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Abstract: The levels of chemical pollutants were determined in 30 samples of varietal honey
from southeastern Poland, including 223 pesticides (insecticides, herbicides, fungicides, acari-
cides, plant growth regulators, and veterinary drugs) and 5 heavy metals (Pb, Cd, Hg, Cu, and
Zn). In 10% of the samples, no pesticide residues were found. The most frequently identified
pesticides were thiacloprid (90% of the samples, max 0.337 mg/kg), acetamiprid (86.6%, max
0.061 mg/kg), carbendazim (60%, max 0.049 mg/kg), DMF (56.6%, max 0.038 mg/kg), total amitraz
(53.3%, max 0.075 mg/kg), thiamethoxam (26.6%, max 0.004 mg/kg), thiacloprid-amide (13.3%, max
0.012 mg/kg), dimethoate (10%, max 0.003 mg/kg), azoxystrobin (10%, max 0.002 mg/kg), tebu-
conazole (6.66%, max 0.002 mg/kg), and boscalid (3.33%, max 0.001 mg/kg). The acceptable limits
for the compounds were not exceeded in any sample. The Pb content ranged between 0.044 and
0.081 mg/kg. The concentration of Hg and Cd did not exceed 5.0 µg/kg and 0.02 mg/kg, respectively.
The honey variety significantly (p < 0.01) influenced the content of Cu, which ranged from 0.504
(rapeseed honey) to 1.201 mg/kg (buckwheat). A similar tendency (p > 0.05) was observed for the Zn
content, which ranged from 0.657 mg/kg (linden) to 2.694 mg/kg (buckwheat). Honey produced in
southeastern Poland was shown to be safe for human consumption.

Keywords: honey; pesticide residues; QuEchERS; fungicide; insecticide; veterinary drugs

1. Introduction

Honey, due to its high nutritional value and numerous health-promoting properties,
is a valuable component of the daily diet. The chemical composition of honey is varied and
depends mainly on the region where it is produced, the soil conditions, and the water and
air quality, which affect the quality of the food sources for bees, including the presence and
level of chemical pollutants [1]. The health risks associated with honey consumption stem
from the presence of pesticide residues (including active substances and their metabolites),
antibacterial substances (including antibiotics), and heavy metals. Another source of risk in
honey is microbial contaminants [2]. These substances come mainly from the environment,
whose cleanliness depends largely on human activity. Antibacterial substances are used
to prevent and fight diseases in broods and bees, and pesticides are meant to protect
crop plants against fungi (fungicides), insects (insecticides), and weeds (herbicides). The
use of pesticides in agriculture is essential to obtaining high yields, but results in the
contamination of the soil, water, air, and also the flowers from which bees collect nectar and
pollen, the natural components of honey [3]. These agents negatively affect both bees and
people, causing changes in the endocrine and nervous systems [4]. Detailed information
on the potential sources of the contamination of honeys (e.g., heavy metals, airborne
particulate matter, and agrochemical pesticides) was provided by Cunningham et al. [5].
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Therefore, the monitoring of their levels in food products is crucial for ensuring consumer
health safety.

Colony collapse disorder (CCD) threatens the health of beehives worldwide, but
scientists still struggle to identify the specific causes. In view of the important ecological
and economic value of bees, there is a need to monitor and maintain healthy bee stocks.
In the framework of the Farm to Fork Strategy, one of the main priorities of the European
Commission is the 50% reduction of the overall use of (and risk from) chemical pesticides
by 2030, especially for the most hazardous ones. In addition, the EU Pollinators Initiative
objectives state that by 2030, the scientific knowledge about the magnitude, causes, and
consequences of the insect pollinator decline will have improved, that the main known
causes of this decline will be addressed and managed, and that the societal awareness and
collaboration amongst stakeholders will have strengthened [6]. In response to a mandate
from the European Parliament’s Committee for the Environment, Public Health, and
Food Safety (ENVI), The European Food Safety Authority (EFSA) devised an integrated
framework for the environmental risk assessment (ERA) of multiple stressors in honey
bees (MUST-B). These stressors range from chemicals such as plant protection products,
other types of chemicals (e.g., biocides), biological agents (e.g., Varroa, Nosema), and other
elements (e.g., food availability, weather conditions, and beekeeping management practices)
in managed honey bees [7].

Among the compounds recognized as toxic for pollinating insects, an important group
is the neonicotinoid insecticides, widely used in agriculture and with a share of about
one third of the global insecticide market. Neonicotinoids act on nicotinic acetylcholine
receptors (nAChRs) in the central nervous system of the honeybee and other pollinating
insects, which impairs their learning and memory functions, causing them to not look for
food [8] and thus leading to their elimination [9]. The most commonly used insecticides are
imidacloprid and acetamiprid [10].

The Agency for Toxic Substances and Disease Registry [11] lists polychlorinated
biphenyls, dimethoate, and metals such as lead, mercury, cadmium, zinc, and copper as
harmful substances. Fakhri et al. [12], based on a meta-analysis of the results of 45 studies,
estimated the overall rank order of nine potentially toxic elements (PTE) according to their
concentrations in honey (Fe > Mn > Pb > Cr > Cu > Ni > Cd > As > Hg) as well as their rank
according to their hazard quotient (HQ: Pb > Cd > Mn > Fe >Ni > As > Cu > Hg > Cr).
Lead (Pb) and cadmium (Cd), due to their carcinogenic and cytotoxic properties, are
regarded as the most toxic heavy metals. Lead, mainly from car exhaust, is not transported
by plants, but can pollute the air and subsequently nectar and honeydew. Cadmium from
the metallurgical industry and combustion plants is transferred from the soil to plants; thus,
it can contaminate nectar and honeydew [13]. The predominant source of lead, cadmium,
mercury, and arsenic is industrial contamination, i.e., exhaust gases and fumes, as well as
pesticides and synthetic fertilizers. Oroian et al. [14] showed that information on the level
of heavy metals in honey can be used to determine its botanical origin, with an about 81%
accuracy, and its geographic origin, but with only a 21% accuracy.

One of the effects of human activity on the environment may be the presence of
unacceptable chemical residues and drugs in the honey made by bees. The presence of
these compounds is a significant challenge in monitoring the quality of honey. Taking into
account human exposure to the effects of active substances and their potential cumulative
and synergistic effects, maximum residue levels (MRL) have been established. Foodstuffs,
including honey, are safe for human health or life if their content of these compounds
does not exceed the acceptable limits [15]. The maximum residue levels of pesticides in
food are regulated by Regulation (EC) No 396/2005 of the European Parliament and of the
Council [16], and the levels of veterinary agents by Regulation (EC) No 37/2010 [17]. In
Poland, honey is monitored in accordance with the Regulation of the Minister of Agriculture
and Rural Development [18]. Specifically, it is tested for the presence of antibacterial
substances, including sulphonamides and quinolones; medicinal products (carbamates
and pyrethroids); chemical pollutants such as organochlorine pesticides, polychlorinated
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biphenyls (PCB), and organophosphate pesticides; and toxic elements. Changing hazards,
however, make it necessary to study new unsafe chemical compounds as they appear.

Testing for the presence of chemical contaminants in honey can provide important data
on the presence of these contaminants in the environment. The honey bee (Apis mellifera L.)
and its products are currently also used as bioindicators of environmental contamination.
These insects fly around nectar plants growing up to 4 km away from the hive, but they
can cover distances even up to 12 km, accumulating pollutants present in the air, soil, and
water [19]. For this reason, honey can serve as an indicator material for evaluating the
contamination of the environment from which bees have collected nectar for making honey.

The aim of the study was to assess the safety of honey from southeastern Poland based
on the levels of residues of pesticides, including organochlorine and organophosphate
insecticides, herbicides, and fungicides; plant growth regulators; acaricides; and others, as
well as the content of copper and zinc and the presence of these toxic heavy metals: lead,
cadmium, and mercury.

2. Materials and Methods
2.1. Material

The study was conducted on 30 samples of honey produced in 2019 from nectar
and honeydew sources located in the Lublin region (southeastern Poland). The material
comprised 10 samples of multifloral honey (MF), 6 samples of linden honey (LI), 5 samples
of rapeseed honey (RS), 5 samples of buckwheat honey (BW), and 4 samples of honeydew
honey (HD). Honey samples represented the locally produced honey from apiaries located
in 8 districts from different parts of the Lubelskie voivodship: northern (Bialski district
(BW n = 2, LI n = 1, RS n = 1, MF n = 1)), southern (Zamojski (MF n = 2, HD n = 1) and
Biłgoraj (HD n = 1, LI n = 1, BW n = 2) districts), eastern (Włodawa (MF n = 2, LI n = 2, HD
n = 1) and Chełmski (MF n = 2, RS n = 1) districts), western (Puławy (LI n = 2, HD n = 1)
and Opole (MF n = 2, RS n = 1, BW n = 1) districts), and central (Lubelski district RS n = 2,
MF n = 1). The apiaries were located in agricultural farmlands without concentrations of
industry. The honey was purchased directly from beekeepers just after harvesting (from
May to August) and stored in glass jars at 20 ◦C (±2 ◦C) out of direct sunlight.

2.2. Determination of Pesticide Residues

Pesticide residues in the honey were determined by the QuEChERS (quick, easy, cheap,
effective, rugged, and safe) method using chromatographs coupled with tandem mass
spectrometers (LC-MS/MS and GC-MS/MS) [20]. The honey was tested for the presence of
223 substances: 93 insecticides, 57 herbicides, 57 fungicides, 9 acaricides, 4 veterinary drugs,
and 3 plant growth regulators (a detailed list of the compounds analysed is presented in
Table 1).

Table 1. List of analysed compounds.

Category of Use Compound *

Herbicides

6-chloro-4-hydroxy-3-phenyl pyridazine (metabolite of Pyridate), 6-hydroxy bentazone (metabolite of bentazone),
Acetochlor, Amidosulfuron, Asulam, Bentazone, Bifenox, Quinochlamine, Chizalofop-P-ethyl,

Chizalofop-P-tefuryl, Chlomazone, Chlorosulfuron, Chlortoluron, Chloridazon, Cycloxydim, Desmedipham,
Diflufenican, Dimethachlor, Etofumesate, Fenmedipham, Phenoxaprop-P-ethyl, Flazasulfuron, Florasulam,
Fluazifop-P-butyl, Flufenacet, Flurochloridone, Foramsulfuron, Isoproturon, Iodosulfuron-methyl-sodium,
Carbetamide, Carfentrazone-ethyl, Kletodim, Lenacyl, Linuron, Metamitron, Metazachlor, Metolachlor-S,

Metribuzin, Metsulfuron-methyl, Mesosulfuron-methyl, Mesotrione, Napropamide, Nicosulfuron, Pendimethalin,
Pethoxamide, Propachizafop, Propoxycarbazone sodium, Propyzamide, Prosulfocarb, Rimsulfuron,

Sulfosulfuron, Sulcotrione, Tembotrione, Tepraloxydim, Terbutylazine, Thifensulfuron-methyl, Tralkoxydim
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Table 1. Cont.

Category of Use Compound *

Insecticides

2,4′-DDT, 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, 4,4-Methoxychlor, Acetamiprid, Aldrin, alpha-Cypermethrin,
alpha-Endosulfan, alpha-HCH, azinphos-ethyl, azinphos-methyl, beta-Cyfluthrin, beta-Endosulfan, beta-HCH,

Bifenthrin, Chlorantraniliprole, Chlorfenvinphos, Chlorpyriphos-methyl, Chlorpyriphos, cis-Chlordane,
cis-Heptachlor epoxide, cis-Permethrin, Deltamethrin, Diazinon, Dieldrin, Diflubenzuron, Dimethoate, Endrin,

Esfenvalerate, Etofenprox, Etoprophos, Fenitrothion, Fention, Fention-sulfone (metabolite of fenthion),
Fention-sulfoxide (metabolite of fenthion), Fipronil, Fipronil-desulfinyl (metabolite of fipronil),

Fipronil-carboxamide (metabolite of fipronil), Fipronil-sulfide (metabolite of fipronil), Fipronil-sulfone (fipronil
metabolite), Flonicamid, Phoxim, Phosalon, Fosmet, HCB, Heptachlor, Heptenofos, Imidacloprid,

Imidacloprid-olefin (imidacloprid metabolite), Imidacloprid-urea derivative (imidacloprid metabolite),
Indoxacarb, Clothianidin, Lambda-Cyhalothrin, Lindane (gamma-HCH), Malathion, Methiocarb sulphone

(methiocarb metabolite), Methiocarb sulfoxide (methiocarb metabolite), Methiocarb, Methoxyfenozide,
Methidathion, MITC (Methyl isothiocyanate) (metabolite of Metam and Dazomet), Nitenpyram, Oxychlordane,

Parathion ethyl, Parathion methyl, Pyrimiphos ethyl, Pyrimiphos methyl, Pyrimicarb, Pyrimicarb-desmethyl
(metabolite of Pyrimicarb), Pyriproxyfen, Profenofos, Resmethrin, Endosulfan sulphate, Spinosin A, Spirodiclofen,

Spirotetramat, Spirotetramat-enol (spirotetramat metabolite), Spirotetramat-enol glucoside (spirotetramat
metabolite), Spirotetramat-keto hydroxy (spirotetramat metabolite) tau-Fluvalinate, Tebufenozide, Teflubenzuron,

Tefluthrin, Tetramethrin, Thiacloprid, Thiacloprid-amide (metabolite of thiacloprid), Thiamethoxam,
trans-Chlordane, trans-Heptachlor epoxide, trans-Permethrin, Triazinphos, zeta-Cypermethrin

Fungicides

Azoxystrobin, Bixafen, Boscalid, Bupirimate, Quinoxyfen, Chlorothalonil, Chymexazole, Cyflufenamide,
Cyazofamid, Cymoxanil, Cyprodinil, Cyproconazole, Difenoconazole, Dimethomorph, Dimoxystrobin,

Epoxiconazole, Fenbuconazole, Fenhexamid, Fenpropidin, Fenpropimorph, Fluchinkonazole, Fludioxonil,
Flusilazole, Flutriafol, Imazalil, Ipconazole, Iprodione, Isopyrazam, Carbendazim, Carboxin, Kresoxim-methyl,

Mandipropamid, Mepaniprym, Metalaxyl-M (Metalaxyl), Metconazole, Metrafenone, Myclobutanil, Pencycuron,
Picoxystrobin, Pyrimethanil, Proquinazid, Prochloraz, Propamocarb, Propiconazole, Prothioconazole-desthio (a

metabolite of prothioconazole), Pyraclostrobin, Pyrazophos, Silthiopham, Spiroxamine, Tebuconazole,
Tetraconazole, Thiophanate-methyl, Triadimefon, Triadimenol, Trifloxystrobin, Triticonazole, Vinclozolin

Acaricides Bifenazate, Bromopropylate, Etoxazole, Fenazaquin, Fenpyroximate, Hexithiazox, Clofentezine,
Propargit, Tebufenpyrad

Veterinary drugs Cymiazole, DMF (2,4-dimethylphenylformamide) (amitraz metabolite), DMPF
(N-(2,4-dimethylphenyl)-N′-methylformamidine) (amitraz metabolite), Coumaphos

Plant growth regulators Chlorpropham, IBA (Indolylbutyric acid), NAD (1-Naphthylacetamide)

* The limits of quantification (LOQ) of the substances are given in Supplementary Table S1.

2.2.1. LC-MS/MS

The Agilent series 1260 HPLC system was used for the analyses. The substances
were separated on a Luna 3 µm Phenyl-Hexyl 150 mm × 2.0 mm column (Phenomenex,
Torrance, NJ, USA) using water with 5 mM ammonium formate and acetonitrile as the
mobile phase. The flow rate was 400 µL/min and the column was thermostated at 50 ◦C.
Gradient elution was used. The injection volume was 2 µL, and the total LC analysis time
was 40 min. Spectrometric analysis was performed using the AB Sciex QTRAP® 6500
LC-MS/MS system (Framingham, MA, USA) with the Turbo Spray ion drive with positive
ionization and positive and negative ionization. The spray voltage was set to 5000 V and
−4500 V for positive and negative ionization, respectively. The source temperature was set
to 550 ◦C. Nitrogen was used as the curtain gas (20 psi), collision gas (medium), and ion
source gases, nebulizer gas (50 psi) and heating gas (55 psi). Analyst 1.6.2 software (AB
Sciex, Framingham, MA, USA) was used to control the LC-MS/MS system and to archive
the data.

2.2.2. GC-MS/MS

A GC-MS/MS system with an Agilent 7890A+ gas chromatograph (Palo Alto, CA,
USA), 7693B autosampler, split/splitless injector, and 7000B tandem mass spectrometry
detector with an electron ionization source was used for the analysis. Chromatographic
separation was carried out on an HP-5 MS UI capillary column (30 m × 0.25 mm ID,
0.25 µm, Agilent Technologies, Palo Alto, CA, USA) using helium with 99.9999% purity as
the carrier gas (constant flow 0.9 mL/min). The injection volume was 1 µL. The following
furnace temperature program was used: initial temperature 80 ◦C held for 1 min, increased
by 40 ◦C/min to 200 ◦C, 2.3 ◦C/min to 210 ◦C (held for 5 min), and increased by 10 ◦C/min
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to 320 ◦C. The analysis time was 38 min. The remaining conditions were as follows: inlet
temperature was 280 ◦C, transfer line temperature was 295 ◦C, source temperature was
300 ◦C, MS1 and MS2 quadrupole temperatures were 150 ◦C, collision gas flow rate (N2)
was 1.5 mL/min, and quenching gas flow rate (He) was 2.25 mL/min. Mass Hunter B.07.01
software was used to control the GC-MS/MS system and to archive the data.

2.3. Determination of Heavy Metals (Pb, Cd, Hg, Cu, and Zn)

The levels of Cd and Pb in the digest solution of honey were determined according to
Kędzierska-Matysek et al. [21] by inductively coupled plasma mass spectrometry (Varian
MS-820ICP Mass Spectrometer). The gas used to create the plasma was argon (Messer)
with 99.999% purity. No reaction chamber (CRI) was used in the analysis. The following
settings were used: plasma flow at 16 dm3/min, nebulizer flow at 0.98 dm3/min, RF power
of 1.38 kW, and sampling depth of 6.5 mm. The following isotopes of the elements were
used: 114Cd, 206Pb, 207Pb, and 208Pb.

Levels of Cu and Zn were analysed with a Varian SpectrAA 240 FS atomic absorption
flame spectrometer (Fast Sequential Atomic Absorption Spectrometer, Varian Australia
Pty Ltd., Mulgrave, Australia). The following settings were used for Cu: absorption—
324.8 nm, slit width—0.5 nm, lamp current—4 mA. The corresponding settings for Zn were
213.9 nm, 1.0 nm, and 5 mA. The atomizer was a slit burner 100 mm in length operating
on a stoichiometric acetylene/air gas mixture. During the analysis of Pb, Cd, Cu, and Zn,
quality control was carried out by measuring blank samples and the certified reference
material NCS ZC 73014 Tea. The results were expressed as mg/kg fresh weight.

Mercury content was determined using an AMA 254 atomic absorption spectrometer.
The analysis was performed without mineralization, which limited the risk of contami-
nation of the sample. Before each measurement, the apparatus was cleaned with air and
deionized water.

2.4. Data Analysis

All statistical analyses were performed using Statistica ver. 13 (TIBCO Software Inc.,
Palo Alto, CA, USA). The parametric and nonparametric descriptive statistics are presented
in the tables and figures. The influence of honey variety on concentration of metals was
verified by the Kruskal–Wallis test (comparison of multiple independent groups). Statistical
differences between means at confidence levels of 95% and 99% (p < 0.05 and p < 0.01,
respectively) were considered significant.

3. Results and Discussion
3.1. Pesticide Residues

Among the 223 pesticides analysed in the honey samples (Table 1), 11 substances
were identified, including 5 insecticides (acetamiprid, thiacloprid, thiacloprid-amide, thi-
amethoxam, and dimethoate), 4 fungicides (carbendazim, azoxystrobin, tebuconazole, and
boscalid), and 2 pharmacologically active substances used in veterinary medicine (DMF
and total amitraz) (Table 2). No residues of herbicides, plant growth regulators, or acari-
cides were found in the honey samples. Only three samples were free of pesticide residues,
but it should be noted that there was no sample in which the acceptable level of any of the
substances was exceeded.
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Table 2. List of substances identified in honey (V—Veterinary drugs, F—Fungicides, I—Insecticides;
II—Moderately hazardous, U—Unlikely to present acute hazard; LOQ—Limit of quantification
(mg/kg), MRL—Maximum residue level (mg/kg)).

Compound Category of Use WHO Category [22] Chemical Group LOQ MRL
Positive Samples

n %

Acetamiprid I II cyano-substituted
neonicotinoid 0.001 0.05 26 86.66

Carbendazim F U benzimidazole 0.001 1 18 60.00

Thiacloprid I II cyano-substituted
neonicotinoid 0.001 0.2 27 90.00

DMF (N-2,4-Dimethylphenyl-formamide) V - - 0.005 - 17 56.66
Total amitraz V II - - - 16 53.33

Thiacloprid-amide I II cyano-substituted
neonicotinoid 0.005 - 4 13.33

Thiamethoxam I II nitro-substituted
neonicotinoid 0.001 - 8 26.66

Dimethoate I II organophosphate 0.001 - 3 10.00

Azoxystrobin F U strobilurin
methoxyacrylate 0.001 0.05 3 10.00

Tebuconazole F II triazole 0.001 0.05 2 6.66

Boscalid F U anilide
pyridine-carboxamide 0.001 0.05 1 3.33

3.1.1. Insecticides

Thiacloprid was detected in 90% of honey samples (max 0.337 mg/kg), acetamiprid
in 86.7% (max 0.061 mg/kg), carbendazim in 60% (max 0.049 mg/kg), DMF in 56.7%
(max 0.038 mg/kg), amitraz in 53.3% (max for total 0.075 mg/kg), thiamethoxam in
26.7% (max 0.004 mg/kg), thiacloprid-amide in 13.3% (max 0.012 mg/kg), dimethoate
in 10% (max 0.003 mg/kg), azoxystrobin in 10% (max 0.002 mg/kg), tebuconazole in
6.66% (max 0.002 mg/kg), and boscalid in 3.33% (max 0.001 mg/kg) (Table 3). All the
samples of rapeseed honey contained residues of thiacloprid, acetamiprid, and carben-
dazim (0.0702 mg/kg, 0.0300 mg/kg and 0.0242 mg/kg), and all the samples of multi-
floral honey contained thiacloprid and acetamiprid (0.1062 mg/kg and 0.0150 mg/kg)
(Table 4). The highest degree of contamination with pesticides was noted for multiflo-
ral honey (0.1646 mg/kg in total) and rapeseed honey (0.1498 mg/kg), while buckwheat
(0.0324 mg/kg), honeydew (0.0125 mg/kg), and linden (0.0268 mg/kg) honey were less
contaminated with pesticides. All the samples of buckwheat honey were contaminated
with the neonicotinoid insecticide thiacloprid (0.0122 mg/kg). Mitchell et al. [19], in an
analysis of the presence of five commonly used neonicotinoids (acetamiprid, clothianidin,
imidacloprid, thiacloprid, and thiamethoxam) in 198 samples of honey from various parts
of the world, showed the regional differences in the use of different types of pesticides.
Imidacloprid was predominant in honey from Africa and South America, acetamiprid
in samples from Asia, thiamethoxam in honey from Oceania and North America, and
thiacloprid in European honey. Under the Commission Implementing Regulation (EU)
No 2020/23 [23], the approval of thiacloprid as an active substance was not renewed, and
stores of it were to be used by 3 February 2021. At the same time, the European Food
Safety Authority (EFSA) indicated a problem raising serious concern associated with the
contamination of groundwater by the metabolites of thiacloprid [24]. All the suggested
applications of thiacloprid entail the risk of exceeding the acceptable limit (0.1 µg/L) of
the metabolites M30, M34, and M46 in drinking water. These metabolites are assumed
to have the same carcinogenic properties as the original active substance (thiacloprid),
which—according to Regulation (EC) No 1272/2008 of the European Parliament and of
the Council [25] (amended by Commission Regulation (EU) 2019/521 [26])—is a category
2 carcinogen. This category includes agents, mixtures, and groups of agents for which
there is sufficient evidence of carcinogenicity in humans as well as those for which there is
no evidence of carcinogenicity in humans, but where there is evidence of carcinogenicity
in experimental animals. In addition, thiacloprid is classified as a category 1B reproduc-
tive toxin. This group includes compounds presumed to adversely affect reproduction in
humans based on experiments in animals.
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Table 3. Descriptive statistics of pesticide residues (mg/kg) detected in honey.

Compoud Mean Median Min Max 25th Percentile 75th Percentile

1 Acetamiprid 0.0127 0.0065 <LOQ 0.0610 0.0020 0.0160
2 Carbendazim 0.0074 0.0020 <LOQ 0.0490 0.0000 0.0130
3 Thiacloprid 0.0527 0.0240 <LOQ 0.3370 0.0040 0.0520
4 DMF 0.0061 0.0030 <LOQ 0.0380 0.0000 0.0100
5 Total Amitraz 0.0112 0.0050 <LOQ 0.0750 0.0000 0.0160
6 Thiacloprid-Amide 0.0013 0.0000 <LOQ 0.0120 0.0000 0.0000
7 Thiamethoxam 0.0005 0.0000 <LOQ 0.0040 0.0000 0.0010
8 Dimethoate 0.0002 0.0000 <LOQ 0.0030 0.0000 0.0000
9 Azoxystrobin 0.0001 0.0000 <LOQ 0.0020 0.0000 0.0000

10 Tebuconazole 0.0001 0.0000 <LOQ 0.0020 0.0000 0.0000
11 Boscalid 0.0000 0.0000 <LOQ 0.0010 0.0000 0.0000

Table 4. Descriptive statistics of pesticide residues (mg/kg) detected in varietal honeys (RS—rapeseed;
MF—multifloral; BW—buckwheat; HD—honeydew; LI—linden).

Compoud Honey Mean Median Min Max 25th Percentile 75th Percentile
Positive Samples

n %

1 Acetamiprid RS 0.0300 0.030 0.009 0.061 0.015 0.035 5 100.0
2 Carbendazim RS 0.0242 0.020 0.007 0.049 0.014 0.031 5 100.0
3 Thiacloprid RS 0.0702 0.053 0.043 0.118 0.044 0.093 5 100.0
4 DMF RS 0.0072 0.003 <LOQ 0.027 0.002 0.004 4 80.0
5 Total Amitraz RS 0.0144 0.006 <LOQ 0.054 0.004 0.008 4 80.0
6 Thiacloprid-Amide RS 0.0016 0.000 <LOQ 0.008 0.000 0.000 1 20.0
7 Thiamethoxam RS 0.0012 0.001 <LOQ 0.002 0.001 0.002 4 80.0
8 Azoxystrobin RS 0.0004 0.000 <LOQ 0.002 0.000 0.000 1 20.0
9 Tebuconazole RS 0.0004 0.000 <LOQ 0.002 0.000 0.000 1 20.0
10 Boscalid RS 0.0002 0.000 <LOQ 0.001 0.000 0.000 1 20.0

Total 0.1498

1 Acetamiprid MF 0.0150 0.009 0.001 0.042 0.003 0.026 10 100.0
2 Carbendazim MF 0.0060 0.002 <LOQ 0.028 0.000 0.013 6 60.0
3 Thiacloprid MF 0.1062 0.042 0.004 0.337 0.015 0.178 10 100.0
4 DMF MF 0.0122 0.011 <LOQ 0.038 0.007 0.014 9 90.0
5 Total Amitraz MF 0.0216 0.018 <LOQ 0.075 0.006 0.028 8 80.0
6 Thiacloprid-Amide MF 0.0031 0.000 <LOQ 0.012 0.000 0.008 3 30.0
7 Thiamethoxam MF 0.0004 0.000 <LOQ 0.002 0.000 0.000 2 20.0
8 Azoxystrobin MF 0.0001 0.000 <LOQ 0.001 0.000 0.000 1 10.0

Total 0.1646

1 Acetamiprid BW 0.0086 0.004 <LOQ 0.020 0.004 0.015 4 80.0
2 Carbendazim BW 0.0056 0.004 <LOQ 0.018 0.000 0.006 3 60.0
3 Thiacloprid BW 0.0122 0.005 0.002 0.027 0.003 0.024 5 100.0
4 DMF BW 0.0012 0.000 <LOQ 0.006 0.000 0.000 1 20.0
5 Total Amitraz BW 0.0024 0.000 <LOQ 0.012 0.000 0.000 1 20.0
6 Thiamethoxam BW 0.0010 0.000 <LOQ 0.004 0.000 0.001 2 40.0
7 Dimethoate BW 0.0014 0.002 <LOQ 0.003 0.000 0.002 3 60.0

Total 0.0324

1 Acetamiprid HD 0.0023 0.001 <LOQ 0.007 0.000 0.005 2 50.0
2 Carbendazim HD 0.0003 0.000 <LOQ 0.001 0.000 0.001 1 25.0
3 Thiacloprid HD 0.0025 0.001 <LOQ 0.008 0.000 0.005 2 50.0
4 DMF HD 0.0025 0.000 <LOQ 0.010 0.000 0.005 1 25.0
5 Total Amitraz HD 0.0050 0.000 <LOQ 0.020 0.000 0.010 1 25.0

Total 0.0125

1 Acetamiprid LI 0.0047 0.002 <LOQ 0.016 0.001 0.007 5 83.3
2 Carbendazim LI 0.0018 0.002 <LOQ 0.005 0.000 0.003 3 50.0
3 Thiacloprid LI 0.0160 0.015 <LOQ 0.032 0.003 0.031 5 83.3
4 DMF LI 0.0013 0.000 <LOQ 0.005 0.000 0.003 2 33.3
5 Total Amitraz LI 0.0027 0.000 <LOQ 0.010 0.000 0.006 2 33.3
6 Azoxystrobin LI 0.0002 0.000 <LOQ 0.001 0.000 0.000 1 16.6
7 Tebuconazole LI 0.0002 0.000 <LOQ 0.001 0.000 0.000 1 16.6

Total 0.0268

The contamination of honey with neonicotinoid insecticides largely depends on the
apiary’s location in an agricultural area transformed by human activity [9]. A comparison
was made of 90 samples of honey from western France, obtained from an apiary located on
a plain and surrounded by crops and from another apiary situated in a bocage environment
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(fields surrounded by shrubs and trees). The levels of thiacloprid and thiamethoxam were
higher in the honey from the apiary in the plain (11.6 ng/g and 2 ng/g) than in the honey
from the bocage (9.1 ng/g and not detected). On the other hand, the maximum level of
acetamiprid in the honey from the bocage (112.8 ng/g) was higher than in the honey from
the plain (51.9 ng/g).

Our study found no residues of organochlorine insecticides in the honey samples.
Wilczyńska and Przybyłowski [27], on the other hand, detected eight organochlorine
insecticides in honey from Poland, including HCH and p,p′-DDT (about 60% of samples),
p,p-methoxychlor (29% of samples), and aldrin (21% of samples). Organochlorine pesticides
are especially hazardous in agriculture due to their persistence and bioaccumulation in the
environment, and their residues are identified in honey in various parts of the world.

Ruiz-Toledo et al. [28] demonstrated the presence of a wide spectrum of organochlorine
compounds in honey from Mexico (in the state of Chiapas), despite the fact that their use
has been banned there since 2000. At least one organochlorine pesticide was present in
more than 90% of honey samples—the most frequently identified were heptaclor (44% of
samples), γ-HCH (36%), DDT (19%), endrin (18%), and DDE (11%).

The EFSA [24] reported that among 1301 samples of honey and other bee products
evaluated in 2019, 78.7% were free of pesticide residues, and 20.4% of samples contained
residues at the maximum level (MRL) or lower. The MRL was exceeded in 0.9% of sam-
ples. In total, 27 pesticides were quantified: most frequently thiacloprid (173 samples),
acetamiprid (49 samples), amitraz (37 samples), dimoxystrobin (29 samples), azoxystrobin
(27 samples), glyphosate (17 samples), coumaphos (10 samples), and flonicamid (10 sam-
ples). The MRL was exceeded for amitraz (four samples), glyphosate (two samples), and
in one sample each for acetamiprid, bromide ion, thiacloprid, azoxystrobin, boscalid,
and chlorfluazuron.

El-Nahhal [29] identified residues of 92 pesticides in honey from 27 countries, in-
cluding 6 substances belonging to toxicity class IA (extremely hazardous), 8 from class
IB (highly hazardous), 42 from class II (moderately hazardous), 35 from class III (slightly
hazardous), and one from class IV (not posing a serious threat). The hazard indices (HI)
indicated a high potential health risk from honey consumption.

Bargańska et al. [30], in an analysis of residues of 30 pesticides in honey from north-
ern Poland (Pomerania), detected them in 29% of samples. In five samples (11%), the
MRL was exceeded for bifenthrin (14.5 ng/g), fenpyroximate (16.3 ng/g), methidathion
(25.7 ng/g), spinosad (20.6 ng/g), thiamethoxam (20.2 ng/g), and triazophos (20.3 ng/g).
The organophosphate pesticide profenofos, which was not found in the present study, was
detected as well (from <LOQ to 17.2 ng/g). In turn, Gaweł et al. [20] monitored 155 samples
of Polish honey for the potential presence of 207 pesticide residues from 2015–2017. A
total of 21 pesticides were identified: thiacloprid, acetamiprid, carbendazim, DMF and
DMPF (amitraz metabolites), azoxystrobin, tebuconazole, dimethoate, boscalid, coumaphos,
cyproconazole, flutriafol, tau-fluvalinate, tetraconazole, diazinon, dimoxystrobin, p,p′-
DDD, difenoconazole, lindane, propiconazole, and prothioconazole-desthio. The most
frequently detected pesticides were two cyano-substituted neonicotinoids—thiacloprid
and acetamiprid—and carbendazim, which were found in 68%, 55%, and 38% of honey
samples, respectively. In the present study, the presence of residues of these substances
was detected in 90%, 87%, and 60% of samples. Moreover, Gaweł et al. [20] reported
acetamiprid concentrations in honey ranging from 0.001 to 0.13 mg/kg and thiacloprid
concentrations from 0.001 to 0.2 mg/kg. The maximum content of acetamiprid in the
present study (0.061 mg/kg) was half of that reported in the cited study, while that of
thiacloprid (0.337 mg/kg) was higher.

3.1.2. Fungicides

In the present study, the most frequently identified fungicide was carbendazim
(present in 60% of samples), followed by azoxystrobin (10%), tebuconazole (6.66%), and
boscalid (3.33% samples). Similarly, Gaweł et al. [20] showed the presence of the fungi-
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cides carbendazim (38%), azoxystrobin (11%), tebuconazole (10%), and boscalid (5%) in
Polish honey, as well as other fungicides that were not detected in our study, including
cyproconazole (6%), flutriafol (5%), tetraconazole (3%), dimoxystrobin, difenoconazole,
propiconazole, and prothioconazole-desthio (1% each).

Only two honey samples contained both a triazole fungicide (tebuconazole) and cyano-
substituted neonicotinoids (acetamiprid and thiacloprid). This combination of pesticide
residues increases the toxicity of cyano-substituted neonicotinoids [31]. The degradation of
cyano-substituted neonicotinoids (acetamiprid and thiacloprid) takes longer than in the
case of nitro-substituted neonicotinoids (thiamethoxam, clothianidin, and imidacloprid).

3.1.3. Residues of Veterinary Drugs

The veterinary drugs whose residues were identified in the present study were DMF
(N-2,4-Dimethylphenyl-formamide) and amitraz (total). Amitraz is used in apiaries against
parasitic mites Varroa destructor, which are carriers of pathogenic viruses such as Acute Bee
Paralysis Virus (ABPV) and Deformed Wing Virus (DWV) [32]. O’Neal et al. [33], however,
showed that Amitraz has certain limitations, because exposure to this compound can
adversely affect bees’ resistance to viral infections. Amitraz and its metabolites significantly
alter the heart rate of the honey bee, most likely through interactions with octopamine
receptors. A sublethal dose of amitraz can affect the detoxification, cyclic adenosine
monophosphate (cAMP)-dependent protein kinase, immunity, antioxidant capacity, and
the development of honeybee queens [34]. Amitraz is not a highly stable substance; in
addition to amitraz itself, products of its degradation may be found, such as DMPF (N-(2,4-
dimethylphenyl)-N′-methylformamide) and DMF (2,4-dimethylformanilide) [35].

3.2. Concentration of Metals

Honey is a plant and animal product that contains macro- and microelements as well
as heavy metals (Pb, Cd, Hg, Cu, and Zn). Their concentrations vary depending on regional
and environmental conditions, seasonal differences, and beekeeping and agricultural
techniques [36].

Mercury is considered to be the most toxic heavy metal in the environment [37]. In
the present study, the LOQ for Hg (5.0 µg/kg) was not exceeded in the honey. Brodziak-
Dopierała et al. [38] detected the presence of Hg in 32 honeys from different parts of
Poland (on average 0.37 µg/kg). The highest Hg content was noted in honeydew honey
(1.55 µg/kg) and the lowest in goldenrod honey (0.02 µg/kg). In honey from Romania, the
average Hg level was 0.908 µg/kg, ranging from 0.369 µg/kg to 2.154 µg/kg [14].

The level of elements in honey is associated with pollution in the area in which bees
fly around honey plants. According to EC Regulation 1881/2006 [39], honey (as a food
product) must meet the requirements for the maximum level of Pb (0.10 mg/kg). However,
no limit has been established for Cd [36]. Tomczyk et al. [40] tested levels of Cd and
Pb in successive links of the food chain (soil-plant-bee-honey) and showed that bees are
susceptible to their bioaccumulation but at the same time are a biological barrier preventing
the transfer of these elements to honey.

In the present study, the lowest Pb content was noted in honeydew honey
(0.044 mg/kg) and the highest in linden (0.080 mg/kg) and rapeseed (0.081 mg/kg) honey
(Figure 1). Due to the considerable variation in the Pb concentration in the honey samples,
the differences were not confirmed statistically. The acceptable Pb concentration was ex-
ceeded in four honey samples, including one sample of rapeseed honey (0.107 mg/kg), two
samples of linden honey (0.158 and 0.114 mg/kg), and one sample of multifloral honey
(0.191 mg/kg). Piven et al. [2] reported a higher Pb content in Ukrainian honey (from the
Odessa region), with the highest concentration noted in sunflower honey (0.24 mg/kg)
and the lowest in multifloral honey (0.13 mg/kg). According to the authors, the high Pb
level in honey was caused by the proximity of the apiaries to traffic routes. Aghamirlou
et al. [41] reported a Pb content of 0.45 mg/kg in multifloral honey from Iran. An excessive
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Pb content in honey poses a threat to people mainly due to its neurotoxic and nephrotoxic
effects [42].
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HD—honeydew; MF—multifloral).

The Cd content in the present study did not exceed the LOQ of 0.02 mg per kg of honey,
except for one sample of linden honey (0.0215 mg/kg). Piven et al. [2] reported Cd at a level
of 0.03 mg/kg in sunflower honey from the Odessa region (Ukraine). Aghamirlou et al. [41]
detected Cd at a level of 0.013 mg/kg in multifloral honey from Iran.

The Cu content in the honey was significantly influenced by the variety (p = 0.0013)
(Figure 2). The Cu content was significantly the highest in buckwheat honey (1.201 mg/kg)
and the lowest in rapeseed, linden, and multifloral honey (0.504–0.579 mg/kg).
Dżugan et al. [43], in an analysis of Polish varietal honeys from the Podkarpacie region
(southeastern Poland), showed a lower average Cu content in multifloral (0.21 mg/kg),
rapeseed (0.05 mg/kg), linden (0.20 mg/kg), and honeydew (0.03 mg/kg) honey, and the
highest Cu content in buckwheat honey (0.86 mg/kg), as in the present study.
Tarapatskyy et al. [44], in honey obtained in Pogórze Karpackie (southern Poland), reported
a Cu content similar to the levels found in the present study in multifloral (0.410 mg/kg),
linden (0.460 mg/kg), and honeydew (0.960 mg/kg) honey.

The honey variety did not affect the Zn level, although it was highest in buckwheat
honey (2.694 mg/kg) compared with the other varieties (0.657–1.500 mg/kg) (Figure 3).
Dżugan et al. [43] reported similar results for Zn in honey varieties, with the exception
of honeydew honey, in which the level was twice as high as in our study (2.33 mg/kg).
Similarly, in the study by Tarapatskyy et al. [44], the Zn level in honeydew honey from
Pogórze Karpackie (Poland) was twice as high as in the present study, while its content
in buckwheat honey was only a third as high. In general, the literature reports indicate a
considerable variation in the content of the elements analysed (macro- and microelements
and toxic metals) in European varietal honeys from Poland [21,45,46], Slovakia [44,47],
Romania [14], and Turkey [36,48]. The contamination of honey with toxic metals is mainly
associated with industry and agriculture [45]. Numerous studies supply valuable informa-
tion on the effect of the environment on the quality of honey produced in industrial areas.
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Honey obtained from industrialized areas or near major roads has been shown to have
higher concentrations of heavy metals.
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Bartha et al. [49] analysed the content of heavy metals (Pb, Cd, Zn, and Cu) in multi-
floral honey produced in an industrial area of Romania, considered to be one of the most
polluted regions of Eastern Europe (the town of Cops, a Mică and its vicinity). The spread of
pollutants emitted by the local industrial platform resulted from the topography of the area,
where the main air masses are directed towards the corridors of the rivers Târnava Mare
and Visa. Apiaries situated in the valley channeling pollutants from the industrial platform
were shown to be more susceptible to the bioaccumulation of Pb than those situated in side
valleys further from the source of pollution. The Cd concentration in the honey decreased
exponentially with an increasing distance between the apiary and the pollution source,
while the Cu concentrations increased linearly. The median for the elements was high:
Pb—1.49 mg/kg, Cd—2.20 mg/kg, Zn—20.40 mg/kg, and Cu—3.70 mg/kg. According to
Klym and Stadnytska [50], the content of heavy metals increased with the degree of the
impact of industry on the environment. The levels of Zn, Cu, Pb, and Cd were the highest
in honey from forested and steppe areas, lower in honey from foothills, and the lowest in
mountainous areas of the Carpathian region. Dobrzański et al. [51] found that the Pb limit
was exceeded in 75% of the samples of honey from apiaries located in a copper-producing
region but did not observe elevated levels of Cd. The honey in the present study contained
much lower levels of residues of these elements.

4. Conclusions

The presence of pesticide residues was detected in 90% of the analysed samples,
but the concentrations did not exceed acceptable residue levels (Regulation (EC) No
396/2005 of the European Parliament and of the Council [16]). The residues of 11 substances
were identified, including 5 insecticides (acetamiprid, thiacloprid, thiacloprid-amide, thi-
amethoxam, and dimethoate), 4 fungicides (carbendazim, azoxystrobin, tebuconazole, and
boscalid) and 2 pharmacologically active substances used in veterinary medicine (DMF
and total amitraz). The most frequently identified substances were thiacloprid, acetamiprid,
and carbendazim.

The analysis of heavy metals showed that the honey from apiaries located in southeast-
ern Poland is safe for human consumption. The levels of the toxic heavy metals mercury
and cadmium did not exceed the maximum level that is safe for human health. The average
lead content in the varietal honey also did not exceed the accepted limit of 0.10 mg/kg.
The concentrations of Zn and Cu did not deviate from those reported in the literature for
specific honey varieties.

To summarise the results of the research, the honey produced in southeastern Poland
was shown to be safe for human health and consumption. The quality control of honey
for the presence of chemical contaminants is crucial to the evaluation of the health safety
of the product.
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