number Background Number p-Value

Plant hormone signal transduction ko04075 44 213 2.29 × 10−5

Carotenoid biosynthesis ko00906 16 41 2.87 × 10−5

Phenylpropanoid biosynthesis ko00940 29 132 2.30 × 10−4

Plant–pathogen interaction ko04626 33 177 1.14 × 10−3

Flavonoid biosynthesis ko00941 10 29 1.94 × 10−3

Fatty acid elongation ko00062 9 25 2.55 × 10−3

Fatty acid biosynthesis ko00061 14 54 2.64 × 10−3

ABC transporters ko02010 12 45 4.30 × 10−3

Glycolysis/Gluconeogenesis ko00010 27 158 8.49 × 10−3

Galactose metabolism ko00052 15 70 8.62 × 10−3

Stilbenoid, diarylheptanoid and
gingerol biosynthesis ko00945 5 11 0.011

Phenylalanine metabolism ko00360 12 53 0.013
Tryptophan metabolism ko00380 9 37 0.020

Limonene and pinene degradation ko00903 4 10 0.032
Sesquiterpenoid and triterpenoid

biosynthesis ko00909 6 22 0.036

It is worth noting that the pathway of flavonoid biosynthesis, which contained signifi-
cantly enriched DEGs (p = 1.94 × 10−3), was also greatly enriched by DAMs.

3.5. Conjoint Analysis of Metabolomics and Transcriptomics Data

Based on the information in the flavonoid biosynthesis pathway (ko00941), Pearson’s
correlation analysis of DAFs and DEGs identified between ‘Changying’ and ‘Huiyuan’ fruits
was performed (Figure 4). Compared with ‘Changying’, the liquiritigenin, p-coumaroyl
quiuc acid, apigenin, luteolin, kaempferol, and quercetin content in ‘Huiyuan’ was sig-
nificantly lower, while its leucopelargonidin, myricetin, and (−)-epicatechin content was
significantly higher. It was found that two CHIs showed negative correlation to liquiriti-
genin (r =−0.466, p = 0.352). The transcription levels of two DFRs were positively correlated
with the accumulation of leucopelargonidin (r = 0.114, p = 0.830). Moreover, the expression
levels of two FLSs were found to be positively correlated with the kaempferol (r = 0.969,
p = 0.001), quercetin (r = 0.991, p = 0) and myricetin (r = −0.774, p = 0.071) content.
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Figure 4. Correlation analysis of flavonoid biosynthesis-related DEGs and DAMs. Different colors in
the heatmap indicate different gene expression levels; * indicates that there is a significant difference
in the content of the metabolite between the two cultivars. Red indicates that the gene expression level
or metabolite content in ‘Huiyuan’ is greater than that in ‘Changying’, and blue indicates that the gene
expression level or metabolite content in ‘Huiyuan’ is less than that in ‘Changying’. C4H: cinnamic
acid 4-hydroxylase; CHS: chalcone synthase; CHI: chalcone isomerase; HCT: hydroxycinnamoyl-CoA:
shikimate hydroxycinnamoyl transferase; FNSI: type I flavone synthase; F3′5′H: flavonoid-3′-5′-
hydroxylase; F3′H: flavonoid-3′-hydroxylase; F3H: flavonone-3-hydroxylase; FLS: flavonol synthase;
DFR: dihydroflavonol reductase; ANS: anthocyanidin synthase; ANR: anthocyanidin reductase.

3.6. Identification and Quantitative Real-Time PCR Verification of Flavonoid Biosynthesis Related
Structural Genes and Transcription Factor Genes

Given the significant contribution of flavonoid metabolism pathway to the fruit
metabolome differences in diverse C. album cultivars, we further validated the expres-
sion of eight flavonoid biosynthesis structural DEGs, FLS, CCoAOMT, C3′H, DFR, CHI,
C4H, and two LARs, in ‘Changying’ and ‘Huiyuan’ fruits using qRT-PCR (Figure 5A). Ac-
cording to our transcriptome data, the expression level of FLS in ‘Changying’ was 4 times
higher than that in ‘Huiyuan’, while the expression of C4H in ‘Huiyuan’ was 15 times
higher than that in ‘Changying’. In addition to structural genes, the flavonoid synthesis
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is also regulated by regulatory factors, such as the MBW complex, which is comprised
of MYB, bHLH, and WD40 proteins [43]. In this study, we identified 59 MYB and 57
bHLH genes from our transcriptome data (supplemental data Tables S4 and S5). Through
homologous alignment analysis, 32 MYBs and 34 bHLHs were identified as candidate
flavonoid biosynthesis-related transcription factors (Figure 5C,D). Among them, 10 MYBs
and 15 bHLHs showed more than 2-fold change between ‘Changying’ and ‘Huiyuan’ fruits.
After combining the results of fold change and expression abundance, six and four candi-
date MYB and bHLH transcription factors that might regulate flavonoid synthesis in the
fruits of C. album were finally selected for further qRT-PCR verification (supplemental data
Table S6). Besides, 122 WD40 transcription factors were identified from our transcriptome
data (supplemental data Table S7), and through homologous sequence blasting, only two
of them were identified as candidate flavonoid biosynthesis related. However, the expres-
sion levels of the two WD40 members did not show significant changes between the two
cultivars (Figure 5B).

qRT-PCR analysis of the eight selected flavonoid biosynthetic structural genes showed
that the expression of FLS gene in the ‘Changying’ cultivar was higher than that in ‘Huiyuan’
cultivar, whereas the expression levels of the other genes, including CCoAOMT, C3’H, DFR,
LAR, CHI, and C4H genes in the ‘Huiyuan’ cultivar were more than 3.0 times multiple than
‘Changying’ cultivar. Notably, the expression of DFR gene in ‘Huiyuan’ was found to be
32-fold higher than that in ‘Changying’. Among the six MYBs, three genes showed higher
expression levels in ‘Changying’ and three showed lower expression levels. Notably, the
expression levels of two MYBs (Cluster-4594.13793 and Cluster-4594.1156) in ‘Huiyuan’
were approximately 31 and 40 times higher than that in ‘Changying’, respectively. The
expression of four candidate bHLHs showed no significant difference between the two cul-
tivars. Generally, the expression patterns of these genes in different samples were almost
consistent with the sequencing results (except Cluster-4594.7613 and Cluster-4594.13463)
(Figure 6), confirming that our transcriptome data are reliable.
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Figure 5. Heat map analysis of FPKM values of related genes involved in flavonoid biosynthesis.
(A) The map shows the change in FPKM values of selected DEGs in flavonoid biosynthesis in different
C. album cultivars. (B) Heat map showing the changes in FPKM values of selected WD40 transcription
factors in different cultivars of C. album. (C) Heat map showing the changes in FPKM values of
selected MYB transcription factors in different cultivars of C. album. (D) Heat map showing the
changes in FPKM values of selected bHLH transcription factors in different cultivars of C. album. Each
column represents a given sample and each row indicates relative expression or FPKM value of the
gene written on the right-hand side.
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samples. Cluster-4594.13418, Cluster-4594.14937, Cluster-4594.17781, Cluster-4594.4477, Cluster-
4594.10931, Cluster-4594.4206, Cluster-4594.6457, and Cluster-4594.12512 represent FLS, CCoAOMT,
C3′H, DFR, LAR, CHI, LAR, and C4H genes, respectively. Cluster-4594.11055, Cluster-4594.13793,
Cluster-4594.12981, Cluster-4594.7613, Cluster-4594.1055, and Cluster-4594.1156 belong to the MYB
transcription factor gene family, and Cluster-4594.13463, Cluster-4594.14435, Cluster-4594.14756, and
Cluster-4594.17259 are different members of the bHLH transcription factor gene family.

4. Discussion
4.1. Metabolomics Analysis Distinguished the C. album Cultivars Well and Can Provide a Basis for
the Rational Utilization of C. album

Untargeted metabolomics reflects the comprehensive dynamics of endogenous metabo-
lites in organisms. By comparing the differential metabolites in different C. album fruit
samples, it is possible to effectively identify varieties or regions, and provide a reference
for assessing biological evolution and the identification of genetic relationships [44,45]. In
the present study, based on the results of PCA and PLS-DA analyses, the metabolomes of
‘Huiyuan’ and ‘Zilaiyuan’ cultivars were found to be the most similar, which was consistent
with their genetic relationship: the ‘Zilaiyuan’ cultivar was a mutant of ‘Huiyuan’ cultivar.

Metabolomics can systematically reveal the metabolic state of organisms affected
by genetic or external factors [46]. It has been successfully applied in many crops for the
exploration of differential metabolites in a variety of crop germplasms, as well as in studying
the mechanism for the formation of certain active ingredients. For example, through the
combined analysis of fruit quality indices and metabolomes, Xi et al. found that cyanidin,
anthocyanin-3-o-rutin, and paeoniflorin were the main factors responsible for the red color
formation in Prunus armeniaca [47]. Wang et al. revealed that the increase in abscisic acid,
jasmonic acid, and ethylene, and with decrease in auxin and brassinosterol were the main
reasons causing Litchi chinensis fruit cracking [48]. The purple fruits of Passiflora edulis were
rich in flavonols, anthocyanins, and flavanols, while flavonoid and flavonoid glycosides
accumulated a lot in the yellow fruits [49]. Ghisoni et al. reported the differences in phenols
and sterols of different virgin olive cultivars, and explored the possibility of using the most
abundant compounds to distinguish different cultivars and the same cultivar cultivated in
different regions [50]. Moreover, the correlation between flavonoid content and virgin olive
cultivars was also reported [51]. Therefore, it can be concluded that metabolomics has been
and will continue to be of great significance for revealing traits that reflect crop quality as
well as the mechanisms underlying the production of active ingredients.

4.2. Flavonoid Accumulation Is a Key Determinant of the Metabolome Differences among
C. album Cultivars

Flavonoids and polyphenols have been shown to be the most important functional com-
ponents in C. album fruits, but their contents are highly variable among different cultivars [11].
By comparing the different metabolites in the fruits of ‘Changying’, ‘Huiyuan’, ‘Tanxiang’,
and ‘Zilaiyuan’, a large number of DAMs involved in flavonoids or polyphenols metabolism
were found, indicating that flavonoids or polyphenols contributed largely to the metabolome
differences between these cultivars. Moreover, KEGG pathway enrichment analysis of DEGs
identified between ‘Changying’ and ‘Huiyuan’ also revealed the significant enrichment of
flavonoid biosynthesis pathway, confirming that the flavonoid accumulations in different C.
album fruits varied considerably. Among the flavonoids, apigenin has been reported to have
the ability to protect the liver and inhibit tumor cells [52], leucopelargonidin can alleviate
diabetes [53], quercetin can resist oxidation and inflammation [54], (−)-epigallocatechin can
reduce uric acid activity [55], aromadendrin can inhibit T cell activity [56], myricetin can
resist oxidation and protect nerves and (2s)-liquiritigenin can inhibit tumors [57,58]. Since
these active components were specifically enriched, they were inferred to be closely linked
to the pharmacological properties of C. album fruits. In addition, in this study, the presence
of qing hau sau, genistin, (+)-pinoresinol, fraxetin, and eugenol in the fruits of C. album was
reported for the first time; this should be confirmed or become a focus of the future study
of the medicinal value of C. album.



Foods 2022, 11, 2527 17 of 20

4.3. Transcription of Flavonoid Biosynthetic Structural Genes and Transcription Factor Genes
Contributed Greatly to the Metabolome Differences among Fruits of Different C. album Cultivars

The flavonoid biosynthesis pathway plays an important role in plant flavonoid ac-
cumulation. In our study, many flavonoid biosynthetic structural genes were identified
as DEGs by transcriptome data, which was further confirmed by qRT-PCR. Among them,
FLS was highly expressed in the ‘Changying’ cultivar, whereas the expression levels of
CCoAOMT, C3’H, DFR, LAR, CHI, and C4H genes in the ‘Huiyuan’ cultivar were higher
than that in the ‘Changying’ cultivar. All these selected genes have been shown to play
important regulatory roles in flavonoid synthesis in many plants [59]. The differential
expression of these genes in different cultivars of C. album might satisfactorily explain the
variations in flavonoid accumulation.

As important components of the MBW complex, MYB and bHLH represent key transcrip-
tion factors regulating plant flavonoid synthesis. Reports have shown that Pyrus bretschneideri
PbMYB10b was an activator of the anthocyanin and procyanidin pathway and that PbMYB9
functioned in activating of the flavonol biosynthesis [36]. The overexpression of McMYB12a
and McMYB12b in Malus crabapple increased the expression of flavonoid biosynthesis genes
and promoted the accumulation of procyanidins and anthocyanins [60]. MdMYB3 positively
regulated the expression of CHS, CHI, UFGT, and FLS in M. × domestica [61]. FhMYB5 upreg-
ulated the expression of DFR and LDOX in F. hybrida [62]. CmMYB8 negatively regulated
flavonoid synthesis in chrysanthemum [35]. These results showed that MYB played impor-
tant roles in regulating plant flavonoid biosynthesis. In our study, by homologous sequence
alignment using reported flavonoid biosynthesis-related MYB sequences, 32 candidate
MYBs regulating flavonoid biosynthesis of C. album were identified. Eventually, six candi-
date MYB transcription factors were obtained by screening the differential multiples and
expression abundances, including cluster-4594.12981 and cluster-4594.11055, which were
differentially expressed with a fold-change of 2.3 and 5.8 between the two cultivars, had
the highest homology with MYB4 and MYB60 of A. thaliana, respectively. AtMYB4 has
been proven to play a dual role in flavonoid synthesis, and AtMYB60 is a transcription
inhibitor of flavonoid synthesis [29,63]. These two members were significantly differentially
expressed in different cultivars of C. album which present differential flavonoid components
and contents, indicating that these MYB transcription factors might regulate flavonoid
synthesis in C. album.

bHLH has also been proved to be an important transcription factor affecting plant
flavonoid synthesis. LcbHLH92 negatively regulated the transcriptional levels of ANS and
ANR in Leymus chinensis, and CcbHLH6-1 significantly upregulated the activities of F3H
and DFR promoters of Centaurea cyanus [64,65]. Similarly, both P. appendiculatum and Vitis
vinifera bHLH1 gene functioned in activating flavonoid synthesis [40,66]. In our study, we
identified 34 candidate flavonoid biosynthesis-related bHLH genes. Among them, 15 bHLHs
showed more than two-fold changes between ‘Changying’ and ‘Huiyuan’ fruits, indicating
that they might play important roles in the flavonoids biosynthesis in C. album and that
their functions need to be studied further.

5. Conclusions

In this study, an untargeted metabolomics technique was successfully applied to
distinguish the metabolome difference in the fruits of four different C. album cultivars. The
results showed that the differential accumulations of flavonoids contributed majorly to the
various metabolome compositions of fruits from different C. album cultivars. In agreement
with our metabolome results, the flavonoid biosynthesis pathway was significantly enriched
by DEGs encoding flavonoid biosynthesis-related structural proteins and transcription
factors. Our study will be very helpful in clarifying the underlying mechanism of the
differences in metabolite composition and accumulation among different C. album cultivars.
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