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Abstract: The by-products generated from the processing of fruits and vegetables (F&V) largely are
underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin,
rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The
recovery of bioactive compounds from agro-waste by recycling them to generate functional food
products is of increasing interest. However, the sensitivity of these compounds to external factors
restricts their utility and bioavailability. In this regard, the current review analyses various emerging
technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss
the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical
water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric
field extraction. It provides insights into the strengths of microencapsulation techniques adopted for
protecting sensitive compounds. Additionally, it outlines the possible functional food products that
could be developed by utilizing components of agricultural by-products. The valorization of wastes
can be an effective driver for accomplishing food security goals.

Keywords: agro-waste; bioactive compounds; therapeutic; encapsulation; functional food

1. Introduction

Fruits and vegetables (F&V) are a significant part of the human diet. Besides containing
many nutrients, they are rich in phytochemicals which play a protective role in several
chronic diseases [1–3]. Nowadays the consumption of F&V has been incorporated into
many products such as ready-to-serve beverages, sauces, frozen F&V, fruit juices, nectars,
dehydrated pulps, and so on. During the production of these food products, substantial
amounts of waste are generated [4]. F&V processing in India, USA, the Philippines, and
China produces approximately 1.81, 15.0, 6.53, and 32.0 million tons, respectively, of F&V
wastes annually [5]. Major organic by-products from food production include seeds, peels,
bracts, leaves, roots, bark, and midribs. These wastes are a potential source for many
bioactive compounds (phytochemicals, antioxidants, coloring pigments, and nutrients)
having nutritional and functional values. Moreover, proper management of organic by-
products can furnish environmental and economic benefits by reducing food loss.

Numerous efforts have been made to utilize bioactive compounds embedded in F&V
wastes [6,7]. The bioactive compounds are extracted from the wastes through different
extraction techniques [8–11]. Depending upon the nature of the raw material and the
type of bioactive to be extracted, different extraction methods are selected [12]. The
recovered bioactive compounds can be used as ingredients to fortify food products, in the
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pharmaceutical or cosmetics industries [13]. However, there is a high risk of degradation
during functional food development. To protect extracted bioactive compounds from
severe processing conditions and environmental factors, they can be encapsulated within
a coating material [14–17]. The selection of coating material is dependent on the ratio of
the enclosed material (core), which plays a major role in producing uniform spherical
microcapsules with high encapsulation efficiency. Contrarily, there are minimal studies that
encompass all the fundamental aspects of waste valorization beginning from extraction
to functional products via encapsulation. The encapsulated bioactive compounds can
be utilized for the development of functional food products that may have many health
benefits [18]. These by-products in some forms are added to various food products like
meat, sausages, cheese, yogurt, curd, butter, ice-cream, juices, fruit purees, bakery products,
and candies [19–21].

The present paper provides a comprehensive review of different sources of bioactive
compounds generated from F&V wastes and their functional properties. Furthermore, it
summarizes some recent advances in the extraction techniques of bioactive compounds.
The review paper also explores the effects of operating conditions on the microencap-
sulation of these compounds. Lastly, it gives a concise overview of the development of
functional food products by incorporating microencapsulated compounds.

2. Sources of Bioactive Compounds

Food wastes, particularly from fruits and vegetables, are rich sources of bioactive
compounds. Bioactive components have elicited nutraceutical effects which are utilized to
produce functional foods [8,22]. There have been numerous attempts to recycle these wastes
into functional foods to get therapeutic and nutritional benefits. Figure 1 shows a schematic
representation of the utilization of food wastes generated from industrial processing. Fruits
and vegetables contain bioactive molecules both as primary and secondary metabolites such
as lipids, amino acids, fatty acids, polyphenols including hydrolyzable tannins, glycosides,
anthocyanin, alkaloids, and flavonoids [23,24]. Antioxidants directly act on quenching of
free radicals, slowing down cell damage [25]. Generally, seeds have a pool of polyphenols
and other antioxidant compounds while peels are a major resource for dietary fibers [26].
Apart from being an excellent reservoir of bioactive components, the agricultural wastes
are also endowed with abundant cellulose, hemicellulose, lignin substances contained in
peels, seed coats, or pomace [27,28].

Carotenoids are fat-soluble pigments commonly found in plant tissues that have a
good antioxidant activity [29,30]. The predominant forms of carotenoids include lutein,
γ, β-carotene, lycopene, zeaxanthin, violaxanthin, antheraxanthin, neoxanthin, and β-
cryptoxanthin [31]. There are two classes of carotenoids, (i) xanthophyll which contains
oxygen and confers a yellow color; (ii) carotenes that contain no oxygen but only linear
hydrocarbons, which can be cyclized at both ends of the molecule, and which confer
an orange color. For light absorption in carotenoids, a chromophore group exhibited
by conjugated double bonds is responsible. Carotenoids are used in the food industry
to replenish color lost due to thermal processing. Islamian and Mehrali [32] suggested
that carotenoids have excellent free radical and singlet oxygen quenching capacity. This
phenomenon is associated with the inhibition of many free radical influenced diseases
namely, atherosclerosis-related cardiovascular diseases [33], multiple sclerosis [34], degen-
erative diseases [35], and macular degeneration [36]. Graff et al. [37] showed a positive
relationship between the consumption of tomato sauce and lycopene and the reduction of
prostate cancer. Mezzomo and Ferreira reported a protective action of these compounds for
the human immune system along with the enhancement of intracellular communication
through gap junctions by second messengers, ions, or metabolites [31]. Carotenes are most
bioavailable in their natural trans-form [38,39]. However, isomerization of carotenoids
from their trans-form to cis-form occurs in presence of light, heat, metals, or pro-oxidants,
resulting in loss of pro-vitamin activity and color [40]. Furthermore, the bioavailability of
pro-vitamin A compounds in fruits are greater than in vegetables due to the complex struc-
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tures of protein in the chloroplast [39]. These compounds after extraction are widely used
in the food industry for imparting color (natural colorant), promoting healthy antioxidants,
and supplements.
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Figure 1. Overview of the utilization of the fruit and vegetables (F&V) by-products from the extraction of bioactive com-
ponents to food product development. 
Figure 1. Overview of the utilization of the fruit and vegetables (F&V) by-products from the extraction of bioactive
components to food product development.

On the other hand, phenolic compounds are characterized by an aromatic ring consist-
ing of one or more hydroxyl substituents. They might involve simple or highly polymer-
ized molecules. There are two classes of compounds; flavonoids and non-flavonoids. The
flavonoids encompass subclasses such as flavonols, flavones, flavan-3-ols, anthocyanins,
and chalcones while non-flavonoids include stilbenes, phenolic acids (hydroxybenzoic
acids and hydroxycinnamic acids), tannins, neolignans, and coumarins [41]. Different phe-
nolic compounds found in peel, pomace, and seeds of fruits and vegetables are summarized
in Table 1. Flavonols contain a carbonyl group in their molecular structure. The abun-
dant forms of flavonols found are quercetin and its derivatives, kaempferol 3-O-glucoside,
and myricetin. However, phenolic acids with a single phenolic ring are categorized into
hydroxycinnamic acids and hydroxybenzoic acids. The hydroxycinnamic acids mainly
constitute a three-carbon side chain (C6–C3) in their molecular structure; some of its ex-
amples are caffeic, sinapic acids, ferulic, and p-coumaric; while the hydroxybenzoic acids
group comprises a C6–C1 structure; it covers gallic acid, vanillic acid, p-hydroxybenzoic,
syringic acids, and protocatechuic [42]. Besides having antioxidant potential, phenolic
compounds have received a good amount of attention due to their ability to lower the
risk of many chronic diseases such as cancer [43,44], cardiovascular diseases [45–47], dia-
betes [48], neurological disease [49,50], cataract [51], and some disorders of the cognitive
function [52,53].

Additionally, the peels of citrus fruits namely lemon, orange, grapes contain distinct
compounds likely exo/mesocarp have an excellent amount of flavone and furano deriva-
tives, on the other hand, particularly exocarp is richer in oxygenated monoterpenes [54].
However, a substantial quantity of essential oils is also embedded in the peels (exo and
mesocarp), seeds, and other wastes. Lemon essential oils are richer in γ-terpinene and
β-pinene, while orange oils have β-myrcene. Grapes and oranges have citral isomers in
higher content, whereas lemons contain more valuable essential oils with a greater content
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of oxygenated compounds [54]. Despite being less explored, the by-products of sapodilla
plum (Achras sapota) contain a good amount of saponins and triterpenoids which are
widely utilized in folk medicine [55]. These compounds exhibit antimicrobial, spermicidal,
anti-inflammatory, and analgesic activities [56–58]. Different parts of the plant are inherent
with other chemical compounds such as gallic acid, flavonoids, and other phenolic com-
pounds. Interestingly, it has been reported that the introduction of compounds from sapota
fruit in the diet can avert the outset of cancer or alleviate the progression of cancer [59].

There are several factors that influence the extraction efficiency of bioactive com-
pounds as well as essential oils, such as the extraction time and technique used, solvent
to the amount of sample ratio, and sample matrix (particle size, protein content, oligosac-
charide content) [60–63]. Lafarga et al. [61] reported a reduction in total phenolic content
in Brassica vegetables on thermal processing (boiling, steaming), due to the leaching
loss of water-soluble phenolics. Contrarily, Su et al. [64] claimed a significant rise in
total phenolic content after thermal processing, which can be explained by the rupture
of complexes/matrices between phenolic compounds and protein molecules, positively
influencing its availability during extraction. Bioactive compounds found in several fruits
and vegetable wastes are summarized in Table 1.

3. Extraction Methods for Bioactive Compounds

There are various techniques for the extraction of bioactive compounds from fruit
and vegetable wastes depending on their source, chemical properties, functionality, and
end-use. The severity of the extraction methods in terms of temperature, pH, frequency, or
electromagnetic waves might have an adverse impact on the extracted compounds. The
major extraction methods discussed in this section are listed with key summary information
in Table 2. Moreover, the schematic illustration of the extraction techniques are shown in
Figure 2.
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Table 1. Different sources of bioactive compounds from plant products and their key functional properties.

Bioactive Compounds Functionality for Processed Foods Claimed Health Benefits Parts Sources

Lycopene Antioxidants, food colorant
Radio protectant [65], anti-cancer agent [66],

inhibit neurodegenerative diseases [35],
promoter of heart health [67]

Peel- 611.10 mg/100 g DW [68]; Pomace- 28.64
mg/100 g DW [69] Tomato

Polyphenols (gallic, chlorogenic, caffeic, ferulic,
syringic, and p coumaric acids); and steroidal
alkaloids (α-solanine, α-chaconine, aglycone

solanidine)

Antioxidants, thickener
Anti-pathogenic [70], anti-inflammatory [71],

anti-carcinogenic activities [71,72],
neuroprotective activities [73]

Peel- alkaloids 84–2226 mg/kg [74]; polyphenols
32.87 mg/g DW [75] Potato

Phenols, β-carotene Antioxidants, pro-vitamin Anti-inflammatory [76], anti-cancer agent [77],
anti-microbial [78]

Peel: β-carotene 20.4 mg GAE/g DW; polyphenols
1371 mg GAE/g DW [79] Carrot

Chlorophyll, caryophyllene,
phellandrene, pheophytin Antioxidants Antimicrobial [80], antidiabetic [81]

Peel: chlorophyll 3.46 mg/g, caryophyllene
1.49 mg/g, phellandrene 1.21 mg/g, pheophytin

1.95 mg/g [82]
Cucumber

p-hydroxybenzoic acid, trans-p-coumaric acid,
p-hydroxybenzaldehyde, caffeic acid Antioxidants, fiber-rich component Antimicrobial [83], treatment for diabetes

mellitus [84]
Seeds: polyphenols 2.34–6.12 mg GAE/g DW;

Shells: polyphenols 7.41–10.69 mg GAE/g DW [85] Pumpkin

Anthocyanins, cinnamic acid, dihydrochalcones
(phloretin), flavan-3-ol (epicatechin), flavonol

(quercitin glycosides)

Antioxidant activity (ROS and RNS),
food additive (natural alternative to

synthetic antioxidants and
anti-microbials)

Reduction of oxidative stress and inflammation
properties [86,87], modifications of plasma lipids

and lipoprotein levels [88,89], and anti-cancer
activity [90]

Wastes (pomace, peel)- Anthocyanins 2.83 g/100 g
DW; cinnamic acid 1.06 g/100 g DW; phloretic

569 mg/100 g DW; epicatechin 291 mg/100 g DW;
flavonol 768 mg/100 g DW [91]

Apple

malvidin-3-O-glucoside, peonidin-3-O-glucoside,
gallic acid, p-hydroxybenzoic

acid, cinnamic acid, vanillic acid,
proanthocyanidins, coumaric acid, chlorogenic
acid, engeletin, quercetin, astilbin, resveratrol

Antioxidants (ROS/RNS), natural
additive

Cardioprotective effect [92], prevention of
metabolic syndrome [93], management of

diabetes [94], anti-proliferative [95],
anti-microbial/bacterial potential [96,97]

Pomace: anthocyanins 1246.85–2092.93 mg/100 g,
total phenolic content

3014.55–5101.82 mg GAE/100 g, total flavonoids
1648.28 to 2983.91 mg CE/100 g, Total anthocyanin

1246.85–2092.93 mg/100 g [98]

Grapes

Gallic acid, delphinidin-3,5-diglucoside,
cyaniding diglucoside, sinapic acid, α

–punicalagin, β –Punicalagin, ellagic acid,
hesperidine, quercetrin

Antioxidants, dietary fibers, single-cell
protein, industrial enzymes, functional
food ingredients, food additives, food
lipid stabilizer, and artificial sweetener

Alleviates hypercholesterolemia [99],
hyperpigmentation treatment [100], anti-cancer

activity [43], dietary supplements

Peels- polyphenols 249.4 mg/g, flavonoids
59.1 mg/g, proanthocyanidins 10.9 mg/g [101] Pomegranate

Naringin, eriocitrin, hesperidin,
narirutin, limonin

Thickening and gelling agent, stabilizer,
food additive

Mucoprotective agent [102], anti-carcinogenic
[103], cytoprotective effect [104], prevention of

neurodegenerative diseases [49]

Peel:
Total phenolic content- 1259 mg GAE/100 g

(orange), 1812 mg GAE/100 g (lemon), 793 mg
GAE/100 g (mandarin) [105]; Total Flavonoids:

4.52 mg CE/100 g lemon peel [106], TF: 2539.82 mg
QE/100 g mandarin peel [107]; lemon seeds-

limonin 8.95 mg/g DW; Valencia orange seeds-
limonin 10 mg/g DW [108]

Citrus fruits

Gallic acid, anthocyanins, ellagic acid, quercetin,
tannins, xanthones, mangiferin and its related

compounds, kaempferol

Antioxidants, micronutrient, protein-rich
food source,

Modulation of diabetes and dyslipidemia [109],
heart-protective effects [46,110], anti-cancer

[111,112], anti-inflammatory [113]

Peel-
Total polyphenolic content:

Raw—90 to 110 mg/g, ripe- 55 to 100 mg/g [114]
Mango
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Table 1. Cont.

Bioactive Compounds Functionality for Processed Foods Claimed Health Benefits Parts Sources

Epicatechin-3-gallate, malvidin-3-glucoside,
procyanidin B2, gallic acid, procyanidin B4,

anthocyanins, naringin, isoscopoletin,
coumaric acid

Antioxidant, Food colorant,
food additives

Pain reliever & Anti-cancer agent [115,116],
tyrosinase inhibitory [117,118],

anti-inflammatory [119], immunomodulatory,
anti-glycated, anti-diabetics [120],
metalloproteinase activity [121]

Seeds: phenolic compounds 80.9 g/kg DW [122],
Pericarp: phenolic content 57.8 mg GAE/g

DW [123]
Logan/Litchi

Gallocatechin, catecholamine, anthocyanins,
delphinidin, cyanide, ferulic acid, cinnamic acid,

Epicatechin, Procyanidin

Antioxidant, thickening agent, natural
bio-colorant, bio-flavors, source of macro

& micro-nutrients

Anticancer [44,124], anti-bacterial [125], lower
plasma oxidative stress [126], treatment of

diarrhea [127]
Peel: phenolic content 29.2 mg GAE/g DW [128] Banana

Ferulic acid, p-coumaric acid, Caffeic
acid, bromelain

Prebiotic, single-cell protein,
anti-browning agent, texture improver

Manage hyperlipidemia [129],
analgesic and anti-inflammatory effects [130],
blood coagulation [131], anticancer agent for

malignant peritoneal mesothelioma [132]

Peel: phenolics 222–428 mg GAE/100 g DW [133] Pineapple

Carpaine, glucotropacolin, benzylisothiocynate,
bemzylthiourea, benzylglucosinolate, sitosterol,

hentriacontane, papain, caffeic acid,
chlorogenic acid, p-coumaric acid, ferulic acid,

and vanillic acid

Rich in digestive enzymes
Antimalarial [134], Antimicrobial/Antifungal
[135], abortifacient [136], wound healing [137],

treatment of psoriasis & jaundice [138]

Seeds: total phenolic content 0.31–0.77 mg/g [139],
Leaf/peel: total polyphenols

28.61–63.59 mg GAE/g, flavonoids
8.36–23.45 mg CE/g, Proanthocyanidins

3–8.89 mg CE/g [140]

Papaya

GAE: gallic acid equivalent; CE: catechin equivalent; DW: dry weight.

Table 2. Different techniques for extraction of bioactive compounds and their operating conditions.

Extraction
Techniques Sources Compounds

Operating Conditions

Solvent/Co-
solvent

Extraction
Efficiency, EE
(%)/Yield, EY

(g/100 g)
ReferencesTemperature

(◦C)/MW Power
(W)

Pressure
(bar)/Flow Rate

of Solvent
(ml/min)

Frequency
(kHz)

Amplitude
(%)/Applied

Voltage (kV/cm)
Time (min) Solid: Solvent

SE
Pomegranate peels

Carotenoids;
Punicalagins

and ellagic acids
35; 100 - - - -;5 1:5; 1:5

Hexane,
Isopropanol;

Water

EE:85.7; 80.3 &
19.7 [141,142]

Pouteria sapota seeds Oil 70 - - - 360 1:7 Hexane EE:40 [143]

UAE

Tobacco waste
(midrib, dust, scrap) Chlorogenic 50/50 - 37 - 30 1:10 Ethanol-water EY:0.35 [144]

Citrus latifolia waste Catechin and
diosmin 50/130 - 20 89 12.5 1:50 Ethanol EE:93, 89 [145]

Pomegranate peels Carotenoids 51.5 - 20 40% 30 1:10 Vegetable oil EE:93.8 [142]

Artocarpus
heterophyllus

(Jackfruit) peel
Pectin 60, pH 1.6 - - - 24 1:15 Water EE:14.5 [146]
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Table 2. Cont.

Extraction
Techniques Sources Compounds

Operating Conditions

Solvent/Co-
solvent

Extraction
Efficiency, EE
(%)/Yield, EY

(g/100 g)
ReferencesTemperature

(◦C)/MW Power
(W)

Pressure
(bar)/Flow Rate

of Solvent
(ml/min)

Frequency
(kHz)

Amplitude
(%)/Applied

Voltage (kV/cm)
Time (min) Solid: Solvent

UAE + PLE
Blackberry, blueberry,

and grumixama
wastes

Anthocyanin 80/580 100 37 - 30 1:18 Ethanol/water EY:9.62–11.66 [10]

SCFE

Vegetable peel
wastes (sweet potato,

tomato,
apricot, peach)

Carotenoids 59 350/15 - - 30 1:15.5 CO2, Ethanol EE > 90 [147]

Apple pomace Total phenolic
content 45 300/33.3 - - 120 - CO2, Ethanol EY:5.78 [148]

Citrus peels and
seeds Carotenoids 41–45 250–300/27 - - 120 1.5–2.25 CO2, seed oil EY:0.198 [149]

SCWE
Pistachio hulls Gallotannin &

flavonols 110–190 69/4 - - 30–50 1:25 Water EE > 96 [150]

Mandarin peel Flavonoids 130 30/1000 - - 15 1:34 Water EE-96.3 [151]

MAE

Vine prune residues Total phenolic
content 120 - - - 5 1:40 Ethanol -water EY:2.4 [152]

Ocimum basilicum Polyphenols -/442 - - - 15 1:10 Ethanol EY:4.3 [153]

Mangifera indica
leaves Mangiferin -/272 - - - 5 1:20 Water EY:5.5 [154]

Red grape pomace Phenolics 50/200 - - - 60 1:50 Water-ethanol EY:23 [155]

Cabbage leaves Phenolic content ~50/100 - - - 2 1:10 Ethanol EY:0.86 [156]

PEF + SLE Potato peel Steroidal
alkaloids 15–23 - 0.01 -/0.75 200 pulses@

3 µs, 60 min 1:5 Methanol EY:0.158 [157]

PEF + SE Blueberry press cake Total phenolics,
anthocyannin 23 - 0.01 -/1–5 Pulse width-

1–23 µs, 24 h 1:6 Ethanol EE: >63, >78 [158]

PEF + UAE Defatted canola seed
cake Polyphenols 70/200 - 0.03 900 pulses@

20 µs, 20 min 1:10 Ethanol EY:2.6 [159]

SE: solvent extraction, UAE: ultrasound-assisted extraction, MAE: microwave-assisted extraction, PLE: pressurized liquid extraction, SCFE: supercritical fluid extraction, SCWE: sub-critical water extraction, PEF:
pulsed electric field extraction, SLE: solid-liquid extraction.
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3.1. Supercritical Fluid Extraction

Supercritical fluid extraction (SCFE) using supercritical CO2 has been widely used for
high-value food applications. Importantly, CO2 is non-toxic, better extraction of nonpolar
or partially polar compounds in supercritical CO2, high solubility of oxygenated organic
compounds of medium molecular weight, and non-explosive, in contrast to many organic
solvents [160]. It is preferred for the extraction of bioactives from plants or food by-products
because of its easy removal from the extracted final product [161].

For extraction, the raw material is initially placed in an extraction container with
temperature and pressure controllers, thereafter it is pressurized with the fluid by a pump
regulating the temperature conditions. The compounds dissolved in the fluid are conveyed
to the separators where the compounds are collected at the bottom and the fluid is either
recycled or released to the environment [162]. The critical point of any fluid is marked
by its ability to neither behave like gas nor liquid above a critical temperature (CT) and
pressure (CP), thus it can easily diffuse into a solid matrix like a gas while also having a
high capacity to dissolve compounds like a liquid. Thus, SCFs have an advantage in terms
of diffusivity, solute capacity, and low viscosity over other solvents. These characteristics
are responsible for better extraction yields and shorter extraction times [163]. CO2 with CT
31 ◦C and CP 74 bar is the most commonly utilized SCF for food application. However, due
to its low polarity, the solvation power of supercritical CO2 to dissolve the bioactives from
a solid matrix gets reduced. Therefore, it is often used in conjunction with a co-solvent
or a modifier. Da Porto et al. [164] combined water and ethanol with CO2 as co-solvents
to extract phenols from grape marc. They indicated that the solubility of the phenols
in the supercritical phase reduced at a higher temperature (313.15 to 333.15 K) mainly
due to the pre-dominant density effect of SC-CO2 + water on the vapor pressure of the
extracted compounds, conversely, a predominant effect of vapor pressure over density was
observed for SC-CO2 + ethanol. However, the extraction yield improved after extracting
with SC-CO2 + water followed by SC-CO2 + ethanol because of the varying polarity of
the phenols. The selective extraction of bioactive compounds or co-precipitation of heat-
sensitive natural antioxidants can be achieved by micronization through the supercritical
anti-solvent (SAS) process where supercritical CO2 is used as anti-solvent to precipitate the
compounds [165,166].

The steps for extraction of bioactives by SAS process [167,168] are: (1) The solute
containing bioactive compounds are dissolved in an organic solvent; (2) CO2 continuously
flows into the extraction system under a regulated pressure and temperature condition;
(3) The solute-organic solvent mixture is then sprayed into SC-CO2 where the organic
solvent is extracted out of the atomized solute droplet by CO2; (4) Due to high miscibility
of organic solvent in SC-CO2 at super-critical conditions, an instant mutual diffusion
occurs at the interface of the solute and SC-CO2, this phenomenon induces saturation and
phase separation of solute in SC-CO2, thus, results in nucleation and precipitation of target
bioactive compounds. Zabot and Meireles [169] in their study highlighted the positive
effect of the SAS process on the quercetin yield from onion peels. They demonstrated
minimum degradation of quercetin because of less exposure to light and oxygen and direct
flow of solute organic solvent (ethanol) mixture into the precipitation vessel. According to
Czaikoski et al. [170], when propane was utilized as an alternative SCF, both pressure and
temperature had a positive impact on the yield. The influence of pressure and temperature
on extraction performance vary according to the material type, its origin, and the target
compound. For instance, Espinosa-Pardo et al. [171] reported a 24.7% increase in carotenoid
yield from peach palm pulp at high pressure and temperature caused by the predominant
vapor pressure effect of solute over the density of solvent. The major limitation of SCFE is
the slow extraction kinetics [172]. Henceforth, in order to improve the extraction efficiency,
it is advisable to couple with other methods like ultrasound or enzyme with SCFE to
intensify the mass transfer process by disrupting vegetal matrices.
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3.2. Subcritical Water Extraction

Subcritical water extraction (SCWE) is another promising environmentally friendly
and low toxicity extraction method that can be used as an alternative to traditional tech-
niques. The basic principle of extraction by this technique involves heating water to a
temperature between 100–320 ◦C at a pressure (~20–150 bar). At these given conditions,
water remains in its liquid state, however, the dielectric constant of water is altered (i.e.,
80 at room temperature to ~27 at 250 ◦C) [173]. The dielectric constant of water becomes
comparable to that of methanol and ethanol which are 33 and 24, respectively at 25 ◦C.
Due to the low dielectric constant of water, the polarity, viscosity, and surface tension are
reduced, consequently, the dissolution of non-polar molecules is improved [174]. Based on
this unique property, the SCWE method has gained immense popularity for fractionation
and extraction of a wide range of compounds with a high degree of specificity. Munir
et al. [175] explored the extraction of phenolic compounds from onion skin by employing
SCWE for 0.5 h and ethanol extraction for 3 h. They asserted that SCWE produced higher
extracts of phenolic compounds than ethanol extraction (200 vs. 70 mg gallic acid equiv-
alent/g) and flavonoids (90 vs. 24 mg quercetin equivalent/g) concentration because of
effective disruption of hydrogen bonds, van der Waals forces between analyte and sample
matrix and low viscosity of water caused by high temperature and pressure. Similarly, Yan
et al. [176] in their studies found that polyphenol extracts of lotus seed epicarp from SCWE
exhibited greater radical scavenging ability than hot water extraction (88.72 vs. 30.07 mg
gallic acid equivalent/g). To accelerate extraction and to reduce the time of heat-sensitive
compounds that are exposed to high temperatures, the raw material can be pre-treated
using microwaves, ultra-sonication, or gas hydrolysis (N2 or CO2). Pre-treatments like
microwave and ultrasonication facilitates the diffusion of bioactive compounds into the
solvent through sample matrix disruption. On the other hand, N2 replaces oxygen in
the water and has a shielding effect on the reaction atmosphere that favors the extraction
of bioactive compounds [177]. Getachew and Chun [178] reported that amongst all the
pre-treatments, microwaves helped in extracting the highest content of bioactive com-
pounds from the spent ground coffee. Some limitations of SCWE include corrosiveness and
high reactivity of water at a subcritical state that needs to be considered while designing
SCWE equipment [179]. Todd and Baroutian [180] in their study have estimated the cost of
manufacture of SCWE unit = NZ$ 89.6/kg product for grape marc.

3.3. Ultrasound-Assisted Extraction

Sound at frequencies over 20 kHz, which cannot be detected by humans, is referred
to as the ultrasonic region. Ultrasound-assisted extraction (UAE) is one of the promising
techniques used for the extraction of bioactive compounds via acoustic cavitation, vibra-
tion, and mixing effect generated in liquid media. Generally, the frequency ranges from
20 kHz to 100 kHz and is used for effective extraction of functional compounds from plant
materials [181]. UAE efficiency strongly depends upon the physical forces generated by
acoustic cavitation, and the 20 kHz to 100 kHz frequency range is known to generate strong
physical forces. Acoustic cavitation can result in cell wall destruction which facilitates
extraction [182]. The propagation of ultrasound waves in liquid media induces cavitation
bubbles to grow and collapse, generating various physical effects that include microjets,
shockwaves, and turbulence. These physical forces cause cell wall breakdown, cell surface
holes, and exudation of nutrients from the cellular plant matter into the solvent [183].
Additionally, the ultrasonic waves passing through the liquid medium create regions of
higher and lower pressure variations known as acoustic pressure. The cavities created by
microbubbles on exposure to the acoustic field is dependent on the number of acoustic
cycles. The bubble oscillation is accompanied by its expansion during the negative pressure
cycle and contraction during the positive pressure cycle [184]. Moreover, the expansion
and contraction are followed by the diffusion of vapor in and out of the bubble. This
diffusion process causes accumulation of mass in the bubble over time, resulting in net
bubble growth known as rectified diffusion. Net bubble growth might also be due to the
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coalescence of multiple bubbles present in the acoustic sound field. In both ways, the
bubbles collapse after growing up to a certain size, which is called resonance or critical size
and is inversely related to applied frequency. The low-frequency range (16–100 kHz) is
also known as the power ultrasound region where strong physical effects like localized
shear and high temperatures occur from the high-intensity collapse of large resonance size
bubbles [185]. The cavitation phenomenon intensifies the mass transfer and movement
of solvent into the cell matrix. Mostly, water is preferred for UAE, but other solvents
namely ethanol, methanol, and hexane are also used. Kaderides et al. [186], observed an
increased extraction yield of phenolic compounds from pomegranate peel on increasing
the amplitude level up to 40% due to greater contact surface area between the solid matrix
and the solvent surface that enhanced the mechanical and cavitation effect of ultrasounds.
This increased amplitude caused more violent bubble collapse in the short time since the
resonant bubble size is influenced by the amplitude of the ultrasound waves. The generated
high-speed jet accelerated the penetration of the solvent into the matrix and the release of
phenolic compounds into the solvent by cell wall disruption. González-Centeno et al. [187]
found that at 40 kHz, 150 W/L power density and 25 min of extraction time were adequate
for extraction of phenolic compounds and flavonols from grape pomace. Cavitation is also
influenced by extraction temperature. Sometimes, high temperature improves the solvent
diffusion rate by disrupting intermolecular bonds between solvent and matrix. Ahmed
et al. [188] investigated the ultrasonic extraction of bioactive compounds from Amaranth
extract by varying solution temperature (30–70 ◦C). They observed the highest phenol
and flavonoid contents at 70 ◦C due to the release of bound polyphenols upon disruption
from cell-matrix at a high temperature. Analogous results at 80 ◦C were also claimed
by Das and Eun [189]. Similarly, sample matrix size, state of raw material (powder or
leaves), and extraction time were found to influence the overall extraction yield [190,191].
Longer extraction times generated some undesirable changes in the extracted solution,
while the small sample matrix size enhanced the contact between the exposed surface and
solvent favoring cell pore destruction followed by increased internal diffusion of solute
into the solvent. It was found that the particle size of samples varying from 0.54–1.5 mm
had the highest oil yield when extracted from date seeds [192]. A comparative study was
conducted by Drosou et al. [155] and Safdar et al. [193] utilizing soxhlet extraction and
UAE, where UAE ethanol: water (1:1) extracts exhibited the highest phenolic compounds
and antiradical activity. Therefore, UAE has an advantage of a shorter time, increased
extraction rate, and higher yield over conventional extraction techniques.

3.4. Microwave-Assisted Extraction

Microwave-assisted extraction (MAE) is another technique that can be employed in
combination with classical solvent extraction. This method is advantageous over tradi-
tional extraction methods due to the high extraction rate, less use of solvents, and shorter
extraction time [9,194]. The electromagnetic field of microwaves generally ranges from
300 MHz to 300 GHz. Microwave energy is absorbed by the polar materials which are
then transformed into heat by ionic conduction and dipole rotation known as dielectric
heating. Generally, the solvent with a high dielectric constant is selected for extraction of
bioactives from plant matrices for maximum absorption of microwave waves that convert
into kinetic energy. The molecules with high kinetic energy thus diffuse into the plant
materials resulting in the effective mass transfer of solute into the solvent [195]. However,
in certain cases, the plant matrix is directly exposed to microwave heating allowing the
solutes to be released into the cold solvent [196,197]. The mechanism of MAE includes
3 basic steps [198]. Firstly, the selective absorption of microwave energy by the water
glands inside the sample matrix favors localized heating above or near the boiling point of
water causing expansion and rupture of cell walls by disrupting the interaction between
the solute and active site of the matrix through the splitting of hydrogen bonds, van der
Waals force, and dipole attraction. Second, the disrupted cell promotes the mass transfer
of the solvent into the sample matrix and bioactive compounds into the solvent. Third,
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extracted bioactive compounds then dissolve into the surrounding solvent. Kulkarni and
Rathod [154] exploited MAE for extraction of mangiferin from Mangifera indica leaves
with water as a solvent. They obtained maximum yield (55 mg/g) at 20:1 solvent to solid
ratio and 272 W in 5 min, while Soxhlet extraction produced 57 mg/g in 5 h. The opti-
mum microwave conditions and solvent concentration are the main parameters that vary
with the source of raw materials, permeability of the matrix, and the targeted compound.
Several researchers extracted bioactive compounds by different extraction techniques to
examine their comparative studies on its extraction effectiveness. For instance, Zhang
et al. [199] compared a few extraction methods like maceration, percolation, UAE, and
MAE for recovery of alkaloids from Macleaya cordata, and MAE had the highest yield
of alkaloids (17.10 mg/g sanguinarine, 7.04 mg/g chelerythrine) with the shortest extrac-
tion time. MAE is rapid and exploits the advantage of the reduced amount of organic
solvent (5 to 10-fold) in contrast to conventional methods with high sample throughput
by overcoming the resistance offered by the sample matrix [200]. Conversely, there might
be an issue of solute degradation at increased temperatures. Due to the risk of explosions
generated by high pressure, special precautions involving the material of construction need
to be taken while designing the closed vessel MAE equipment. The industrial scale-up
process is achieved with appropriate designing of the reaction vessel, the frequency of
electromagnetic radiation, and sample thickness [201].

3.5. Pulsed Electric Field Extraction

Pulsed electric field extraction (PEF-E) is an emerging technology used for the ex-
traction of bioactive compounds. It is a non-thermal method that induces cell destruction
through the application of electric pulses. These electric pulses are applied in a short
duration (usually ranging from milli to nanoseconds) at moderate electric field strength
(EFS) [202]. The cells or the sample matrix exposed to these electric fields accumulate
charges on either side of the membrane surface, thereby generating transmembrane poten-
tial on the cell surface. When the transmembrane potential exceeds a certain critical limit,
the weaker sections of the cell membrane create pores otherwise known as cell electropo-
ration [203]. It promotes a substantial increase in permeation across the cell membrane,
facilitating the release of intracellular compounds. Therefore, it is known to increase the
extraction yield and rates at reduced energy consumption and low environmental im-
pact [204,205]. Furthermore, PEF-E is useful for the effective extraction of heat-sensitive
compounds from the sample matrix [206]. As the raw material is placed in between two
electrodes inside the treatment chamber, the optimization of the process parameters, in-
cluding pulse number, electric field strength, treatment temperature, and specific energy
input is essential [207]. Fincan et al. [208] subjected beetroots to 270 monopolar rectangular
pulses at 10 µs, 1 kV/cm field strength with an energy consumption of 7 kJ/kg for the
extraction of betanin. They found that the samples had the highest release about 90%
of total betanin in contrast to freezing and mechanical pressing following 1 h aqueous
extraction. On comparing with the untreated sample, PEF treated orange peels showed
an increase in total phenols from 11.76 to 14.14, 26.92, 29.81, 34.80 mg Gallic acid equiva-
lent/100 g at 1, 3, 5, 7 kV/cm, respectively [209]. Similarly, Delsart et al. [210] reported that
moderate electric field treatment and shorter duration (40–100 ms) accelerated the release
of phenolic compounds and anthocyanins across the cell membrane. PEF-E showed better
selectivity in terms of anthocyanin extraction from grape pomace, other than high voltage
electric discharge [211]. This non-thermal treatment can be utilized for selective extraction
(temperature <5 ◦C) by preserving sensitive compounds. PEF-E can also be applied prior
to a classical extraction process to reduce the extraction effort [212,213].

4. Bulk Encapsulation of Bioactive Compounds

The stability of bioactive compounds is an important criterion to be considered while
developing any functional food product. Some health-promoting polyphenols because
of their unsaturated bonds in their molecular structure are very sensitive to heat, light,
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oxygen, and pH [214]. One of the best strategies to protect the sensitive bioactive com-
pounds from environmental impact is by enclosing them in a solid matrix, otherwise
known as encapsulation [215]. Encapsulation can also aid in an additional benefit of
bioavailability enhancement, masking astringent flavors, and controlled release in the
gastrointestinal tract [216]. As there is a variety of possible encapsulation methods, an
appropriate technique must be selected based on the target compound and its suscepti-
bility to its operational parameters. Table 3 summarizes the various wall materials used
for different bioactive compounds and their suitable encapsulation technique. Moreover,
Table 4 describes the in-vivo pharmacological effect and release stability of encapsulated
bioactive compounds.

Table 3. Wall materials used for different bioactive compounds and their suitable encapsulation techniques.

Bioactive Compounds Wall Materials Advantages of Wall
Material

Limitations of Wall
Material

Suitable Encapsulation
Techniques References

Lycopene, Citrus
reticulata

polyphenol extract
Gum Arabic Good emulsifying

capacity, high solubility
Limited protection to

oxidation Spray drying, freeze-drying [217,218]

Anthocyanin from
blackberry by-products,

Betanain
Maltodextrin

Low cost, low oxygen
permeability, rapid
film-forming ability

Poor emulsifying property
increase the viscosity Spray drying [219,220]

Limonene, Lycopene,
betalains Whey protein isolate

Excellent emulsifying
abilities provide good

emulsion stability

Limited heat and freeze
stability Freeze drying, Spray drying [219,221]

Curcumin, Banana peel
extracts, β-carotene Soy protein isolate

Good emulsifying
ability, fast film

formation
Soluble in alkaline pH Freeze drying [222–224]

Blackberry pulp Arrowroot starch and
gum arabic

Gelling agent, good
emulsifying ability High viscosity Spray drying [225]

Chokeberry
anthocyannanis extract Pectin Gelling agent and

colloidal stabilizer

Forms clumps during
dispersion, encapsulation

depends greatly on
methylation degree

Spray drying [226]

Lutein Inulin
Requires low drying
temperature for film

formation

Sensitive to environmental
conditions Spray drying [227,228]

Betanins Xanthan gum
Stabilizes emulsions,

protective film against
oxidation

High viscosity at low
concentration Spray/freeze drying [229]

β-carotene Gum acacia Stabilizes emulsions High viscosity Complex coacervation by
sonication [230–232]

Curcumin Skim milk powder Good film forming and
emulsifying ability

pH-dependent gel
swelling behavior Spray drying [233]

Lycopene Whey protein isolate &
Gum acacia

Good retention of
bioactive compound

Oxidative degradation
and mass loss during

drying

Complex coacervation,
freeze-drying [234]

Table 4. In-vivo studies showing pharmacological effect and release stability of encapsulated bioactive compounds.

Type of Study Encapsulated
Bioactive Compound Dose Duration Results References

Randomized Resveratrol 6 mg 35 days Inhibition of cell growth in tumor [235]

Randomized
cross-over Curcumin 1 g 3 days Biotransformation of curcumin are delayed [236]

Controlled E. hirta powder 500 mg/kg bw 15 days Potential antidiabetic activity [237]

Randomized Betanin 60 mg/kg bw 28 days
Positive effect on regulating hyperglycemia,

hyperlipidemia, and oxidative
Stress

[238]

Randomized astaxanthin 100 mg/kg 72 h Rate of release and extent of digestion was
improved [239]

4.1. Ultrasound for Bulk Encapsulation

Ultrasound offers a great advantage in the emulsification process for food applica-
tions. The prime driving force involves acoustic cavitation where bubbles form, grow and
collapse at the emulsion interface resulting in very fine emulsions through disruption and
mixing. Two mechanisms are majorly responsible for emulsification; (1) Dispersion of
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liquid/dispersed phase into second/continuous phase resultant from the interfacial waves
produced by sound waves; (2) The acoustic cavitation causes high shear forces that break
to the formation of sub-micron sized droplets of liquid phase [185]. The fine-tuning of
process conditions such as power density, processing time, and temperature affects the
formation and stability of emulsions. It is evident that high intensity and low frequency
generate very strong shear forces favorable for sudden bubble collapse dispersing very
small droplets of a dispersed phase in the continuous phase, thereby, exceptionally stabiliz-
ing the emulsions [240]. Contrarily, Silva et al. [241] observed small lumps in the emulsion
(consisting of annatto seed oil and modified starch) due to the gelatinization of starch
(wall material) that was promoted by hot spots generated in the emulsion. Hence, for
intense process conditions, the cooling of the emulsion during the process is necessary. It is
also observed that high shear forces and localized temperature produced during acoustic
cavitation have the ability to unfold and denature proteins, while in certain cases it can
aggregate proteins through crosslinking (hydrogen bonds, covalent bonds, hydrophobic
interactions) [242]. These proteins further aid in the stabilization of the emulsion interface,
eliminating the need for surfactants [243]. The formation of emulsions by ultrasonication
with dairy proteins as emulsifying agents is of growing interest. The use of ultrasound for
the extraction of bioactive compounds is quite popular, however, encapsulation of phenolic
compounds is limited [188,189].

4.2. Spray Drying for Bulk Encapsulation

Spray drying is most commonly used for encapsulation due to its simplicity, low
cost, and ease of scale-up. Briefly, the liquid feed containing a core and coating material
is first homogenized into an emulsion. This feed solution is then injected into the drying
chamber through an atomizer or nozzle to obtain small microcapsules in the collector
chamber after solvent (water) evaporation [244]. Organic solvents are rarely used due
to The attributes of spray-dried powders are associated with the operating conditions
including feed flow rate, concentration of core and coating agent, speed of atomizer, drying
air flow rate, and drying temperature [245]. Generally, polysaccharides (e.g., gum Arabic,
maltodextrin, cyclodextrin with varying dextrose equivalent (DE)), and proteins (e.g., whey
protein, milk protein, soy protein, and caseinate salts) are used for spray drying [246].
Nogueira et al. [225] demonstrated good retention of antioxidant properties of spray-dried
microcapsules of blackberry pulp (coating material arrowroot starch/gum Arabic: 1:1.78).
Correia et al. [247] studied the effect of different protein sources (chickpea flour, coconut
flour, arrowhead, wheat flour, soy protein isolate) on the encapsulation of blueberry pomace
extracts by spray drying. It was evident that micro-particles from soy protein isolate had
better storage stability compared to wheat flour, chickpea flour, and coconut flour with the
highest antioxidant capacity and showed maximum polyphenols retention (90%) during
the storage period. Sormoli and Langrish [248] obtained 95% retention of phenolic contents
after encapsulating the orange peel extract in whey protein isolate (WPI) by limiting the
outlet air temperature to 80 ◦C for preventing denaturation of WPI. Contrarily, Agudelo
et al. [249] demonstrated a significant reduction (c.a. 42%) of phenolic compounds in spray-
dried grape pulp containing gum Arabic and bamboo fiber at 120 ◦C inlet air temperature.
The high temperature during spray drying results in the degradation of encapsulated
heat-sensitive compounds such as carotenoids, lycopene, thereby lowers its antioxidant
capacity [250]. Additionally, the wall materials are mainly carbohydrates having low glass
transition temperature and change their state from glassy to rubbery during spray drying
that forms highly sticky powder [251]. Therefore, there might be a chance of solid loss and
less product recovery due to the firm sticking of powder on the cyclone separator [252].

4.3. Spray Chilling for Bulk Encapsulation of Temperature-Sensitive Bioactives

To avoid the high drying temperature, spray chilling is often employed for encapsu-
lating sensitive bioactive compounds. The basic principle is analogous to spray drying.
However, the prime distinction in spray chilling is the replacement of the drying cham-
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ber by a cooling chamber, where, as the atomized particles fall into the cooling chamber,
their energy is removed for cooling or gelling of droplets. Mostly molten carriers such as
hydrogenated vegetable oils or lipids (with melting point 45–122 ◦C) are used as coating
materials [14,253]. Depending on the surface area and size of the particles, the cooling
capacity and chamber size is designed. The temperature in the cooling chamber must be
regulated below the gelling/melting point of the solid to induce proper solidification of the
molten carrier. For example, spray-chilled particles containing cinnamon extracts rich in
proanthocyanidin enveloped in vegetable fats (melting point 48 ◦C) were produced which
had an encapsulation efficiency (>87%) possessing spherical shape with variable diameters
and some aggregates indicating larger particle sizes [254]. Moreover, the involvement of
lipid as a carrier matrix eliminates the need for solvents in dissolving wall materials. Tulini
et al. [255] obtained spray-chilled microcapsules loaded with proanthocyanidin-rich cinna-
mon extract in vegetable fat with outstanding antioxidant activity and controlled release
of pro-anthocyanidins in the simulated gastrointestinal tract. Similarly, Oriani et al. [256]
produced ginger oleoresin microcapsules (retention >96%) with oleic acid or palm fat as
coating materials. They also reported that an increase in the concentration of unsaturated
lipid decreased the microcapsule crystallinity that facilitated the diffusion of compounds
through the lipid matrix. As the process does not include solvent evaporation, the capsules
produced by this technique are non-porous and dense, thus they are resistant to oxygen
diffusion and show excellent stability [257]. For instance, Mazzocato et al. [258] investi-
gated the encapsulation of a heat-sensitive micronutrient (cyanocobalamin) and reported
encapsulation efficiency of up to 100%. The solid lipid microparticles had a smooth and
spherical surface influencing good powder flowability while promoting superior protection
(>91.1%) even after 120 days of storage period at 25 ◦C in the absence of light compared to
free one (75.2%).

4.4. Fluidised Bed for Additional Coating

The application of the fluidized-bed coating is a promising technique that allows uni-
form coating of the core material or additional coating of the powder particles to improve
the protection of particle surface from environmental stresses such as pH, temperature,
oxygen, or light and enhance functionality/bioavailability of the particles [259]. The par-
ticles are suspended by an air stream at a predefined temperature and then sprayed by
a coating material through an atomizer. The airstream suspends the particles by over-
turning the gravitational force of these particles that is mainly due to the particle weight,
this state is known as the fluidized state. Carrier materials must possess film forming
capabilities, adequate viscosity, and thermal stability. A wide range of materials involving
starch derivatives, proteins, gums, cellulose, and molten lipid could be employed for
this process [14]. The coating materials can either be sprayed at the top or bottom of the
device followed by solvent (water) evaporation. The solvent evaporation by heat and mass
transfer can be regulated by the water content, airflow rate, spraying rate, humidity of
the inlet air, and temperature of the air [14,260]. Generally, the airflow rate is 80% at the
center flow in the inner column and 20% at the peripheral that causes the circulation of
powder particles [261]. The powder particles to be coated must be dense and spherical
with good flowability and narrow size distribution. Spherical shaped particles require
fewer coating materials than non-spherical particles of the same shell thickness due to
less surface area. Additionally, dense particles will reduce the accumulation of these
particles in the filter bags of the fluidized bed machine [261]. The main driving force
for drying is the heat transfer between the coating/particle surface and air. The mass
transfer is driven by the partial water vapor difference between the particle surface and
air and on mass transfer coefficient [262]. Hence, the water content, temperature, and
relative humidity of the air play a major role in controlling the drying rate of the coated
particles. This technique has a wide application in encapsulating probiotics and vitamins
for enhancing its bioavailability by hindering interactions with other compounds (e.g.,
tannins, phytates) [263]. The development of agglomerated particles is the major limitation
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of this technique that occurs when the temperature of the particle surface is above the glass
transition temperature of the coating material. This results in the coalescence of the wet
coating materials that form liquid bridges with the particles through adhesion. These liquid
bridges solidify after drying, forming an agglomerated larger particle [264]. However, the
phenomenon of uncontrolled agglomeration is influenced by the process parameters viz.
initial fluidization velocity, minimum fluidization velocity, feed flowrate (encapsulating
materials). For instance, Benelli and Oliveira [265] in their study reported an increase in
percentage agglomeration on decreasing the feed flow rate because of the collision between
wet particles that strengthened the cohesive forces formed by the liquid bridges. Thus,
future research on the use of this method for coating bioactive compounds with minimal
agglomeration needs to be addressed.

4.5. Freeze Drying Bulk Encapsulation

Lyophilization, also called freeze-drying or cryodesiccation, is applied for heat-
sensitive bioactive compounds because of its low-temperature dehydration process. It is a
multi-stage operation that includes pre-freezing of feed emulsion at sub-zero conditions to
concentrate the formulation; freezing stage involves cooling the material below its triple
point to ensure proper sublimation of ice crystals; primary drying refers to the drying
phase where the vacuum pressure is maintained along with the application of enough heat
to induce sublimation; secondary drying aims at removal of unfrozen water molecules
by increasing the temperature above the primary drying (<0 ◦C), typically the product
temperature is maintained between 20–40 ◦C, to break hydrogen bond between the bound
water and materials [266]. The freeze-dried powders have low moisture content with high
powder porosity due to the slow freezing rate and formation of large ice crystals that
induce the expansion of matrix structure during the freeze-drying process [267]. In a study
conducted by Rezende et al. [268] on encapsulation of bioactive compounds from acerola
pulp and residue, the microencapsulation efficiency of freeze-dried microcapsules was
found higher than spray-dried powders (gum Arabic + maltodextrin—1:1). The freeze-
dried powders had a porous and irregular surface which accelerated the premature release
of core materials during the drying process. Despite the porous surface, the freeze-dried
powders showed good antioxidant activity comparable to spray-dried powder. Due to the
application of vacuum, it is a relatively energy-consuming process that might be reduced
by optimizing the freeze-drying cycle to fit more cycles in the life span as well as the batch
drying process is time extensive (around 24–48 h). Overall, the initial investment is the
limiting factor, while the operational and capital cost of the industrial freeze dryer was
recorded to be 702 €/cycle [269].

5. Development of Functional and Nutraceutical Food Products

F&V by-products are rich in bioactive components and can be effectively incorporated
into food products. In this way, the F&V waste reintroduces into the food chain and mimic
the ecological burden. The developed functional food products with bioactives can have
antioxidant, antimicrobial, neurotransmitter, anti-diabetic, antifungal, anticancer properties,
etc. [18]. These by-products in some forms are added in various food products like in
animal products such as beef, chicken, meat, sausages, etc., dairy products, i.e., cheese,
yogurt, curd, butter, ice-cream, beverages i.e., orange, apple, carrot juices and in bakery
products like cookies, cakes, muffins, etc., and in candies and fruit purees [21,270]. Table 5
summarizes some recent food products developed from extracted bioactives from various
F&V by-products. Lipid oxidation is a serious problem in the processing of food products,
thus affecting the organoleptic properties and shortening the shelf life of food products.
The addition of bioactives in cheese, butter, curd, meat products, and fish products mimic
lipid oxidation. Basanta et al. [271] added β-carotene, lutein, tocopherols, and polyphenols
extracted from plum pomace in chicken patties to prevent lipid oxidation. Abid et al. [272]
extracted lycopene and phenolics from tomato waste and added them to butter. The
authors reported that butter enriched with 400 mg of tomato by processing extract/kg
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of butter has the lowest peroxide values after 60 days of storage at 4 ◦C and concluded
that lycopene and phenolics extended the shelf life of butter while reducing the lipid
oxidation. Beverages are a direct way to consume bioactives. Several studies have reported
that TPC and AA were significantly improved after the addition of F&V by-products in
beverages [273–276]. Furthermore, to enrich the nutritional value of bakery products,
F&V by-products can be added in form of powders or extracts. For instance, Hidalgo,
A., Brandolini, A., Čanadanović-Brunet, J., Ćetković, G., and Šaponjac, V. T. J. F. c. [277]
incorporated beetroot pomace extracts (PE) and microencapsulated pomace extracts (PME)
in the biscuits. PME-enriched biscuits were rich in TPC, AA, and betanin content compared
to PE. In another study, wheat flour was partially replaced by grape pomace powder
(0–20%) in the preparation of cookies. TPC, TFC, and anthocyanin content in the cookies
were increased 2.3, 2, and 12.5-fold respectively, compared to cookies without pomace
powder [278]. It can be seen from Table 3 that maximal extraction was achieved using
solvent extraction technology for product development. Very few studies have reported
the use of non-thermal extraction techniques. Pasqualone et al. [279] extracted phenolic
compounds from artichoke extracts using ultrasonication-assisted extraction technology.
The extracts were incorporated in fresh pasta and it was found that antioxidant activity and
phenolic compounds increased relative to a control pasta. Amofa-Diatuo, Anang, Barba,
and Tiwari [280] extracted isothiocyanates (ITC) from cauliflower stems and leaves using
sonication. These extracts were incorporated in apple juice and 10% extract addition was
found to be acceptable with good sensory properties. PEF and MAE technologies have been
used for the extraction of bioactives however, the development of functional food using
PEF and MAE continuous extraction technology is still under research [281,282]. Functional
food product development using SCFE and PLE methods is also limited to date [283]. A lot
of research has been done for the extraction of bioactives, but their application in the food
industry is limited. Recently, Souza et al. [284] extracted total flavonols, gallic acid, and
caffeine from the black tea using the PLE technique and developed bread. They found that
no loses of extracted flavonols during baking of bread at 180 ◦C for 20 min. The demand
for functional and nutraceutical food products enriched with bioactives is increasing
continuously [285,286]. Thus, further research on the development of food products
using green extraction technologies like UAE, PLE, MAE, PEF is needed. Moreover, these
techniques are the best alternative to conventional methods and require less extraction
time, chemical requirements, and low-cost process. The selection of extraction methods
may influence the extraction efficiencies in different food products. We need to look for the
best extraction technique for the development of specific food products.

Table 5. Development of value-added food products from different waste parts of fruits and vegetables.

Raw Material Waste Part Extracted/Target
Compound

Raw material
Processing Method

Value-Added
Product

Reported Functional
Improvements References

Apple Pomace TPC, TFC, DPPH;
TDF Tray drying Gluten-free cracker;

Ice cream

Rich in antioxidants, dietary fiber,
and minerals, specific for coeliac

disease patients; dietary fiber-rich
products

[287,288]

Tamarind Seed β-carotene, TPC,
TFC, TAA, TCT Sun drying Cookies and mango

juice
Natural antioxidants enhance

nutraceutical properties [274]

Banana Peel DPPH, ABTS Solvent Extraction Orange juice Increased antioxidant activity [275,276]

Grapes Pomace

TPC, DPPH Freeze-dried; Yogurt Cheese

Antioxidant properties,
anti-inflammatory, anticancer,

antimicrobial, and cardiovascular
protective properties;

[289,290]

TPC, DPPH, FRAP Solid-phase
extraction Bread

Help in prevention of diseases
like atherosclerosis, cancer,

cardiovascular disease, and type 2
diabetes;

[291]

TPC, DPPH, ORAC,
ICA Solvent Extraction Chicken Meat Antioxidant properties; [292]

TPC, TFC, ABTS,
FRAP Solvent Extraction Cheese

Improved nutritional properties,
sensory attributes like friability

and adhesiveness
[293]

TPC, ARP Solvent Extraction Fermented milk Natural antioxidants [294]
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Table 5. Cont.

Raw Material Waste Part Extracted/Target
Compound

Raw material
Processing Method

Value-Added
Product

Reported Functional
Improvements References

Beetroot Pomace

TPC, AA, Betalain Solvent Extraction Candy Rich in betalain, antioxidant, and
phenolics [277,295]

TPC, FRAP, ABTS,
Betacyanins

Solvent Extraction
with ultrasound Biscuit

Increased pathogen resistance,
anti-inflammatory effect, and

antioxidant activities

Pineapple Central Axis
TDF Freeze drying Cookies Improved nutritional properties [296]Apple Endocarp

Melon Peels

Raspberry Pomace TPC, TAC, RSC,
Free EA, ETs

Solvent Extraction
and freeze-dried Fruit Purees

Antioxidant, antimutagenic,
anticarcinogenic, antibacterial,

and antiviral properties
[297]

Orange Peel and pulp TPC, DPPH Sonication Carrot juice Improved functional quality and
shelf life [273]

Artichoke

outer bracts, leaves
and stems

outer bracts, leaves
and stems

outer bracts, leaves
and stems,

Outer bracts, leaves,
and stems

TPC, AA
Ultrasound-assisted

extraction
(UAE)

Pasta
Nutraceutical properties,
reduction of cholesterol,
antioxidant properties

[279]

Ripe Mango Peel TPC, DPPH Tray drying Whole Wheat Bread

Rich in antioxidants, help in the
prevention of cardiovascular and

neurodegenerative diseases,
cancers, etc.

[298]

Mango Seed Kernel TPC, DPPH Solvent Extraction Mango Powder Natural antibiotic and antifungal
properties [299]

Blueberry and
Cranberry Pomace TPC, RSA Solvent Extraction Mustard Anticancer, antioxidant, and

antimicrobial properties [300]

Pomegranate Peel
TPC, DPPH, ABTS Solvent Extraction Curd

Increase the anti-oxidative
attributes and shelf life of

the product [301,302]

TPC, FRAP, DPPH Solvent Extraction
and freeze-drying Cookies Antioxidant, antimicrobial &

nutraceutical properties

Pineapple Peel and stems Bromelain (BR) Polyelectrolyte
precipitation Flour

Enhance the growth of good
bacteria in the human microbiota,

high antioxidant activity in
human gut

[303]

Passion fruit
and Orange Albedo TDF Oven drying Cake Reduce cholesterol, and reduce

diabetes risks and obesity [304]

Tomato Peels and seeds TPC, RSA, lycopene Solvent Extraction Butter Extended shelf life of butter with
antioxidant properties [272]

Cauliflower Leaves and stem Isothiocyanates
(ITC), TPC, TAA

Ultrasound-assisted
extraction (UAE)

Apple juice
beverage Anticarcinogenic properties [280]

TPC—total phenolic content; DPPH—2,2-diphenyl-1-picrylhydrazyl; TDF—Total Dietary Fibre; TFC—Total flavonoid content; TAA—
Total antioxidant activity; TCT—total condensed tannins; RSA—radical scavenging activity; FRAP—Ferric reducing antioxidant power;
ABTS—2 2’-azino-bis(3 ethylbenzothiazoline-6- sulfonic acid); ORAC—oxygen radical absorbance capacity; ARP—Antiradical power;
AA—Antioxidant activity; TAC—Total anthocyanin content; EA—ellagic acid; ETs—ellagitannins contents.

In nut and shell, developed food products with F&V by-products are rich in bioactives
and fibers. The amount of F&V added in the food products depends upon the dosage of
bioactives required, the matrix in which they are added, sensory analysis, and consumer
acceptability.

6. Summary and Future Trends

Food production and processing results in an enormous quantity of waste. These food
wastes contain many beneficial bioactive compounds. The utilization of such food wastes
by extracting functional compounds will help reduce environmental waste load and add
value to the developed functional food product. Different extraction methods have been
illustrated, providing an overview of recent trends to maximize yields. The demand for
extracting bioactives by green technology with no solvent or minimal use of GRAS classified
solvent is increasing. Targeted selection and optimization of an extraction technique for a
specific bioactive may enhance the extraction efficiencies. However, owing to the potential
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toxicity of some organic solvents, solvents such as CO2, water, and deep eutectic solvents
can be used as alternatives. Advanced extraction methods that do not require any solvents is
a future aim. More focus on non-thermal emergent technologies like PEF, or combinations
of two or more techniques, could be given to ascertain the potential to obtain higher
extraction yields, lower energy consumption, and environmental impact. Development of
value-added food products by incorporating these F&V by-products directly and extracted
bioactives can improve the nutritional value of food products. The quality of the bioactive
components in the developed food products depends upon the processing methods and
parameters. Moreover, there are limited studies on the amount of bioactive reaching the
targeted site in the human body. So, further research on in vitro studies and animal studies
needs to be done to evaluate the health benefits to the consumers.

7. Methodology of the Study

This review was focused on several key aspects that combine both theoretical knowl-
edge and potential practical aspects of valorization of plant wastes. A semi-systematic
approach was followed to conduct a literature review. The main criterion we chose was the
inclusion of the majority of papers published in the last decade on the topics of this review
that had a high citation. We used google scholar and web of science databases.
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antioxidative potential, ellagic acid, ellagitannin and anthocyanin concentrations in fruit purees. LWT-Food Sci. Technol. 2016, 66,
460–467. [CrossRef]

298. Pathak, D.; Majumdar, J.; Raychaudhuri, U.; Chakraborty, R. Characterization of physicochemical properties in whole wheat
bread after incorporation of ripe mango peel. J. Food Meas. Charact. 2016, 10, 554–561. [CrossRef]

299. Mutua, J.K.; Imathiu, S.; Owino, W.J.F.S. Evaluation of the proximate composition, antioxidant potential, and antimicrobial
activity of mango seed kernel extracts. Food Sci. Nutr. 2017, 5, 349–357. [CrossRef] [PubMed]

300. Davis, L.; Jung, J.; Colonna, A.; Hasenbeck, A.; Gouw, V.; Zhao, Y. Quality and Consumer Acceptance of Berry Fruit Pomace–
Fortified Specialty Mustard. J. Food Sci. 2018, 83, 1921–1932. [CrossRef]

301. Ismail, T.; Akhtar, S.; Riaz, M.; Hameed, A.; Afzal, K.; Sattar Sheikh, A. Oxidative and microbial stability of pomegranate peel
extracts and bagasse supplemented cookies. J. Food Q. 2016, 39, 658–668. [CrossRef]

302. Sandhya, S.; Khamrui, K.; Prasad, W.; Kumar, M. Preparation of pomegranate peel extract pow-der and evaluation of its effect on
functional properties and shelf life of curd. LWT 2018, 92, 416–421. [CrossRef]

303. Campos, D.A.; Coscueta, E.R.; Vilas-Boas, A.A.; Silva, S.; Teixeira, J.A.; Pastrana, L.M.; Pintado, M.M. Impact of functional flours
from pineapple by-products on human intestinal microbiota. J. Funct. Foods 2020, 67, 103830. [CrossRef]

304. Oliveira, V.R.D.; Preto, L.T.; de Oliveira Schmidt, H.; Komeroski, M.; Silva, V.L.D.; de Oliveira Rios, A. Physicochemical and
sensory evaluation of cakes made with passion fruit and orange residues. J. Culin. Sci. Technol. 2016, 14, 166–175. [CrossRef]

http://doi.org/10.1016/j.jfca.2016.10.001
http://doi.org/10.1080/10408398.2020.1765308
http://doi.org/10.3390/foods9070918
http://doi.org/10.1016/j.trac.2019.04.030
http://doi.org/10.1016/j.lwt.2019.108661
http://doi.org/10.1016/j.tifs.2019.03.021
http://doi.org/10.1080/10942912.2019.1584212
http://doi.org/10.1111/1471-0307.12387
http://doi.org/10.1016/j.jssas.2015.01.001
http://doi.org/10.1016/j.lwt.2018.07.058
http://doi.org/10.1007/s13197-015-2105-8
http://www.ncbi.nlm.nih.gov/pubmed/27570284
http://doi.org/10.1177/1082013217745398
http://www.ncbi.nlm.nih.gov/pubmed/29207886
http://doi.org/10.1111/jfpe.12434
http://doi.org/10.1007/s13197-018-3347-z
http://doi.org/10.1016/j.lwt.2014.07.037
http://doi.org/10.1016/j.foodchem.2017.10.089
http://doi.org/10.1111/ijfs.13383
http://doi.org/10.1016/j.lwt.2015.10.069
http://doi.org/10.1007/s11694-016-9335-y
http://doi.org/10.1002/fsn3.399
http://www.ncbi.nlm.nih.gov/pubmed/28265370
http://doi.org/10.1111/1750-3841.14196
http://doi.org/10.1111/jfq.12231
http://doi.org/10.1016/j.lwt.2018.02.057
http://doi.org/10.1016/j.jff.2020.103830
http://doi.org/10.1080/15428052.2015.1102787

	Introduction 
	Sources of Bioactive Compounds 
	Extraction Methods for Bioactive Compounds 
	Supercritical Fluid Extraction 
	Subcritical Water Extraction 
	Ultrasound-Assisted Extraction 
	Microwave-Assisted Extraction 
	Pulsed Electric Field Extraction 

	Bulk Encapsulation of Bioactive Compounds 
	Ultrasound for Bulk Encapsulation 
	Spray Drying for Bulk Encapsulation 
	Spray Chilling for Bulk Encapsulation of Temperature-Sensitive Bioactives 
	Fluidised Bed for Additional Coating 
	Freeze Drying Bulk Encapsulation 

	Development of Functional and Nutraceutical Food Products 
	Summary and Future Trends 
	Methodology of the Study 
	References

