Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Spanish Olive Fruits

Mar á del Pilar Fern ández-Poyatos, Eulogio J. Llorent-Mart nez and Antonio Ruiz-Medina*

Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain

*Correspondence: anruiz@ujaen.es; Tel.: +34 953 212759

Supplementary Material

Chromatographic Conditions

Chromatographic conditions are based on previous work by our research group [1]. In these analyses, 5 mg of DE were re-dissolved in 1 mL of MeOH:H₂O (80:20; v:v), filtered through 0.45 μ m filters, and 10 μ L of sample was analyzed. The HPLC system was an Agilent Series 1100, composed of a vacuum degasser, an autosampler, a binary pump and a G1315B diode array detector (Agilent Technologies; Santa Clara, CA, USA). We used a reversed phase Luna Omega Polar C18 analytical column of 150 x 3.0 mm and 5 μ m particle size (Phenomenex; Torrance, CA, USA) and a Polar C18 Security Guard cartridge (Phenomenex) of 4 x 3.0 mm. The best separation was achieved with a mobile phase of H₂O:HCOOH (100:0.1, v/v) and CH₃CN. The following program was used: a) initial mobile phase, 10% CH₃CN; b) linear increase from 10% to 25% CH₃CN (0-25 min); c) 25% CH₃CN (25-30 min); d) linear increase from 25% to 50% CH₃CN (30-40 min); e) linear increase from 50% to 100% CH₃CN (40-42 min); f) 100% CH₃CN (42-47 min). Then, CH₃CN percentage was returned to the initial mobile phase, with a 7 min stabilization time. The flow rate was 0.4 ml min⁻¹.

The HPLC system was connected to an ion trap mass spectrometer (Esquire 6000, Bruker Daltonics, Billerica, MA, USA) equipped with an electrospray interface. The scan range was at m/z 100–1200 with a speed of 13,000 Da/s. The ESI conditions were: drying gas (N₂) flow rate and temperature, 10 L/min and 365 °C, respectively; nebulizer gas (N₂) pressure, 50 psi; capillary voltage, 4500 V; capillary exit voltage, -117.3 V. We used the auto MSⁿ mode for the acquisition of MSⁿ data, with isolation width of 4.0 m/z, and fragmentation amplitude of 0.6 V (MSⁿ up to MS⁴). The negative ion mode was used in all cases.

Calibration curves for hydroxytyrosol, luteolin, oleuropein, oleoside-11-methylester, rutin and verbascoside were prepared in the range of $0.5-100 \ \mu g \ mL^{-1}$. Chromatograms were recorded at 240, 280 and 350 nm for secoiridoids, hydroxytyrosol and luteolin, respectively. For oleoside-11-methylester, oleuropein, rutin and verbascoside, the instrument was operated in product ion scan

MS/MS mode with MS/MS transitions $403 \rightarrow 223$, $539 \rightarrow 377$, $609 \rightarrow 301$ and $623 \rightarrow 461$, respectively, and voltage amplitudes between 0.4 and 0.7 V.

ICP-MS Characteristics

ICP-MS conditions are based on previous work by our research group [1]. An Agilent 7900 (Agilent Technologies, CA, USA) equipped with a Peltier-cooled quartz spray chamber (Scott type), a quartz torch (2.5 mm i.d.), a low flow concentric nebulizer (0.2 mL/min) and high efficiency "MicroMist", were used. The instrument is equipped with a discrete sampling system (ISIS3), an autosampler (SPS4), a sample introduction system (UHMI), ion lenses off-axis, a high-frequency quadrupole (3 MHz), a radiofrequency generator (27 MHz), an octopolar collision-reaction cell (ORS system), and a secondary electron multiplier detector. The following solutions were also used: 100 μg mL⁻¹ multi-element standard (SCP Science, Paris, France), 1000 μg mL⁻¹ P solution (Sigma-Aldrich), 1000 μg mL⁻¹ Sn (High-Purity Standards, Charleston, SC, USA) and an internal standard kit (Sc, Ge, Rh and Ir) from ISC Science (Oviedo, Spain).

We studied the inorganic content of Cornezuelo, Cornicabra and Picual olives by ICP-MS. For the validation of the method, we carried out recovery studies of the sample "Cornicabra 1st HD", spiked at different concentrations, as well as the analysis of a certified reference material (cranberry SRM 3281). Recovery studies were performed for all the analyzed elements, observing recovery yields between 91% and 116%, with standard deviations lower than 8%. The results obtained in the analysis of the certified reference material was also satisfactory; the student's t statistical test (p=0.05) was performed, observing no significant differences between the certified and obtained values. These results, ICP-MS operating conditions and the method detection limits of each element are shown in the following Tables (S1 to S3) and Figure S1.

Reference

 Fern ández-Poyatos, M.D.P.; Ruiz-Medina, A.; Llorent-Mart nez, E.J. Phytochemical profile and mineral content of Royal variety olive fruits. Influence of the ripening stage. *J. Food Compos. Anal.* 2021, 95, 103671, doi:10.1016/j.jfca.2020.103671.

Plasma conditions: Tune Parameters				
RF Power	1550 W			
RF Matching	1.80 V			
Sample Depth	10.0 mm			
Nebulizer Gas	0.99 L/min			
Gas Switch	Makeup Gas			
Makeup/Dilution Gas	0.00 L/min			
Option Gas	0.0 %			
Nebulizer Pump	0.10 rps			
S/C Temp	2 °C			
Plasma Gas	15.0 L/min			
Auxiliary Gas	0.90 L/min			
Torch conditions: Hardware Settings				
Torch H 0.1 mm				
Torch V	0.2 mm			

 Table S1. ICP-MS operating conditions.

Element	Certified value ^a (mg kg ⁻¹)	Observed value ^b (mg kg ⁻¹)	t _{calc} c
Ca	528 ± 7	503 ± 10	3.01
Cu	3.52 ± 0.09	3.36 ± 0.05	2.65
Fe	$27.7\ \pm 0.7$	25.6 ± 0.9	2.74
Mg	446 ±4	453 ±5	1.63
Mn	$21.9\ \pm 0.2$	21.8 ± 0.3	0.40
Р	$835\ \pm 17$	833 ±18	0.12
K	8020 ± 130	$7950\ \pm 160$	0.51
Na	259 ±3	264 ±5	1.24
Zn	6.9 ± 0.2	$6.5\ \pm 0.1$	3.10

Table S2. Analysis of the cranberry certified reference material (NIST-3281).

^an=2; ^bn=3; ^cp=0.05, t_{Student} (theoretical value)=3.182.

Results are given as mean \pm standard deviation (n=2 in certified values; n=3 in observed values).

Element	$MDL (\mu g g^{-1})$	Element	MDL ($\mu g g^{-1}$)	
Ag	1.7	Mn	0.032	
Al	0.82	Mo	0.004	
As	0.002	Na	0.8	
Ba	0.007	Ni	0.012	
Ca	6.2	Р	1.35	
Cd	0.002	Pb	0.01	
Co	0.006	Sb	0.004	
Cr	0.02	Se	0.32	
Cu	0.08	Sn	0.06	
Fe	0.5	Ti	0.018	
K	5	V	0.004	
Mg	0.04	Zn	0.2	

Table S3. Method detection limits for the analyzed elements in ICP-MS.

Power level (W)	Power (%)	Ramp time (min)	Temperature (°C)	Hold time (\mathfrak{C})
1600	100	5	100	7
1600	100	5	125	7
1600	100	5	150	7

 Table S4. Digestion procedure conditions.

Variety	Season	Humidity (%)				
Variety	Season	1 st HD	2 nd HD	3 rd HD	4 th HD	
Cornezuelo	2017/2018	-	56	46	42	
	2018/2019	60	58	44	38	
Cornicabra	2017/2018	-	65	46	49	
	2018/2019	68	59	54	29	
Picual	2017/2018	-	67	49	48	
	2018/2019	64	56	39	36	

Table S5. Humidity percentages of all the olive samples analyzed.

Cornezuelo 2017/2018 2018/2019 2nd HD 3rd HD 4th HD 1st HD 2nd HD 3rd HD 4th HD Element 0.26 ± 0.01^{a} $0.231\,\pm 0.009^{b}$ 0.241 ± 0.004^{ab} $0.113\,\pm 0.001^{a}$ 0.101 ± 0.005^{a} 0.10 ± 0.01^{a} 0.108 ± 0.001^{a} As Ba 0.27 ± 0.03^{a} 0.24 ± 0.03^{a} 0.25 ± 0.03^{a} ---Ca 370 ± 40^{b} 620 ± 60^{a} 590 ± 50^{a} 260 ± 20^{b} 350 ± 30^{b} 690 ± 70^{a} 260 ± 30^{b} $\mathbf{C}\mathbf{d}$ 0.150 ± 0.003^{ab} 0.160 ± 0.006^{a} 0.145 ± 0.007^{b} 0.010 ± 0.001 0.009 ± 0.001 Detected* Detected* Cu 1.68 ± 0.17^{ab} 1.4 ± 0.2^{b} 2.0 ± 0.3^{a} $1.67 \pm 0.01^{\circ}$ 3.2 ± 0.1^{b} $1.9 \pm 0.2^{\circ}$ 3.9 ± 0.4^{a} Fe Detected* 10.0 ± 0.1 Detected* Detected* -Detected* Detected* Κ 4600 ± 400^{a} 5700 ± 400^{a} 5100 ± 600^{a} 5400 ± 300^{b} 5400 ± 100^{b} 7400 ± 100^{a} 7600 ± 200^{a} Mg 180 ± 10^{a} 132 ± 7^{b} 130 ± 20^{b} 165.8 ± 0.3^{b} 210 ± 7^{a} 210 ± 20^{a} 150 ± 10^{b} Mn 1.86 ± 0.06^{a} 1.6 ± 0.2^{ab} 1.3 ± 0.1^{b} $1.510\,\pm 0.003^{ab}$ 1.7 ± 0.2^{ab} 1.8 ± 0.2^{a} 1.4 ± 0.1^{b} Mo $0.139\,\pm 0.005^a$ 0.122 ± 0.003^{b} 0.127 ± 0.006^{ab} ----Na 5.1 ± 0.6 Detected* Detected* Detected* _ Ni Detected* 0.046 ± 0.002^{b} $0.058\,\pm 0.006^{a}$ Detected* $0.051\,\pm 0.005^{ab}$ -_ Р 410 ± 40^{a} 330 ± 40^{a} 410 ± 20^{b} 460 ± 40^{b} 450 ± 10^{b} 600 ± 40^{a} 430 ± 50^{a} Sb 0.073 ± 0.004^{b} 0.075 ± 0.002^{b} 0.078 ± 0.001^{b} $0.089\,\pm 0.004^a$ 0.071 ± 0.005^{b} 0.074 ± 0.001^{b} 0.088 ± 0.001^{a} Sn Detected* Detected* Detected* ---_ Zn 3.7 ± 0.3^a 3.6 ± 0.4^{a} 2.8 ± 0.2^{b} 2.5 ± 0.1^{b} 3.2 ± 0.3^{a} 2.48 ± 0.07^{b} 2.5 ± 0.2^{b}

Table S6. Average concentration levels of minerals and trace elements in the analyzed Cornezuelo olives in different months of two seasons:

expressed in $\mu g g^{-1}$ fresh weight. Results are given as mean \pm standard deviation (n=3).

*Concentrations between detection and quantitation limits.

Different superscripts (^a, ^b and ^c) indicate significant differences in the extracts (p<0.05).

Cornicabra		2017/2018		2018/2019			
Element	2 nd HD	3 rd HD	4 th HD	1 st HD	2 nd HD	3 rd HD	4 th HD
As	0.248 ± 0.005^a	0.255 ± 0.007^{a}	0.224 ± 0.009^{b}	0.096 ± 0.003^{a}	$0.095\pm 0.005^{\rm a}$	0.096 ± 0.002^{a}	0.103 ± 0.007^{a}
Ba	0.94 ± 0.08^{a}	0.874 ± 0.007^{a}	0.95 ± 0.09^{a}	0.80 ± 0.08^{a}	0.56 ± 0.06^{b}	0.60 ± 0.01^{b}	0.83 ± 0.06^{a}
Ca	980 ± 90^{a}	$590\ \pm 30^{b}$	930 ± 30^{a}	810 ± 90^{a}	$440\ \pm 60^{c}$	627 ± 9^{b}	800 ± 60^a
Cd	$0.154\pm 0.003^{\rm a}$	0.157 ± 0.004^{a}	0.138 ± 0.005^{b}	0.080 ± 0.002^{a}	0.081 ± 0.004^{a}	0.081 ± 0.006^{a}	0.083 ± 0.005^{a}
Cu	$1.7\pm 0.2^{\rm b}$	3.3 ± 0.1^{a}	1.47 ± 0.07^{b}	4.6 ± 0.4^{bc}	5.68 ± 0.04^{ab}	6.7 ± 0.8^{a}	$4.1 \pm 0.1^{\circ}$
Fe	Detected*	Detected*	Detected*	3.7 ± 0.4^{b}	$2.6 \pm 0.3^{\circ}$	$2.5 \pm 0.3^{\circ}$	4.9 ± 0.6^{a}
Κ	$7000 \pm 400^{\circ}$	11400 ± 300^{a}	8800 ± 700^{b}	$7200 \pm 200^{\circ}$	9000 ± 1000^{b}	7800 ± 400^{bc}	10800 ± 300^{a}
Mg	132 ± 5^{b}	209 ± 2^{a}	126 ± 8^{b}	200 ± 40^{a}	170 ± 10^{a}	160 ± 20^{a}	202 ± 4^{a}
Mn	1.42 ± 0.03^{b}	2.30 ± 0.04^{a}	1.7 ± 0.2^{b}	2.3 ± 0.4^{ab}	1.9 ± 0.3^{b}	$2.0\ \pm 0.3^{b}$	3.0 ± 0.4^{a}
Мо	0.131 ± 0.002^{b}	0.168 ± 0.009^{a}	0.136 ± 0.007^{b}	-	-	-	-
Na	-	-	-	Detected*	3.5 ± 0.3^{b}	3.4 ± 0.3^{b}	6.30 ± 0.01^{a}
Ni	Detected*	Detected*	Detected*	0.51 ± 0.03^{a}	0.48 ± 0.06^{a}	0.236 ± 0.006^{b}	0.32 ± 0.03^{b}
Р	380 ± 10^{a}	310 ± 20^{b}	$200 \pm 20^{\circ}$	420 ± 30^{b}	$320 \pm 10^{\circ}$	348 ± 8^{bc}	700 ± 50^{a}
Sb	0.080 ± 0.001^{a}	0.084 ± 0.003^{a}	0.073 ± 0.003^{b}	-	-	-	-
Se	-	Detected*	-	-	-	-	-
Sn	Detected*	Detected*	Detected*	-	-	-	-
Ti	-	-	-	0.072 ± 0.008	Detected*	Detected*	0.075 ± 0.008
Zn	2.8 ± 0.1	Detected*	2.6 ± 0.3	5.54 ± 0.08^{a}	$4.9\ \pm 0.1^{b}$	$3.22 \ \pm 0.07^{d}$	3.6 ± 0.2^{c}

Table S7. Average concentration levels of minerals and trace elements in the analyzed Cornicabra olives in different months of two seasons;

expressed in $\mu g g^{-1}$ fresh weight. Results are given as mean \pm standard deviation (n=3).

*Concentrations between detection and quantitation limits. Different superscripts (^a, ^b and ^c) indicate significant differences in the extracts (p<0.05).

Picual		2017/2018		2018/2019			
Element	2 nd HD	3 rd HD	4 th HD	1 st HD	2 nd HD	3 rd HD	4 th HD
Al	-	-	Detected*	-	Detected*	-	Detected*
As	0.26 ± 0.01^{a}	0.25 ± 0.01^{a}	0.23 ± 0.03^{a}	0.094 ± 0.005^a	0.10 ± 0.01^{a}	0.097 ± 0.002^a	0.091 ± 0.001^{a}
Ba	0.54 ± 0.01^{a}	0.35 ± 0.04^{b}	0.48 ± 0.01^{a}	$0.099\pm 0.002^{\rm b}$	0.122 ± 0.004^{a}	0.106 ± 0.008^{ab}	0.10 ± 0.01^{b}
Ca	700 ± 80^a	340 ± 30^{b}	$450\ \pm40^{b}$	$277~\pm7^{\rm b}$	510 ± 40^{a}	$300\pm30^{\rm b}$	$187 \pm 9^{\circ}$
Cd	0.160 ± 0.009^a	0.153 ± 0.006^a	$0.15 \ \pm 0.02^{a}$	0.082 ± 0.004^a	0.083 ± 0.009^a	0.084 ± 0.001^{a}	0.079 ± 0.001^a
Cu	$2.38 \pm 0.09^{\circ}$	2.776 ± 0.005^{b}	4.35 ± 0.07^{a}	3.5 ± 0.2^{b}	10 ± 1^a	$4.0\ \pm 0.2^{b}$	3.9 ± 0.4^b
Fe	-	Detected*	Detected*	Detected*	2.2 ± 0.3^a	1.84 ± 0.07^{a}	2.5 ± 0.4^a
Κ	$5300\pm100^{\circ}$	$6500\ \pm 500^b$	10100 ± 400^{a}	6000 ± 200^{b}	7000 ± 500^a	$5700\ \pm 220^b$	6400 ± 400^{ab}
Mg	109 ± 2^{b}	110 ± 1^{b}	257 ± 4^{a}	150 ± 5^{a}	152 ± 5^{a}	119 ± 4^{b}	130 ± 10^{b}
Mn	1.46 ± 0.02^{b}	1.31 ± 0.03^{b}	2.0 ± 0.2^a	1.33 ± 0.04^{a}	1.4 ± 0.2^{a}	1.16 ± 0.04^{a}	1.4 ± 0.2^{a}
Mo	0.132 ± 0.007^{a}	0.15 ± 0.01^{a}	0.13 ± 0.01^{a}	-	-	-	-
Na	-	-	-	$2.9 \pm 0.1^{\circ}$	4.05 ± 0.02^{a}	3.6 ± 0.2^{b}	4.05 ± 0.06^{a}
Ni	Detected*	Detected*	Detected*	0.18 ± 0.03^{a}	$0.062\pm 0.006^{\text{b}}$	0.093 ± 0.009^{b}	0.074 ± 0.009^{b}
Р	260 ± 10^{b}	274 ± 3^{b}	458 ± 3^{a}	570 ± 40^{b}	550 ± 30^{b}	$380 \pm 20^{\circ}$	830 ± 90^{a}
Sb	0.083 ± 0.005^{a}	0.082 ± 0.004^{a}	0.08 ± 0.01^{a}	-	-	-	-
Sn	Detected*	Detected*	Detected*	-	-	-	-
Ti	-	-	-	Detected*	Detected*	0.13 ± 0.03	Detected*
Zn	$2.53 \pm 0.04^{\circ}$	4.3 ± 0.4^{a}	3.2 ± 0.2^{b}	2.53 ± 0.07^{a}	$1.7 \pm 0.1^{\circ}$	2.45 ± 0.03^{ab}	2.3 ± 0.1^{b}

g⁻¹ fresh weight. Results are given as mean \pm standard deviation (n=3).

*Concentrations between detection and quantitation limits.

Different superscripts (^a, ^b and ^c) indicate significant differences in the extracts (p<0.05).

Figure S1. Recovery yields with the olives of the sample "Cornicabra 1^{st} HD", spiked at 0.2, 10, and 20 µg g⁻¹ fresh weight.