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Abstract: The performances of three non-destructive sensors, based on different principles, bioelec-
trical impedance analysis (BIA), near-infrared spectroscopy (NIR) and time domain reflectometry
(TDR), were studied to discriminate between unfrozen and frozen-thawed fish. Bigeye tuna (Thunnus
obesus) was selected as a model to evaluate these technologies. The addition of water and additives
is usual in the fish industry, thus, in order to have a wide range of possible commercial conditions,
some samples were injected with different water solutions (based on different concentrations of
salt, polyphosphates and a protein hydrolysate solution). Three different models, based on par-
tial least squares discriminant analysis (PLS-DA), were developed for each technology. This is a
linear classification method that combines the properties of partial least squares (PLS) regression
with the classification power of a discriminant technique. The results obtained in the evaluation of
the test set were satisfactory for all the sensors, giving NIR the best performance (accuracy = 0.91,
error rate = 0.10). Nevertheless, the classification accomplished with BIA and TDR data resulted
also satisfactory and almost equally as good, with accuracies of 0.88 and 0.86 and error rates of 0.14
and 0.15, respectively. This work opens new possibilities to discriminate between unfrozen and
frozen-thawed fish samples with different non-destructive alternatives, regardless of whether or not
they have added water.

Keywords: chemometrics; water injection; fishery products; authenticity; sensors; defrosted; freezing;
quality control; consumer trust; labelling

1. Introduction

Freezing and frozen storage has been widely used by the fish industry for extending the
storage life of this perishable foodstuff. However, unfrozen seafood products are still highly
demanded in most countries [1], having usually higher market prices than frozen ones [2].
Due to its high price and because in most cases consumers are unlikely to perceive visually
the differences after thawing, unfrozen fish has been shown to be vulnerable to adulteration
and fraudulent mislabeling involving replacement by frozen-thawed products [3,4].
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The addition of water and additives in fish is also a common practice in the fish
industry, which could be used together with the freezing and frozen storage to improve the
quality of seafood products [5] and to avoid drip loss [6]. However, if the amount of added
water is less than the 5% of the weight of the product, it is not necessary to be indicated on
the label [7].

According to international regulations, frozen-thawed fish must be labelled as de-
frosted or previously frozen and must not be refrozen [7–9]. In addition, EU regulation
No 1276/2011 [10] claims that food business operators placing on the market fishery prod-
ucts intended to be consumed raw must ensure that the product undergoes a freezing
treatment, in order to kill parasites. For these reasons, there has been a need, within the
food industry and/or official control authorities, to control whether the products for sale
are really unfrozen or have been previously frozen and thawed [11]. However, accurate
determinations are very difficult because their chemical and physical characteristics are
very alike [12]. Official control reports of fraud are therefore scarce, and those available rely
on qualitative subjective evaluations (e.g., muscle consistency, eye opacity, etc.) or need
sophisticated laboratory equipment (e.g., for enzyme analysis, red blood cell analysis) [4].

Physical methods to discriminate between unfrozen and frozen-thawed fish are gaining
wide attention due to their advantages (rapidness, on-site detection, portability and high
accuracy) and have been the preferred method for the development of non-destructive anal-
ysis. The reported methods for this application were shown to be based mostly on magnetic
resonance imaging [13], hyperspectral imaging [14], electric resistance of tissues [15,16] and
spectroscopic techniques, such as electrical impedance [17], near- and mid-infrared [18,19],
Raman [20] and fluorescence spectroscopy [21]. However, it is possible that some samples
have added water and additives which are not claimed in the label. This could affect the
discrimination between unfrozen and frozen-thawed samples by non-destructive methods
if the technology selected for the detection is sensitive to changes in water content.

In this work, three technologies were studied to check their potentiality to differentiate
between unfrozen and frozen-thawed fish. They are rapid, portable, non-destructive, and
all of them have shown possibilities regarding the differentiation between unfrozen and
frozen-thawed fish. Bioelectric Impedance Analysis (BIA) is based on the measurement of
resistance (R), reactance (Xc) and phase angle (Pa) that are used to calculate the impedance
of a tissue when a low intensity electrical current is passing through it. Some studies have
determined that Xc and Pa exhibited differences between fresh and frozen fish, due to
changes caused by the freezing process, such as cell membrane damage which, upon thaw-
ing, can cause intracellular fluid leakage, with consequent increased conductivity [22]. Near
infrared spectroscopy (NIR) is a vibrational technique [23] which exploits the absorption of
the light wavelengths in the electromagnetic spectrum between 780 nm and 2500 nm [24].
An incident radiation interacts with the tissues and returns physic-chemical information
of the samples, in the form of a spectrum [25]. It has been used to differentiate between
fresh and frozen-thawed samples in different seafood products such as tuna [26] or horse
mackerel [27]. Finally, time domain reflectometry (TDR) is a methodology which probes
the dielectric properties (DPs) of the material under test in a broad frequency range by
measuring the voltage signal reflected by the sample as a function of time. Oscillating
electric fields in the range of microwaves affect the vibrational dynamics of polar molecules
such as water (the major constituent of food). Therefore, changes in the amount of water or
aggregation state in the muscle are expected to be detected by this technology [28,29].

The objective of this work was to study the performance of these three non-destructive
methods to differentiate between unfrozen and frozen-thawed tuna. To the authors’ knowl-
edge, this is the first time that these sensors are studied together for this objective also
considering the possibility that fish samples may have water and additives added, an im-
portant circumstance taking into account that BIA, NIR and TDR are technologies sensitive
to water changes [29–31].
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2. Materials and Methods
2.1. Sample Preparation
2.1.1. Tuna Processing

Eleven dorsal and ventral bigeye tuna loins (Thunnus obesus) were used to carry out the
experiment. Seven were purchased from a local supplier (Lisbon, Portugal) in July 2018 and
four in July 2019, both coming from the FAO 34 fishing area (near Madeira Island, Portugal).

Tuna loins were cut in portions of about 500 g, obtaining 120 samples. Fifty tuna
portions were randomly picked in 2018 and forty in 2019 and were manually injected with a
10% weight of five different water and additives solutions. The remaining 30 (10 from 2018
and 20 from 2019) were used as control. The water and additives solutions were as follows:
(A) 3% salt; (B) 3% salt + 3% polyphosphates; (C) 3% salt + 5% polyphosphates; (D) 3%
salt + 5% hydrolysate prepared at home from four-spot megrim Lepidorhombus boscii; and
(E) Pescamine 150 (commercial polyphosphates blend). Those additives, which are typically
used in fish industry practices, are commonly used to potentiate the water retention in the
samples [32].

After the injections, tuna samples were covered with clinging film to avoid dehydra-
tion, and they remained 3 h at 3 ± 1 ◦C for stabilization. Before the freezing and thawing
process, samples were vacuum packed.

2.1.2. Freezing and Thawing Process

The freezing process was performed for 40 h at −20 ◦C, with an average freezing
rate of 0.01 ◦C/min, so that the temperature in the center of the samples was −12 ± 1 ◦C.
The objective was to reproduce the conditions of a possible imperfect freezing procedure,
which is usually the case in seafood processors and restaurants. Afterwards, samples were
thawed at 3 ± 1 ◦C.

2.1.3. Additives and Reagents

The reagents used during the experiment, provided by Merck (Darmstadt, Germany),
were of analytical grade. Regarding the additives, the salt (NaCl) used to prepare the
solutions was of food grade. Pescamine 150 is a mixture of additives (E339, E450, E451, E452)
composed of various types of phosphates and sodium phosphates and was prepared accord-
ing to the manufacturer’s procedure (Vaessen-Schoemaker, Deventer, The Netherlands).

2.2. Destructive Analysis: Physicochemical Characterization

Physicochemical characterization consisted of the determination of moisture, protein
and fat contents in thawed samples (control and injected samples). Moisture was analyzed
also in unfrozen samples (control and injected). While protein and moisture were analyzed
in all the samples in duplicate, the fat content was determined only in 8 control samples
and in 4 injected samples per solution (20 samples in total), also in duplicate. Data were
expressed in all the cases in percentages.

Crude protein content was analyzed in a LECO FP-528 protein/nitrogen determinator
(LECO Corp, St. Joseph, MI, USA) by the Dumas combustion method [33], calibrating the
equipment with ethylene diamine tetraacetic acid. Moisture content was determined ac-
cording to the official gravimetric analysis [34]. Fat content was extracted with the Bligh and
Dyer method [35] and determined by difference of weight. For the extraction, 2 g of minced
tuna were homogenized in a Polytron homogenizer (10,000 rpm for 1 min) with methanol
(4 mL) and dichloromethane (2 mL). Afterwards, another 2 mL of dichloromethane and
2 mL of water were added and homogenized again in the same conditions. Following that
process, a centrifugation was performed (3000 rpm at 5 ◦C for 10 min). The organic phase
was collected, and a second extraction was performed. The recovered organic phases were
mixed and filtered with anhydrous sodium sulphate. The solvent was evaporated, leaving
only the fat.
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2.3. Data Acquisition

Data acquisition was adapted for each sensor, ensuring a homogeneous sampling with
all of them. All the samples (unfrozen and thawed) were kept in the refrigerator before the
analysis (3 ± 1 ◦C), so they were not influenced by temperature differences.

2.3.1. Bioelectrical Impedance Analysis (BIA)

R, Xc and Pa measures were directly obtained with a bioimpedance analyzer BIA
101 Anniversary (BIA from now on) from Akern SRL (Pontassieve, Italy). The BIA device
works by applying a high frequency (50 kHz) and very low amplitude (400 µA) electrical
current through all the samples. A tetrapolar electrode was transformed into a dipolar
electrode cable set by the manufacturer, which does not interfere with the results according
to their experience. Later, the electrode pair was fixed to a PVC plate to keep a constant
detector length distance (52 mm between the electrodes). Bioimpedance measurements
were performed by inserting the electrode pair in the center of the external side of the loin,
1 cm deep into each tuna sample.

For the data acquisition with BIA, one measurement was performed per sample.
All the unfrozen samples from both years (120) were measured before the injection with
the different solutions. After the injection (50 samples in 2018 and 40 samples in 2019),
measurements were performed again (Nunfrozen = 210). Afterwards, the freezing and
thawing process in all the 120 samples was carried out. A total of 30 samples from
2019 (10 non-injected and 20 injected) were used for another experiment, and the remain-
ing thawed samples were measured again (Nthawed = 90).

2.3.2. Near-Infrared Spectroscopy (NIR)

A MicroNIR OnSite (Viavi, Italy) was used for NIR experiments. It is a portable and
handheld device, working at a wavelength range from 900 to 1650 nm with a resolution of
6 nm. It has two integrated vacuum tungsten lamps and a 128-pixel InGaAs photodiode
array (spectral resolution of <1.225%). The sensor was configured so that each spectrum
was the average of 100 scans, using an integration time of 8.2 ms.

To determine NIR data, 8 scans at different points were acquired per sample, each scan
being used as an independent measurement in the classification model. Again, all the un-
frozen samples were measured before and after the injection (Nunfrozen = 1680 scans). After
the freezing and thawing process, the samples were scanned again (Nthawed = 720 scans).

2.3.3. Time Domain Reflectometry (TDR)

For TDR measurements, a patented smart system based on the principle of dielectric
spectroscopy, namely, the RFQ-Scan® (Radio Frequency Quality Scan) developed by Sequid
GmbH (Bremen, Germany), was used. The device generates a step-like voltage signal of
2.56 ns (total duration) with a rise time of approximately 100 ps. The signal propagates
through a coaxial cable till the open-end termination of the sensor where it interacts with
the sample. The reflected signal in time domain is finally visualized and recorded. In the
frequency domain, the signal is characterized by a broad bandwidth of approximately
5 GHz [36].

The acquisition was made as the average of 8 scans from different points per each
sample. A total of 120 unfrozen tuna samples were scanned (30 non-injected and 90 injected)
(Nunfrozen = 120) and 20 non-injected and 70 injected samples (Nthawed = 90) in thawed tuna.

A summary of the scans performed with each sensor is shown in Table 1.
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Table 1. Number of scans measured with BIA, NIR and RFQ-Scan® equipment.

Unfrozen Thawed

Non-Injected Injected Non-Injected Injected

BIA 120 90 20 70
NIR 960 720 160 560
TDR 30 90 20 70

BIA: bioelectrical impedance snalysis. NIR: near-infrared spectroscopy. TDR: time domain re-flectometry.

2.4. Data Analysis
2.4.1. Data Cleaning, Data Preprocessing and Principal Component Analysis (PCA)

The first step was to clean the data, that is, to eliminate samples with errors in the data
acquisition. Then, a PCA model was developed (Matlab 2013a and PLS_toolbox version
8.2.1, The Matworks, Natick, MA, USA) in order to explore the data from the 3 sensors.
Data were mean centered before the analysis.

After that, data from NIR and TDR were preprocessed with the objective of removing
the physical artifacts and to improve the classification models [37]. Several pre-processing
techniques were tested on data from both sensors: standard normal variate (SNV) with and
without detrend, first and second derivatives of Saviztky–Golay (using different windows
and polynomial orders) and combinations of all these techniques. After that, data were
either mean centered or autoscaled (both techniques were tried). On the contrary, in BIA
data, only mean center and autoscaling were tested before the creation of the models.

2.4.2. Comparison between Unfrozen and Frozen-Thawed Samples

With the aim of observing the water loss in the samples during the frozen-thawed
process, and to assure that samples still had added water once they were thawed, an
ANOVA analysis was performed between the moistures of unfrozen and thawed samples.
Afterwards, the moisture/protein ratio was calculated in control (non-injected) and in-
jected thawed samples, performing another ANOVA with the objective of studying these
differences. Both analyses were carried out using the software Statgraphics centurion XVI
(Statgraphics Technologies, Inc., The Plains, VA, USA).

2.4.3. Creation and Descriptive Statistics of Calibration and Validation Datasets

The Duplex Algorithm was used to create two datasets: one for calibration, with 80%
of the data, and another for validation, with the remaining 20%. For that purpose, data
from each sensor were standardized and orthonormalized, and the Euclidean distance
between all pairs of points were calculated. The two points which had the biggest distance
between them were assigned to the calibration set. In the remaining list, the next two points
with the biggest distance were assigned to the validation set. It continues until every point
was assigned in one set of samples [38].

The objective was to obtain two sets of balanced data for each technology (same
proportion of unfrozen and frozen thawed and non-injected and injected samples in each).
Furthermore, the aim of mixing samples from both years was to include information
concerning spectral variance related to fishing years in both sets of samples in order to
increase the robustness of the model. For that purpose, the algorithm was applied to the
data obtained with each sensor, obtaining a different calibration and validation dataset for
each technology (since the data acquisition was different in each case).

To ensure that calibration and validation datasets were well-balanced, a descriptive
statistics study of the physicochemical data from both sets of samples was performed. The
mean and typical deviation values were calculated, and after that, an ANOVA analysis was
carried out to evaluate the differences between both sets. The analyses were carried out
using the Statgraphics centurion XVI software.
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2.4.4. Classification Model Building

Classification models were developed using Matlab 2020b (The Matworks, Natick,
MA, USA) coupled with the Classification toolbox (version 5.4) developed by Milano
Chemometrics and QSAR Research group [39]. In this study, a model based on Partial
Least Squares Discriminant Analysis (PLS-DA) was developed for each sensor. This is a
linear classification method based on the PLS regression algorithm [40]. The Bayes theorem
was used to create a threshold at the point where the number of false positives and false
negatives is minimized [39].

The independent variable X corresponds with the data collected by the sensors, and Y
is the dependent categorical variable, a dummy matrix, where the Y value of each class of
tuna (unfrozen or frozen-thawed) is expressed in binary code (as 1 s and 0 s, depending on
the class of the tuna sample).

The calibration dataset was used to train the models. In order to select the optimal
number of latent variables (LV), which should give a low error with the lowest complexity,
and to cross-validate the models, a Venetian Blinds cross-validation (CV) with 5 CV groups
was performed. Finally, they were validated using the validation dataset.

The performance of the models was evaluated with several metrics: sensitivity, speci-
ficity and precision of each class. Sensitivity and specificity are symmetrical parameters
in two classes problems. The former describes the model ability to correctly recognize
samples belonging to one class while the latter describes the model ability to reject samples
of all other classes. Precision measures, in all the samples classified as one class, the fraction
that actually belongs to that class. In addition, the error rate (1 minus the arithmetic mean
of all class non-error rates) and accuracy (ratio of correct assignments) of each model were
computed [39,41].

3. Results
3.1. Differences between Unfrozen and Frozen-Thawed Samples

The unfrozen samples showed a significantly higher percentage of moisture (68.84 ± 3.32%)
than the frozen-thawed samples (63.80 ± 3.72%) (F = 51.28, p = 0.00), indicating a water
loss phenomenon during the freezing-thawing process. However, despite this water loss,
the moisture/protein ratio was statistically different between the control (2.71) and injected
samples (2.85) in thawed state (F = 42.32, p = 0.00), showing that added water was still
present in injected samples after they were frozen and thawed.

3.2. Descriptive Statistics of Calibration and Validation Samples

Since the calibration and validation datasets were different for each sensor (the duplex
algorithm was applied to the spectral data obtained with each device), the moisture, protein
and fat values of each dataset are different.

The mean value between the calibration and validation datasets, expressed in per-
centages, was very similar for moisture (65.49 ± 4.78 and 65.34 ± 4.93 in BIA; 65.54 ± 4.80
and 65.35 ± 4.69 in TDR; 65.61 ± 4.80 and 64.82 ± 4.64 in NIR, respectively) and protein
(23.10 ± 0.97 and 23.05 ± 0.99 in BIA; 23.14 ± 0.99 and 23.22 ± 1.03 in TDR; 23.13 ± 0.99 and
22.94 ± 0.88 in NIR, accordingly). Regarding the fat content, although the differences were
bigger (7.94 ± 5.31; 9.67 ± 5.81 in BIA; 8.73 ± 5.82 and 6.89 ± 4.34 in TDR; 8.13 ± 5.27 and
9.30 ± 5.49 in NIR, respectively) the ANOVA analysis shows that they were not statistically
significant.

3.3. Models Building

The results of the PLS-DA models elaborated for BIA, NIR and TDR are shown
in Tables 2–4. For each technology, the pre-processing that gave the best performance
was chosen.
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Table 2. BIA results.

Pre-Processing LV Error-Rate Accuracy Sensitivity Specificity Precision

Calibration
Unfrozen

Autoscaling 2

0.08 0.91
0.90 0.93 0.97

Thawed 0.93 0.90 0.81

CV
Unfrozen

0.10 0.90
0.90 0.90 0.95

Thawed 0.90 0.90 0.80

Validation
Unfrozen

0.14 0.88
0.91 0.81 0.93

Thawed 0.81 0.91 0.76

CV: cross-validation. LV: latent variables.

Table 3. NIR results.

Pre-Processing LV Error-Rate Accuracy Sensitivity Specificity Precision

Calibration
Unfrozen

1st derivative
(order 2, window
5) + Mean Center

9

0.08 0.94
0.96 0.88 0.95

Thawed 0.88 0.96 0.91

CV
Unfrozen

0.08 0.94
0.96 0.88 0.95

Thawed 0.88 0.96 0.90

Validation
Unfrozen

0.10 0.91
0.94 0.86 0.92

Thawed 0.86 0.94 0.89

Table 4. TDR results.

Pre-Processing LV Error-Rate Accuracy Sensitivity Specificity Precision

Calibration
Unfrozen

SNV + Mean
Center 8

0.04 0.96
0.97 0.96 0.97

Thawed 0.96 0.97 0.96

CV
Unfrozen

0.13 0.87
0.83 0.92 0.93

Thawed 0.92 0.83 0.81

Validation
Unfrozen

0.15 0.86
0.88 0.82 0.88

Thawed 0.82 0.88 0.82

Figure 1 shows the calculated response of the three models for the unfrozen class.
As it is a binary classification, samples that do not belong to unfrozen class are classified
as the other class (frozen-thawed). The threshold was calculated based on the Bayes
theorem, which assumes that the estimated values follow a normal distribution that can
be comparable to samples observed in the future [39]. The X-axis shows the number of
the sample, and the Y axis represents the probability that each sample has to belong to the
unfrozen class.

The PLS-DA classification models showed good performances in the validation data
set for the three technologies. In this case, NIR spectroscopy provided the best classification,
with an accuracy of 0.91. BIA and TDR outcomes resulted almost equally good, with an
accuracy of 0.88 and 0.86, respectively. In general, unfrozen samples had higher values of
sensitivity than frozen-thawed samples for BIA, NIR and TDR, respectively (0.91 vs. 0.81;
0.94 vs. 0.86; 0.88 vs. 0.82). The same happens with the precision (0.93 vs. 0.76, 0.92 vs. 0.89
and 0.88 vs. 0.82, accordingly).
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The most influential variables for each technology, using the loadings of the models,
as represented in Figures 2–4, appear to be:

• BIA (Figure 2a,b). Loadings of the first two LVs explain the higher amount of variance
(50.46% for latent variable 1 (LV1) and 17.06% for latent variable 2 (LV2)). The loadings
of these two LVs reveal that two variables have the higher influence in the model: Pa
and Xc.

• NIR (Figure 3). In this case, the LV that retains the higher amount of information
is LV2, with an 80.0% explained variance. In this case, an alternating positive and
negative pattern is found. Three positive groups of wavelengths are contributing to
the model at 980–1100 nm, 1200–1280 nm and 1460–1650 nm, with maximum peaks
at 1057 nm, 1224 nm and 1540 nm. The spectral ranges contributing with negative
signs are at 1100–1200 nm and 1280–1460 nm, with maximum peaks at 1143 nm and
1388 nm.
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• TDR (Figure 4). The loadings of the first LV explain 96.02% of the variance, showing a
relevant peak in the region between 0.61 ns and 1.17 ns and a maximum with negative
sign at 0.76 ns.
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4. Discussion
4.1. Changes during Frozen-Thawed Process

As it is known, the freezing process applied to fish causes the formation of ice crystals
within the muscle tissue. More in detail, when slow freezing rates are applied, large
extracellular ice crystals are created, which produces damage in the muscle proteins and
cell membranes. On the contrary, during the thawing process, the melting of the ice crystals
occurs. This process causes physical and chemical changes in the frozen products, affecting
their quality [42]. Generally, the freezing and thawing process contributes to a decrease
in the water holding capacity (WHC) of muscles due to the denaturation of the muscle
proteins. The empty spaces remaining after the ice crystal melting result in incomplete
restoration of the muscle tissues, increasing the drip loss and creating softer textures in
muscles, gaps and changes in taste and flavor [43,44].

The destructive analysis (Section 3.1) showed higher moisture in unfrozen than in
frozen-thawed samples, as expected due to the decrease in the water holding ability in the
frozen-thawed muscle [44]. These analyses also showed differences in the moisture/protein
ratio between the control and injected samples, indicating an actual water retention. How-
ever, these injections with water and additive solutions did not prevent differentiating
unfrozen from thawed samples with both destructive and non-destructive methods.

4.2. BIA

The results obtained with BIA are consistent with previous studies related with the
use of the technology in the freezing-thawing processes. Vidaček et al. [45] measured sea
bass samples subjected to different freezing methods and numbers of freezing cycles using
this technology. They found that electrical measurements have the potential to discriminate
between unfrozen and frozen-thawed samples. Cox [22] measured albacore tuna with BIA
before and after the freezing process, finding changes in the variables Xc and Pa between
fresh and thawed fish. However, apart from the previously mentioned works, more focused
on the freezing process, this is the first study to use BIA analysis to differentiate unfrozen
and frozen-thawed seafood.
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BIA measurements (specifically Xc) have also been used to control the integrity of the
membranes during the freezing process, showing that the sensor is sensitive to changes in
the cell membranes state. Furthermore, some authors have determined that, when freezing
at −20 ◦C, most of the cells would have been destroyed [22,46].

In this study, Figure 2 indicates that the variable Pa has the highest influence in the
LV1 and the variable Xc in the LV2. It is in accordance with the changes found by Cox [22]
and can be explained by the process of damage on the cell membranes that is described
in Section 4.1. The degradation of the membrane during the freezing process affects the
integrity of the cells, decreasing the WHC and inducing the drip loss, together with ions
that are lost or remain in the extracellular environment. The movement of ions and the
change in the extracellular salt concentration make the influence of the variable Xc and,
subsequently, the variable Pa higher than the variable R [45].

4.3. NIR

Several authors have related the spectral region between 900 and 1400 nm with
the vibrational modes of O–H and C–H bonds, which are related to the relaxation of
lipid structure and the release of exudates due to the rupture of cell walls and protein
denaturation occurring during thawing. This may explain the alternating behavior of
the loadings and suggests that the model is using the water/lipid balance between the
unfrozen and frozen-thawed samples [47].

On the one hand, the regions contributing to the PLS-DA model with positive values
in the loadings seem to be related to the O–H bonds, which might be giving information
of water in the fish muscle. The first region (Figure 3) is the one encompassed between
980 and 1100 nm. Sannia et al. [48] related the 960–980 nm region to the moisture content in
fish tissues. In our case, the spectral range might have suffered a small shift to the right due
to the electrolytes present in the solutions added to some samples, which may have caused
changes in the height, width and position of the water absorbance bands [49]. The peak
found at 1224 nm has been useful to predict both water and fat content in lamb meat [50].
The last region is found between 1460 and 1650 nm, with a peak at 1540 nm. The wavelength
range between 1400 and 1524 nm has been linked to an increase in free water species during
thawing [47,48]. However, other authors have related peaks at 1510 nm and 1690 nm with
N–H overtones (proteins) in minced beef, though it was difficult to distinguish them due to
their closeness to water absorption bands [51]. This overlapping may be explained due to
the physical changes that the tissues undergo during the freezing/thawing process. The
freezing process alters the capacity to bind water and water distribution [52], causing a
denaturation of myofibrillar proteins and decreasing their WHC [28], as it was explained
in Section 4.1. When the fish is thawed, the melting of ice crystals of both extracellular
water and the water no longer bound to the muscle denatured proteins are converted to
free water. On the other hand, peaks in the negative region of the loadings curve were
located at 1143 nm and 1388 nm and have been associated with lipids [26,47].

4.4. TDR

The results obtained with TDR are in accordance with those of other authors, which
showed the potential of this technology to measure seafood quality in relation to freezing
processes. Kent et al. [53] investigated the use of time domain reflectometry to differentiate
between once and twice frozen-thawed cod (Gadus morhua) and inclusively to predict
storage time of frozen cod. However, the distinction between fresh and frozen-thawed
samples was not addressed. Mendes et al. [54] observed a distinction in the dielectric
properties between fresh and frozen-thawed Octopus vulgaris, using the same equipment.
Nevertheless, the effect of water addition was not investigated simultaneously with the
freezing-thawing process.

In this study, the LV1 of the model (Figure 4) shows that the region between 0.61 ns
and 1.17 ns, with a peak at 0.76 ns, has the greatest contribution for the model, and so to
distinguish between unfrozen and thawed tuna samples. According to Fulladosa et al. [55],
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changes in the signal due to the water content of the sample are mainly expected to be found
on the rising edge of the step function, which is located in the region between 0.6 ns and
0.8 ns (Figure 5). This suggests that the sensor is sensitive to the water loss suffered during
the freezing-thawing process and that the model is using the water content differences to
classify between unfrozen and frozen-thawed samples.
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In a previous study with dry-cured hams, the freezing-thawing process (3 days at
−18 ◦C) caused an increase in the normalized reflected TDR signal due to the microstruc-
tural damages and the loss of water and ions [56]. This phenomenon also occurs between
unfrozen and frozen-thawed raw data in this experiment, although it is more evident above
1.2 ns (Figure 5). As stated by Fulladosa et al. [55], this region is related to changes in the
salt content, which would explain why this region, although presenting differences in the
raw data, does not have a big contribution in the model to discriminate between fresh and
frozen-thawed tuna.

5. Conclusions

The findings of this work highlighted the potential of three non-destructive sensors
(BIA, NIR and TDR) to discriminate between fresh and frozen-thawed tuna samples which
may or may not have added water, a situation that is possible to be found in the fish
industry and market. NIR performed the best classification, with an accuracy in the model
of 0.91 and an error rate of 0.10 during the validation stage. However, it must be stressed
that due to the characteristics of the sensor, more data were acquired and processed. The
BIA and TDR sensors also gave good results, giving accuracies of 0.88 and 0.86 and error
rates of 0.14 and 0.15, respectively.

This work opens new opportunities to the food industry and/or official control author-
ities to perform quality control in seafood in order to detect, in a rapid and non-destructive
way, whether fish fillets are really unfrozen or have been previously frozen and thawed.
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