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Abstract: Hop aroma characteristics originate from hop essential oils, which have complex chemical
profiles that remain poorly understood, particularly for New Zealand hops. The aim of this study
was to determine volatile compounds that distinguish New Zealand hop cultivars. Untargeted
fingerprinting methods based on headspace gas chromatography mass spectrometry (GC-MS) were
used to analyse nine hop cultivars. A total of 61 volatile compounds were identified as compounds
that differentiated the commercial hop varieties using advanced chemometrics and feature selection
techniques. Similarities in volatile composition were found between Wakatu, Wai-iti™ and Kohatu®,
which are rich in alcohols. Another grouping was found between Waimea™ and Nelson Sauvin™,
where ketones and esters were commonly found. Rakau™ was distinct from the other eight cultivars,
distinguished by 2-methylbutyl 3-methylbutanoate and methanethiol hexanoate. Riwaka™ contained
the greatest number of discriminating volatile compounds when compared to other cultivars, which
was dominated by terpenoids, such as geranyl 2-methylbutanoate, perillene and D-limonene. The
chemical fingerprinting approach successfully identified volatile compounds that had not been
previously found in New Zealand hop cultivars and that discriminated the commercial cultivars.
The data obtained in the present study further extend the knowledge of New Zealand hops and will
help facilitate targeted breeding.

Keywords: Humulus lupulus; New Zealand hops; volatile compounds; HS-SPME-GC-MS;
fingerprinting; chemometrics

1. Introduction

Hops (Humulus lupulus) are grown in moderate climates all around the world includ-
ing Europe, North America, Japan, Australia and New Zealand [1]. Hop plants belong
to the Canabinaceae family, which consist of Humulus and Cannabis genera. The Humulus
genera consists of two species, Humulus lupulus L. and Humulus japonicas [1]. Humulus
lupulus L. is what is commonly referred to as the hop plant, where Humulus japonicas is
only produced as an ornamental plant.

Hops, one of the four primary ingredients used to make beer, contribute bitterness
and aroma characteristics to beer. It is known that α-acids from hops are responsible for
beer’s bitterness and essential oils are responsible for the aroma characteristics [2]. Some of
the common odour-active volatile compounds in hops include terpenes, esters, ketones
and aldehydes [3]. Nevertheless, due to the complexity and quantity of aroma compounds,
it has been difficult in the past to determine which compounds are unique to different
hop cultivars [4]. With the recent increasing trend in craft beers, and drive for beers with
unique flavours, it is important to increase our understanding of the aroma compounds in
hops that contribute to these distinct flavour characters.
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Terpenes are organic compounds found in plants that are made up of a number of 5
carbon 2-methylbutane (isoprene) units [5]. Terpene derivatives can also be present with a
range of different functional groups, which change the odour character and activity [2,4].
Volatile esters are important flavour-active compounds in hops where certain cultivars
are classified according to their fruity characteristics [3]. Ketones have been described in
literature to have citrus and fruity notes [3].

The process of breeding hops is complex and time-consuming, and can take up to
20 years [6]. As the trend for craft beer increases, the demand for distinctly flavoured
hops has also increased. New Zealand has bred a number of distinctly flavoured hop
cultivars and currently aims to increase this number by breeding more cultivars that are
unlike those currently on the market [6]. Since the 1940s, when black root rot affected
hops, New Zealand has focused on a breeding programme that focused on breeding for
disease resistant and seedless hops. This led to New Zealand being the first country
to commercially produce seedless triploid cultivars [7]. Brewers prefer to use seedless
hops as hops with seeds can have negative effects on the brewing process [7]. The New
Zealand breeding programme begins with the parent hop plants being crossed to create
seedlings [6,8]. Selections are then made and measurements are taken, including chemical
analysis measuring the α and β acids and essential oils, sensory analysis and pilot brewing
trials [8]. If the hop plants are successful in these analyses, they will move onto grower
trials, where they are grown in different areas.

Brewing trials are also conducted to see how the hops perform in beer [8]. After these
stages successful hop cultivars will be commercialised and become available for use by
brewers. The New Zealand hop breeding programme has been very successful in creating
hops with distinct aroma characteristics. Although New Zealand has many distinct hop
cultivars, their chemical profiles are not well characterised. Although the profile of Nelson
Sauvin™ has been published [9,10], the majority of New Zealand hop cultivars are at best
poorly characterised. In this context, state-the-art chemical fingerprinting methods have a
huge potential to add to knowledge on the characteristic volatile compounds present in
these hops.

Fingerprinting is an untargeted analytical approach aiming to detect as many chemical
compounds as possible present in the particular food matrix [11,12]. Chemical fingerprint-
ing considers all compounds detected in the investigated food fraction, which will improve
the chance of novel discoveries in exploratory research [13]. Fingerprinting approaches
consist of several steps, in which the main ones are sample preparation, separation, detec-
tion and data analysis. It is important that along each of these steps volatile compounds
are not lost. Headspace methods ensure volatiles are not lost or degraded during sample
preparation as they are in a closed system [14]. Hence, in the present work, a headspace
solid phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS)
fingerprinting method was implemented to analyse the volatile fraction of hop cultivars.
As chemical fingerprinting generates a large data set, advanced chemometrics and feature
selection methods are used to classify the samples, determine patterns and trends and iden-
tify discriminant volatile compounds. By discovering which volatile aroma compounds
discriminate the different hop cultivars, hop breeders can use this information and methods
to help develop new unique cultivars. This will facilitate expansion of the hop industry,
reduce breeding time and costs and add value to the increasing craft beer industry.

Fingerprinting has been previously conducted to link chemical attributes to genetics
in hops grown in Australia [15]. This study was able to identify differences in chemical
compounds between the different hop cultivars using principal component analysis (PCA).
The present study differs from this study as further data analysis was conducted to identify
the specific compounds that are most different between hop cultivars by using partial
least squares regression and feature selection techniques. Fingerprinting has not yet been
conducted on New Zealand hops using such in depth data analysis, thus allowing the New
Zealand hop industry to identify the compounds that characterise their hops and extend
their knowledge for future hop breeding by providing chemical phenotype targets.
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The objective of this research was to determine which volatile compounds are char-
acteristic for different New Zealand hop cultivars using a chemical fingerprinting and
chemometrics approach to help facilitate the hop breeding programme in New Zealand.

2. Materials and Methods
2.1. Materials

Nine different commercially available New Zealand hop cultivars from the 2017 har-
vest (Nelson Sauvin™, Riwaka™, Motueka™, Wai-iti™, Waimea™, Kohatu®, Rakau™,
Wakatu and Taiheke®) were analysed. These cultivars were later compared to nine ad-
vanced selection cultivars (hops that are in the New Zealand breeding programme).

Hop characteristics can be altered by a number of factors including their environment,
harvest time and the way in which they are handled. To decrease the amount of variation
between samples, all hop samples were compressed, dried flower cones (kiln dried at
62–65 ◦C for 8 h to a target moisture content of 8%) grown in the same hop field at The New
Zealand Institute for Plant and Food Research Limited, Motueka, Nelson (41◦5′46.166′′ S,
172◦58′27.021′′ E). Samples were vacuum packed and couriered to the University of Otago
where they were stored (−20 ◦C) prior to analysis.

2.2. Sample Analysis

To mimic the brewing process, obtain a representative sample and ensure the SPME
fibre was not overloaded with volatile compounds, a hot water extract was prepared based
on literature [16,17] with slight modification. Dried hop cones were individually ground
(15 g) using liquid nitrogen (BOC gases, Auckland, NZ, USA) and a mortar and pestle.
Subsamples (1.25 g) of each ground hop powder were placed into three separate 250 mL
bottles (Schott Duran®, Mainz, Germany) that contained 250 mL milli Q water at 90 ◦C.
Each bottle containing the hop sample was placed in a 90 ◦C hot water bath for five minutes
before transferring the bottles into an ice water bath for one hour to cool, resulting in three
hop extracts for each of the different hop cultivars.

Each hop extract was run in duplicate to give six analytical measurements for each hop
cultivar. Hop extract (8 mL) was placed into a labelled vial containing the 2.5 g NaCl (BDH,
Poole, UK) and immediately sealed with a PTFE-lined lid [18]. Each vial was mixed using
a vortex mixer (Chiltern MT 17) for 30 s and stored frozen (−20 ◦C) until analysis. Water
blank vials were prepared by pipetting milli Q water (8 mL) into 13 × 20 mL headspace
vials containing 2.5 g analytical grade NaCl. Vials were stored frozen until analysis using
gas chromatography mass spectrometry (GC-MS).

Once defrosted, prepared vials were randomly ordered and placed in a holding
tray of the GC-MS instrument (Agilent Technologies 6890N with Agilent PAL3 RSI 85
Autosampler; Palo Alto, CA, USA). Water blank vials were run every 10 GC-MS analyses to
monitor any carryover. Each sample vial was incubated at 40 ◦C for 5 min with the agitator
turned on. The SPME fibre (divinylbenzene/carboxen/polydimethylsiloxane coated) was
exposed to the vial headspace for 30 min at 40 ◦C for extraction [18].

Extracted volatiles were desorbed in the GC inlet at 230 ◦C for 5 min (2 min splitless at
1 mL·min−1; followed by purge of 50 mL·min−1) with helium as the carrier gas. Separations
were conducted with a polar ZB Wax GC column (Phenomenex, Torrance, CA, USA; 60 m,
320 µm internal diameter, 0.5 µm film thickness). The carrier gas was helium using
constant flow mode (1 mL·min−1 flow rate). The oven program was set to have an initial
temperature of 50 ◦C with a hold of 5 min followed by an increase to 210 ◦C at 5 ◦C·min−1,
then increasing to a final temperature of 240 ◦C at 10 ◦C·min−1. The mass spectrometer
(Agilent Technologies 5975B VL MSD with triple axis detector) was set up with a mass
spectrum scanning range of 30–300 m/z. The MS ion source and MS quadrupole temperature
was set at 230 ◦C and 150 ◦C, respectively.
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2.3. Data Preprocessing and Multivariate Data Analysis (MVDA)

An automated mass spectral deconvolution and identification system (AMDIS, Na-
tional Institute of Standards and Technology (NIST), Version 2.72, 2014) was used to
deconvolute co-eluting peaks on the total ion chromatogram obtained with the HS-SPME-
GC-MS analysis. The deconvoluted spectrums obtained after AMDIS were analysed using
mass profiler professional (MPP) (Agilent Technologies, Version 14.9, 2017) to align the
peaks and filter and remove irregular and non-reproducible peaks. MPP produced a final
data table, which was used in the following multivariate data analysis techniques [11].

The multivariate data analysis (MVDA) was performed using Solo (Matlab Version
8.3.0.532, 2018, Eigenvector Research, Wenatchee, WA, USA). MVDA tools enable extraction
of relevant information out of the large data sets by reducing dimensionality of the data
and studying the correlation patterns. These multivariate techniques transform the large
number of original variables into just a few, manageable variables that can maximally
explain the variation in the data so that analytical information of importance is emphasized.

Principal component analysis (PCA) was run as an exploratory/unsupervised learning
tool to describe the data as no additional knowledge (e.g., Y variable) besides the raw data
(X variable) is required to describe the data set. This enabled the detection of outliers and
common groupings between samples and evaluation of the relationships between samples
and variables.

Partial least squares discriminant analysis (PLS-DA) was used to maximally describe
the separation between the sample classes in the multivariate space according to their
class membership. PLS-DA includes the available knowledge on a dependent response Y
variable to obtain a latent variable model that optimally describes the response variable.
Hence, PLS-DA is a supervised statistical technique. Results from the PLS-DA gave
visual representations via score and loadings plots for the interpretation of results. These
were combined into bi-plots, which graphically illustrated how samples relate to each
other (scores) and the importance of each variable to the separation (difference) between
classes (loadings). To select the optimal number of latent variables (LVs) to use, computer
generated cross-validation (venetian blinds) results were used. The risk of overfitting is
minimized by choosing LVs that explain the maximum variance within the data at the
minimum noise (root mean squared error; RMSE) based on the applied cross validation.

Discriminant compounds, which are compounds causing the separation/classification
among the hop cultivars, are determined using a feature selection method called variable
identification (VID) [11–13]. VID estimates the correlation coefficient between the volatiles
and hop cultivars. Volatile with a VID coefficient value higher than absolute value of 0.70
were selected and identified.

Compounds were tentatively identified using the National Institute of Standards and
Technology mass spectral library (NIST 14) with a match higher than 800 supported by
comparing retention indices to literature values. Linear retention indices were calculated
compared to elution of alkane series (C8-C20, Supelco, Bellefonte, PA, USA) injection
in hexane. To further confirm the identity of these differentiating compounds, selected
reference standards were injected using the same HS-SPME-GCMS method used for the hop
samples. Compounds that were injected for further confirmation included; 1-octanol (BDH,
Poole, England), γ-terpinene (Fluka, Buchs, Switzerland), β-caryophyllene (McCormick,
Hunt Valley, MD, USA), D-limonene, methyl nonanoate, geranyl acetate and linalool
(Sigma Aldrich, St Louis, MO, USA).

3. Results and Discussion

Nine commercially available and nine advanced selection hop cultivars were analyzed
from the 2017 New Zealand harvest. The optimized HS-SPME-GC-MS fingerprinting
approach enabled the detection of a wide range of volatile compounds across all of the
cultivars. Data analysis was first conducted on the nine commercially available cultivars
to identify differences between their volatile compound compositions (Section 3.1). This
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was then followed by a comparison of commercially available cultivars with advanced
selection cultivars (Section 3.2).

3.1. Commercial Hop Cultivars
3.1.1. Commercial Hop Cultivar Data Pre-Processing

Over 120 volatile compounds, which consisted of many terpenoids, esters, alcohols,
aldehydes and ketones, were detected across all hop cultivars. Figure 1 demonstrates a
total ion chromatogram produced from each of the nine cultivars with three abundant
compounds labeled. These exemplary chromatograms illustrate the range of volatile
compounds that were detected using the HS-SPME-GC-MS fingerprinting procedure as
well as the qualitative differences between volatile compounds across the cultivars.

Figure 1. Cont.
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Figure 1. Total ion chromatogram of the volatile fraction of the nine hop cultivars obtained by the HS-SPME-GC-MS
procedure. Chromatograms for cultivars; A = Riwaka, B = Rakau, C = Wai-iti, D = Nelson Sauvin, E = Wakatu, F = Kohatu,
G = Waimea, H = Motueka, I = Taiheke. Compounds identified; 1 = β-myrcene, 2 = linalool, 3 = caryophyllene.

Chromatograms illustrated that the method was reliable, volatiles were not overloaded
on the SPME fibre and there were both qualitative and quantitative differences in peaks
between cultivars. Although chromatograms appeared to have well defined peaks, co-
elution of compounds did occur and deconvolution of these was achieved using AMDIS.

As the objective of the current study was to determine which volatile compounds are
characteristic for different New Zealand hop cultivars, multivariate data analysis focused
more on determining compounds that distinguish each cultivar rather than reporting the
overall volatile composition. Thus, some of the more abundant peaks (e.g., β-myrcene
and linalool) seen in all the chromatograms will not be reported, as these are present in
relatively high amounts across all hop cultivars and thus do not discriminate.

3.1.2. Comparing the Volatile Fraction of Commercial Cultivars Using Multivariate Data
Analysis (MVDA)

Principal component analysis (PCA) and partial least squares discriminant analysis
(PLS-DA) were used to analyze the multivariate data obtained with the headspace finger-
printing method. PCA was used as an initial unsupervised technique to explore if there
were any outliers and to visualise groupings between the samples (Figure S1). Figure S1
shows a PCA bi-plot using the first two principal components. From the bi-plot, one outlier
(Nelson Sauvin, subsample 1) was identified, which was then removed from the data set.
Other than this outlier, reproducibility between sample replicates was reliable with only
slight variations.

PLS-DA modelling was applied to describe the separation between the nine differ-
ent commercial cultivars and select discriminant volatile compounds. For the PLS-DA
model, detected volatile compounds were used as X-variables and the hop cultivars were
considered as categorical Y-variables. Using venetian blinds cross-validation, 7 latent
variables (LV) were selected for the model explaining 82.81% of the cumulative Y-variance
(classification among the cultivars).

The PLS-DA bi-plot (Figure 2) is constructed using the first two highest LVs to show
the similarities and differences between the nine commercial hop cultivars. The first two
LVs of the PLS-DA model explain 39% of the X-variance (LV1 22%; LV2 17%) and 24%
of the Y-variance (LV1 12%; LV2 12%). The low variance explained by the first 2 LVs
indicate the high level of complexity within the data as a result of the number of cultivars
examined. The PLS-DA projections using the higher LVs were also examined (LV2 vs.
LV3 is illustrated in Figure S2), however LV1 and LV2 demonstrated the most variance
and clearest understanding of how cultivars differed. The closer hop cultivars are to each
other in the bi-plot, the more similarities they share in their volatile chemical profiles.
The two rings on the bi-plot (Figure 2) represent the correlation coefficients at 70% and
100%. Each hop cultivar (Y-variable) has a representative vector, which represents the
contribution to the correlation coefficients of LV1 and LV2. The unfilled circles represent
the volatile compounds.
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Figure 2. Partial least squares discriminant analysis (PLS-DA) bi-plot of nine commercial New
Zealand hop cultivars using the first two latent variables (LV). X- and Y-variance explained by each
LVs is also listed. Unfilled circles show the volatile compounds selected through gas chromatography
mass spectrometry (GC-MS). Solid shapes represent the analytical replicates of each cultivar. Vectors
represent contribution to the correlation coefficients for each cultivar. Rings represent correlation
coefficients at 70% and 100%.

Figure 2 illustrates that Riwaka™ is projected far to the left of the biplot and has a long
vector that expands past the first correlation coefficient ring. This demonstrates that it has
a lot of difference in its volatile chemical composition compared to the other eight cultivars.
Some of these compounds that separate the Riwaka™ cultivar from the others can be seen
by the unfilled circles that are also projected to the left of the bi-plot and positively on the
LV2 axis.

Rakau™ also has a large vector on Figure 2 that reached the 70% correlation coefficient
ring. Surrounding this cultivar in the bi-plot are also lots of volatile compounds, which
are likely to be present in higher amounts in the Rakau™ cultivar and is the reason why
Rakau™ is projected away from the other cultivars. Figure 2 shows that the Rakau™
cultivar is positively projected on both LV1 and LV2. LV1 is what is separating Rakau™
from Riwaka™, however they have similar LV2 projections.

Nelson Sauvin™ and Waimea™ are projected in the same direction on the bi-plot
(Figure 2) to Rakau™, however with a much shorter vector length. These two cultivars
could be similar in their volatile compounds on LV1 and LV2, which could be further
described by the volatile compounds surrounding them on the bi-plot. When examining
the cultivars on other LVs, it was found that Nelson Sauvin™ and Waimea™ were separated
from each other on LV3 (Figure S2).

Clusters of hop cultivars were seen in the lower right section of the bi-plot for Wakatu,
Wai-iti™ and Kohatu® cultivars. All three of these cultivars have a similar length vector
and are projected relatively close to each other on the bi-plot, suggesting similarities in
their volatile chemical compositions.

Further data analysis (feature selection) was conducted to classify what compounds
were responsible for the discrimination between the nine hop cultivars (Section 3.1.3).
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3.1.3. Selection and Interpretation of Discriminant Volatile Compounds in Commercial
Cultivars

A variable identification (VID) technique was used to select important volatile com-
pounds that differentiate the hop cultivars from each other [19]. These values correspond to
the correlation coefficient between each original X-variable and predicted Y-variable(s) by
the PLS-DA model. Variables with an absolute VID value higher than 0.70 were considered
important (discriminant compounds) and were identified using their mass spectra and
retention indices. The discriminant components selected for each commercial cultivar are
presented in Table 1. A positive VID coefficient indicates a higher detected amount of a
component in the corresponding hop cultivar and vice versa for negative VID coefficients.

Table 1. Discriminant volatile compounds, selected per hop cultivar based on the variable identification (VID) method.

Retention Index **

VID Tentative
Identification Calculated Reference Chemical

Class

Riwaka™

0.97 Neryl Propanoate 1815 1831 [20] Terpene Ester
0.96 Geranyl 2-methylbutyrate 1822 1819 NIST Terpene Ester
0.95 Unknown 2081
0.94 Perillene 1454 1431 [21] Terpene
0.88 β-Eudesmene 1752 1717 NIST Terpene
0.86 D-Limonene * 1211 1213 [20] Terpene
0.86 Unknown 1542 Unknown
0.83 Unknown 1513 Unknown
0.83 β-Phellandrene 1223 1201 [22] Terpene
0.79 α-Selinene 1757 1725 NIST Terpene
0.79 Methyl 6-methyl heptanoate 1370 1338 NIST Ester
0.79 cis-Chrysanthenol acetate 1648 1590 [23] Ester
0.79 Unknown 1798 Unknown
0.77 Ipsdienol 1700 1678 [24] Terpene Alcohol
0.75 cis-2-Menthenol 1600 1608 [25] Terpene Alcohol
0.73 Unknown 1407 Unknown
0.73 Neointermedeol 2156 2138 NIST Terpene Alcohol
0.72 γ-Terpinene * 1265 1246 NIST Terpene
0.71 β-Pinene 1098 1097 [22] Terpene
0.71 Caryophyllene oxide 1975 1989 NIST Terpene Oxide

Rakau™

0.93 2-Methylbutyl
3-methylbutanoate 1318 1299 [26] Ester

0.93 S-Methyl hexanethioate 1440 1412 NIST Ester
0.87 Unknown 1937 Unknown
0.84 cis-β-Ocimene 1270 1238 [27] Terpene
0.84 Propyl 2-methylpropanoate 1035 1056 NIST Ester
0.83 Methyl 4-decenoate 1674 1622 [28] Ester
0.80 Methyl nonanoate * 1480 1487 [28] Ester
0.79 2-Methylpropyl butanoate 1078 1094 [29] Ester

0.76 2-Methylbutyl
2-methylbutanoate 1301 1285 [29] Ester

0.74 Methyl decanoate 1627 1592 [28] Ester

0.73 2-Methylbutyl
2-methylpropanoate 1204 1199 [29] Ester

0.72 Unknown 1884 Unknown
0.71 Unknown 1289 Unknown

0.71 2-Methylpropyl
2-methylbutanoate 1180 1178 NIST Ester
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Table 1. Cont.

Retention Index **

VID Tentative
Identification Calculated Reference Chemical

Class

Wai-iti™

0.91 Cubenol 2029 2084 [30] Terpene Alcohol
0.86 Humulene-1,2-epoxide 2019 2071 NIST Terpene Oxide
0.84 Unknown 2172 Unknown
0.78 2-Nonanol 1548 1508 [28] Alcohol
0.76 β-Bisabolene 1748 1728 NIST Terpene
0.75 1-Octanol * 1586 1561 [31] Alcohol

Nelson Sauvin™

0.90 S-Methyl
3-methylbutanethioate 1242 1225 NIST Ester

0.86 2-Dodecanone 1686 1698 NIST Ketone
0.84 Unknown 1232 Unknown
0.80 Methyl 5-methylhexanoate 1258 1247 NIST Ester
0.76 Unknown 1795
0.72 n-Propyl-2-methylpropanoate 1035 1054 [32] Ester

Wakatu

0.97 β-Eudesmol 2143 2188 [33] Terpene Alcohol
0.93 2-Ethyl-1-hexanol 1519 1491 NIST Alcohol
0.93 γ-Elemene 1672 1625 [34] Terpene
0.91 Germacrene B 1846 1819 NIST Terpene
0.89 α-Eudesmol 2138 Terpene Alcohol

Kohatu®

0.86 Heptyl 2-methylpropanoate 1474 1433 [35] Ester
0.85 Unknown 1276 Unknown
0.76 Unknown 1567 Unknown
0.72 1-Heptanol 1486 1453 NIST Alcohol
0.71 1-Octanol * 1586 1561 [31] Alcohol

Waimea™

0.91 2-Undecanol 1732 1723 [36] Alcohol
−0.72 2-Undecanone 1589 1598 NIST Ketone

Motueka™

−0.71 γ-Muurolene 1719 1681 [31] Terpene
−0.77 Caryophyllene 1639 1595 NIST Terpene

Taiheke®

0.90 Geranyl acetate * 1770 1756 [31] Terpene Ester

VID: Variable Identification, Retention Index, ** both retention indices from literature and calculated by injecting a series of C8-C20 alkanes
injection, * Reference standard was used for identification confirmation. Compounds in ‘bold’ indicate those that were only identified
as VIDs for the one cultivar, these can be looked at as potential characterizing compound. NIST: National Institute of Standards and
Technology (https://webbook.nist.gov).

The VID technique is an effective method to determine volatile compounds that
distinguish the cultivars from each other. Across all of the commercial hop cultivars,
61 differentiating volatile compounds were selected.

Riwaka™ was separated from the other hop cultivars with the most distinct VOC
profile, as illustrated in the PLS bi-plot (Figure 2). This separation was further confirmed
by the 20 compounds found with a high VID, making it the commercial hop with the
most differentiating compounds. Of these 20 compounds, 15 were only identified as
discriminant compounds in Riwaka™ making these specific discriminant compounds for
the cultivar. It was evident that the majority of the selected compounds for Riwaka™

https://webbook.nist.gov
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were terpene derivatives (15 out of 20). The terpene hydrocarbon, β-phellandrene, was
one of the differentiating terpene compounds, which had a VID of 0.83. This compound
had been previously deemed as a discriminating odour compound in hops using GC-
olfactometry [37]. The study listed that the compound had an odour intensity of 35.5%
and was given odour descriptions such as ‘sulfury and catty’ [37]. Other differentiating
compounds were limonene (VID = 0.86), perillene (0.94), neointermedeol (0.95), and two
terpene esters, geranyl 2-methylbutyrate (0.96) and neryl propanoate (0.97). Figure 3
shows some of these differentiating compounds by concentration across all of the cultivars.
The bar graphs illustrate that the compounds have the highest concentration in Riwaka™
cultivar and, therefore, that is why they were selected as differentiating compounds.

Figure 3. Bar graphs of four discriminant compounds found in the Riwaka cultivar showing the compound abundance in
each of the hop cultivars measured (TIC × 106). Error bars represent standard deviation.

Rakau™ had the second highest amount of differentiating compounds (14), many
of which were branched chain esters, e.g., 2-methylbutyl 3-methylbutanoate (Figure 4).
Branched chain esters have been previously reported as odour-active compounds in hops
and beer [9]. These esters may be responsible for the fruity hop aromas that are present in
the Rakau™ hop cultivar [38].
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Figure 4. Bar graph of 2-methylbutyl 3-methylbutanoate showing the compound abundance in each
of the hop cultivars measured (TIC × 106). Error bars represent standard deviation.

The top three compounds of the six that differentiated Nelson Sauvin™ from the other
cultivars were s-methyl 3-methylbutanethioate (VID = 0.90), 2-dodecanone (VID = 0.86)
and an unknown compound (VID = 0.84). Figure 5 shows the concentrations of s-methyl 3-
methylbutanethioate and 2-dodecanone across the hop cultivars analysed. Nelson Sauvin™
is the most studied New Zealand hop cultivar due to its distinct white wine character that
are different to other hop cultivars [17]. Polyfunctional thiols have often been focused
on and a lot have been found in previous work studying Nelson Sauvin™ [9]. Although
this study did not specifically target thiols due to the SPME method applied, the six
differentiating compounds (Table 1) found in Nelson Sauvin™ add to the knowledge about
what compounds distinguish it from other New Zealand cultivars.

Figure 5. Bar graphs of discriminant compounds found in the Nelson Sauvin cultivar showing the compound abundance in
each of the hop cultivars measured (TIC × 106). Error bars represent standard deviation.

In the visual representation of commercial hop cultivars (Figure 2), Waimea™ was
very close to Nelson Sauvin™. When looking into the compounds selected (Table 1),
Waimea™ only had two compounds that differentiated it from the other cultivars, namely
2-undecanol (0.91) and 2-undecanone (−0.72), which was negatively correlated. Although
the two cultivars were very similar visually in Figure 2, they were discriminated on LV3
(Figure S2).

The clustering found between Kohatu®, Wakatu and Wai-iti™ (Figure 2) was sug-
gested to be primarily due to aliphatic and terpene-related alcohol compounds, such as;
1-heptanol, β-eudesmol and cubenol. Taiheke® was separated from this group by geranyl
acetate (VID = 0.90). The clustering found between these cultivars is consistent with these
cultivars sharing a common parent, Hallertauer Mittelfrüeh [6].
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In general, the HS-SPME-GC-MS fingerprinting technique enabled the selection of a
wide range of volatile compounds and identification of differentiating compounds in the
commercial hop cultivars.

3.2. Comparison of Volatile Fractions of Commercial Cultivars and Advanced Selections

The integrated fingerprinting and chemometrics procedure was applied to investigate
nine advanced hop selections (hop cultivars currently in the breeding programme), which
were grown and harvested from the same location as the commercial hop cultivars. This
data was combined with the commercially available hop cultivar data and analysed by
PCA (Figure 6).

Figure 6. Principal component analysis (PCA) scores plot illustrating the difference between commer-
cially available hop cultivars and advanced selections. Green squares = commercial hop cultivars, red
diamonds = advanced selection hop cultivars. Points represent replicate analysis (n = 6). Individual
hop cultivar samples are not identified on this figure due to confidentiality restrictions.

The PCA scores plot (Figure 6) shows a separation between the commercially available
(green squares) and the advanced selection (red diamonds) hop cultivars based upon the
volatile compounds detected in each hop cultivar. This separation suggests that some of
the advanced selections possess unique volatile compound profiles, which may give rise to
distinct flavours compared to NZ hop cultivars already on the market.

An overlap of two advanced selection cultivars and commercial cultivars can also be
seen in the PCA scores plot, which illustrates a similarity in volatile chemical compounds
between some of the cultivars. Similar patterns in volatile compounds could indicate
where a new hop variety could substitute an existing commercial cultivar with a similar
volatile profile. The overlap of advanced selection and commercial cultivars in Figure 6
relates to the parentage, which can be traced back to the Pacific Jade and Pacific Sunrise
cultivars (Beatson, personal communication). The similarities of these cultivars can be
further related back to their parentage cultivar, First Choice, which was a New Zealand
hop that is no longer commercially available.
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This information indicates that hop breeders in New Zealand are producing new
hop cultivars that are different to the current commercial NZ cultivars in this study. Hop
breeders can use this analytical approach to screen new cultivars in a targeted breeding
scheme and the knowledge gained will guide the breeders to produce more hop cultivars
with more distinct flavours in the future.

4. Conclusions

By using an untargeted chemical fingerprinting and chemometrics approach, this
study was able to identify compounds in New Zealand hops that make them distinct
from one another. PLS-DA highlighted similarities and differences between New Zealand
commercial cultivars based upon the volatile compounds present in each cultivar. Riwaka™
was the most distinct cultivar with the highest number of compounds that differentiated it
from the other hop cultivars, indicating this cultivar had more compounds that possessed
the highest concentrations compared to the other hop cultivars in the study.

Similar volatile compound concentrations resulting in clustering of hop cultivars
corresponded to hop cultivars with common parentage. This indicates the potential for
further investigating genetic markers to understand the differences in the volatile com-
pound concentrations as the phenotypic expression for each hop cultivar. This could
further enable tools for targeted breeding of hop cultivars targeting specific compounds or
chemical phenotypes.

Findings from this study should help New Zealand hop breeders understand more
about how their hops (both commercial cultivars and advanced selections) differ from each
other based on their volatile composition. The results illustrate the difference between
commercially available and advanced selections, showing that the advanced selections are
quantitatively different, which supports the aim of breeding distinct hop cultivars. New
Zealand hop breeders in the future will be able to use this information to implement a
systematic targeted breeding approach. This analytical approach could also be applied to
improve the understanding of and facilitate targeted breeding of other crops to achieve
specific phenotypic outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-815
8/10/2/414/s1, Figure S1: Principal Component Analysis bi-plot of PC1 vs. PC2 for the 9 commercial
hop cultivars, Figure S2, Partial Least Squares Discriminant Analysis showing latent variable 2 vs.
latent variable 3.

Author Contributions: Conceptualization, G.T.E., B.K., P.S., R.B.; methodology, V.P., G.T.E. and B.K.;
software, V.P. and B.K.; formal analysis, V.P., B.K.; resources, R.B., K.T.; data curation, V.P., B.K.;
writing—original draft preparation, V.P.; writing—review and editing, V.P., B.K., G.T.E. and P.S.;
supervision, G.T.E., B.K. and P.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to confidentiality.

Acknowledgments: The authors thank Plant and Food Research Limited for providing the hop
samples and background breeding information on the hops grown in New Zealand. Thanks to the
University of Otago Doctoral Scholarship (V.P.). Special thanks to Michelle Leus for guidance in
the laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Verzele, M.; Keukeleire, D. Chemistry and Analysis of Hop and Beer Bitter Acids; Elsevier Science: Amsterdam, The Netherlands,

1991; Volume 27.
2. Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst.

Brew. 2014, 120, 289–314. [CrossRef]

https://www.mdpi.com/2304-8158/10/2/414/s1
https://www.mdpi.com/2304-8158/10/2/414/s1
http://doi.org/10.1002/jib.160


Foods 2021, 10, 414 14 of 15

3. Van Opstaele, F.; De Causmaecker, B.; Aerts, G.; De Cooman, L. Characterization of novel varietal floral hop aromas by headspace
solid phase microextraction and gas chromatography-mass spectrometry/olfactometry. J. Agric. Food Chem. 2012, 60, 12270–12281.
[CrossRef]

4. Eyres, G.; Dufour, J.-P. Hop essential oil: Analysis, chemical composition and odor characteristics. In Beer in Health and Disease
Prevention; Elsevier BV: Amsterdam, The Netherlands, 2009; pp. 239–254.

5. Breitmaier, E. Terpenes: Importance, General Structure, and Biosynthesis; Wiley: Weinheim, Germany, 2007; pp. 1–9.
6. Beatson, R.; Alspach, P.; Donelan, D. Developments in the New Zealand hop breeding programme. In Proceedings of the 32nd

Convention of the Institute of Brewing and Distilling - Asia Pacific Section, Melbourne, Australia, 25–30 March 2012.
7. Beatson, R.; Alspach, P.; Stephens, M.; Buck, E.; Datson, P.; Ferguson, A. Breeding polyploid hop cultivars for New Zealand

conditions. Acta Hortic. 2016, 1127, 9–14. [CrossRef]
8. Beatson, R.; Stephens, M.; Alspach, P. Polyploid breeding strategies for developing hop cultivars in New Zealand. Acta Hortic.

2019, 105–112. [CrossRef]
9. Gros, J.; Nizet, S.; Collin, S. Occurrence of odorant polyfunctional thiols in the Super Alpha tomahawk hop cultivar. Comparison

with the Thiol-rich Nelson Sauvin bitter variety. J. Agric. Food Chem. 2011, 59, 8853–8865. [CrossRef]
10. Beatson, R.; Ansell, K.A.; Graham, L.T. Breeding, development, and characteristics of the hop (Humulus lupulus) cultivar ‘Nelson

Sauvin’. N. Zldn. J. Crop. Hortic. Sci. 2003, 31, 303–309. [CrossRef]
11. Arcena, M.R.; Kebede, B.; Leong, S.Y.; Silcock, P.; Oey, I. Feasibility of using integrated fingerprinting, profiling and chemometrics

approach to understand (bio) chemical changes throughout commercial red winemaking: A case study on Merlot. Food Res. Int.
2020, 127, 108767. [CrossRef]

12. Kebede, B.; Grauwet, T.; Mutsokoti, L.; Palmers, S.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Comparing the impact of high
pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Res.
Int. 2014, 56, 218–225. [CrossRef]

13. Kebede, B.T.; Grauwet, T.; Palmers, S.; Vervoort, L.; Carle, R.; Hendrickx, M.; Van Loey, A. Effect of high pressure high temperature
processing on the volatile fraction of differently coloured carrots. Food Chem. 2014, 153, 340–352. [CrossRef]

14. Plutowska, B.; Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of
alcoholic beverages—A review. Food Chem. 2008, 107, 449–463. [CrossRef]

15. Yan, D.; Wong, Y.F.; Tedone, L.; Shellie, R.A.; Marriott, P.J.; Whittock, S.P.; Koutoulis, A. Chemotyping of new hop (Humulus
lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight
mass spectrometry. J. Chromatogr. A 2018, 1536, 110–121. [CrossRef]

16. Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of hop-derived monoterpene
alcohols by lager yeast and their contribution to the flavor of hopped beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [CrossRef]

17. Takoi, K.; Degueil, M.; Shinkaruk, S.; Thibon, C.; Maeda, K.; Ito, K.; Bennetau, B.; Dubourdieu, D.; Tominaga, T. Identification and
characteristics of new volatile thiols derived from the hop (Humulus lupulus L.) Cultivar Nelson Sauvin. J. Agric. Food Chem. 2009,
57, 2493–2502. [CrossRef]

18. Richter, T.M.; Eyres, G.T.; Silcock, P.; Bremer, P.J. Comparison of four extraction methods for analysis of volatile hop-derived
aroma compounds in beer. J. Sep. Sci. 2017, 40, 4366–4376. [CrossRef]

19. Vervoort, L.; Grauwet, T.; Kebede, B.; Van Der Plancken, I.; Timmermans, R.; Hendrickx, M.; Van Loey, A. Headspace finger-
printing as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice
pasteurisation. Food Chem. 2012, 134, 2303–2312. [CrossRef]

20. Gauvin, A.; LeComte, H.; Smadja, J. Comparative investigations of the essential oils of two scented geranium (Pelargonium spp.)
cultivars grown on Reunion Island. Flavour Fragr. J. 2004, 19, 455–460. [CrossRef]

21. Njoroge, S.M.; Koaze, H.; Karanja, P.N.; Sawamura, M. Volatile constituents of redblush grapefruit (Citrus paradisi) and pummelo
(Citrus grandis) peel essential oils from Kenya. J. Agric. Food Chem. 2005, 53, 9790–9794. [CrossRef]

22. Umano, K.; Shibamoto, T. New method of headspace sampling: Grapefruit volatiles. In Developments in Food Science; Lawrence,
B.M., Mookherjee, B.D., Willis, B.J., Eds.; Elsevier: New York, NY, USA, 1988; Volume 18, pp. 981–998.

23. Vernin, G.; Merad, L.O. Mass spectra and Kovats indices of some new cis-chrysanthenyl esters found in the essential oil of
Artemisia herba alba from Algeria. J. Essent. Oil Res. 1994, 6, 437–448. [CrossRef]

24. Viljoen, A.; Subramoney, S.; Van Vuuren, S.; Baser, K.H.C.; Demirci, B. The composition, geographical variation and antimicrobial
activity of Lippia javanica (Verbenaceae) leaf essential oils. J. Ethnopharmacol. 2005, 96, 271–277. [CrossRef]

25. Avato, P.; Raffo, F.; Al-Douri, N.; Vartanian, S.T. Essential oils of Varthemia iphionoides from Jordan. Flavour Fragr. J. 2004, 19,
559–561. [CrossRef]
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