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Abstract: Sterically bulky β-diketiminate (or Nacnac) ligand systems have recently shown the ability
to kinetically stabilize highly reactive low-oxidation state main group complexes. Metal halide pre-
cursors to such systems can be formed via salt metathesis reactions involving alkali metal complexes
of these large ligand frameworks. Herein, we report the synthesis and characterization of lithium and
potassium complexes of the super bulky anionic β-diketiminate ligands, known [TCHPNacnac]− and
new [TCHP/DipNacnac]− (ArNacnac = [(ArNCMe)2CH]−) (Ar = 2,4,6-tricyclohexylphenyl (TCHP)
or 2,6-diisopropylphenyl (Dip)). The reaction of the proteo-ligands, ArNacnacH, with nBuLi give
the lithium etherate compounds, [(TCHPNacnac)Li(OEt2)] and [(TCHP/DipNacnac)Li(OEt2)], which
were isolated and characterized by multinuclear NMR spectroscopy and X-ray crystallography. The
unsolvated potassium salts, [{K(TCHPNacnac)}2] and [{K(TCHP/DipNacnac)}∞], were also synthesized
and characterized in solution by NMR spectroscopy. In the solid state, these highly reactive potassium
complexes exhibit differing alkali metal coordination modes, depending on the ligand involved.
These group 1 complexes have potential as reagents for the transfer of the bulky ligand fragments to
metal halides, and for the subsequent stabilization of low-oxidation state metal complexes.

Keywords: lithium; potassium; Nacnac; β-diketiminate; tricyclohexylphenyl; steric bulk

1. Introduction

The use of sterically demanding β-diketiminate ligand systems for the stabilization of
reactive low-oxidation state metal compounds has become commonplace in organometallic
chemistry [1–8]. One of the most common β-diketiminate ligands used is [DipNacnac]−

([(DipNCMe)2CH]−, Dip = 2,6-diisopropylphenyl). This has seen widespread use due
to its ease of synthesis from commercially available starting materials and the high ki-
netic stabilization it imparts to the coordinated metal. A particularly successful use
of β-diketiminates has been the stabilization of magnesium(I) dimers, e.g., LMg–MgL
(L = β-diketiminate), which have subsequently been widely applied as soluble, selective
reducing reagents in organic and inorganic synthesis [9–12]. Attempts to increase the steric
profile of β-diketiminate ligands, in the hope that compounds elusive to stabilization by the
DipNacnac system can be isolated, are worthwhile pursuits, with notable successes coming
from the groups of Piers [13], Holland [14] and Hill [15]. With respect to the stabilization of
group 2 compounds, bulky β-diketiminate ligands based on 2,6-bis(diphenylmethyl)-aryl
N-substituents, [ArNacnac]− ([(ArNCMe)2CH]−, Ar = 2,6-[C(H)Ph2]2-4-MeC6H2 (Ar*);
2,6-[C(H)Ph2]2-4-iPrC6H2 (Ar†)) were used to isolate the first monomeric magnesium hy-
drides [15]. More recently, it has been shown that increasing the steric bulk of the Nacnac
ligand, by the replacement of the N-bound Dip groups with either DIPeP (DIPeP = 2,6-
diisopentylphenyl) or TCHP (TCHP = 2,4,6-tricyclohexylphenyl) groups, allows for the
isolation of the magnesium(I) compounds, [{(ArNacnac)Mg}2] (Ar = DIPeP, TCHP), both of
which show elongated Mg–Mg bonds compared to previously reported examples [16–18].

The activation of β-diketiminate coordinated Mg–Mg bonded fragments by the addi-
tion of a sub-stoichiometric amount of a Lewis base is known to generate unsymmetrical
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magnesium(I) compounds with elongated Mg–Mg bonds. These have been shown to
increase the reactivity of the magnesium(I) compound towards inert molecules such as CO
and ethylene [19,20]. Recently, we showed that a TCHP-substituted magnesium(I) dimer,
upon irradiation, was able to reduce benzene to generate “Birch-like” cyclohexadienyl
bridged products, e.g., [{(TCHPNacnac)Mg}2(µ-C6H6)] [21]. Further to this, Harder and
co-workers have shown that Nacnac ligands incorporating the DIPeP aryl moiety are able
to stabilize molecular magnesium(0) compounds [22,23], as well as calcium complexes,
which activate dinitrogen, as in [{(DIPePNacnac)Ca}2(µ-N2)] [24].

Routes to low-oxidation state metal complexes bearing Nacnac ligands typically pro-
ceed via the reduction of β-diketiminato metal halide precursors, which can be synthesized
by the reaction of an alkali metal salt of the β-diketiminate ligand with a metal halide
(Scheme 1). As such, the synthesis of alkali metal complexes of new very bulky ligands is
desirable, with the view to using such complexes as ligand transfer reagents in the prepara-
tion of metal halide precursors to highly reactive low-valent metal complexes. Potentially,
compounds previously inaccessible using the archetypal DipNacnac ligand system can
be realized using this approach. Herein, we describe the synthesis and characterization
of a new unsymmetrical, bulky β-diketimine pro-ligand incorporating the TCHP aryl
moiety, as well as four alkali metal complexes derived from this, and a previously reported
TCHP-substituted β-diketimine.
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2. Results and Discussion

The β-diketimine, TCHPNacnacH, 1, was recently reported to be prepared by a condensa-
tion reaction between acacH, H2C(MeC=O)2 and two equivalents of (TCHP)NH2 [17]. Here,
the new, unsymmetrical β-diketimine, TCHP/DipNacnacH 2, was similarly synthesized by the
condensation of one equivalent of (TCHP)NH2 with DipNacacH, {DipN(H)CMe}CHC(O)Me,
which gave 2 in a 43% isolated yield [25]. It is of note that, in the current study, during one
preparation of 1, a low yield of the β-ketimine, TCHPNacacH, {(TCHP)N(H)CMe}CHC(O)Me
3, was obtained as a by-product. This likely results from the use of slightly less than two
equivalents of (TCHP)NH2 in the synthesis. A rational synthesis of 3 was not attempted,
but it was spectroscopically characterized. The molecular structure of 2 is shown in
Figure 1a, which reveals it to exist as its ene-imine conjugated tautomer in the solid state,
as is typical for β-diketimines. The proton on N2 is hydrogen bonded to N1, which leads
to the two double bonds within the C3N2 backbone (viz. N1-C1 and C3-C4) adopting a
cis-configuration, relative to each other. A similar structure is adopted by β-ketimine, 3
(Figure 1b), in which the double bonds within the C3NO backbone are C1-O1 and C3-C4.

The bulky β-diketimines, 1 and 2, were deprotonated by treating diethyl ether so-
lutions of the compounds with a slight excess of nBuLi at −78 ◦C. Upon warming to
room temperature and stirring the reaction solutions overnight, they were concentrated
and stored at −30 ◦C to yield colorless crystals of lithium β-diketiminate complexes
[(TCHPNacnac)Li(OEt2)], 4, and [(TCHP/DipNacnac)Li(OEt2)], 5, in moderate isolated yields.
The solution state NMR spectroscopic data for the compounds are consistent with them
retaining their solid-state structures (see below) in solution. However, it is noteworthy
that the 13C{1H} NMR spectrum of compound 4 exhibits 10 cyclohexyl carbon signals
(δ = 25–45 ppm), which suggests restricted rotation around one of the sterically more
encumbered ortho-cyclohexyl rings of the TCHP substituents.

Compounds 4 and 5 have very similar solid-state structures, as is evident from
Figure 2. The molecular structure of these compounds are typical of previously reported
β-diketiminate lithium etherate complexes, e.g., [(DipNacnac)Li(OEt2)] [26]. That is, they
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are monomeric and their lithium centers possess trigonal planar coordination geometries
with one coordinated ether ligand. The β-diketiminate ligand binds as an N,N-chelate to
the lithium, with Li-N bond distances between 1.921 and 1.935 Å, within the normal range
for such complexes [26]. The Li-O distances are slightly longer when compared to the
previously reported [(DipNacnac)Li(OEt2)] complex (1.953(4) Å for 4 and 1.975(4) Å for 5;
cf. 1.911(4) Å for [(DipNacnac)Li(OEt2)]), which is likely caused by steric repulsion from its
bulky TCHP aryl groups. This also leads to a slight narrowing of the N-Li-N angle for 4 and
5 (97.67(18)◦ and 97.79(17)◦, respectively) compared to the angle in [(DipNacnac)Li(OEt2)]
(99.9(2)◦). The bond lengths within the C3N2 backbones of both compounds imply signifi-
cant electronic delocalizations over those fragments.
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Unsolvated potassium salts of the TCHP-substituted β-diketiminates could also be
synthesized using a similar methodology to that previously reported for the synthesis of
[K(DipNacnac)] [27]. That is, β-diketimine, 1, was combined with benzyl potassium in
toluene, pro-ligand 2 was combined with potassium bis(trimethylsilyl)amide (KHMDS) in
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toluene and both reactions were monitored by NMR spectroscopy. No reaction could be
observed after 16 h at room temperature for either pro-ligand, contrary to the synthesis
of [K(DipNacnac)], which showed good conversion under these conditions. This can be
attributed to the increased steric bulk from the TCHP aryl group, perturbing deprotonation
of 1 and 2 by the base. However, heating these solutions at 60 ◦C overnight led to clean
conversion to the potassium salts [{K(TCHPNacnac)}2], 6, and [{K(TCHP/DipNacnac)}∞], 7,
as determined by 1H NMR spectroscopy. It should be noted that compound 6 could
also be formed using KHMDS as the base, though this route gave variable yields of
product. Attempts to isolate compound 6 repeatedly led to a degree of decomposition of
the complex to 1 upon manipulation of the reaction mixture. Moreover, in the presence
of silicone grease, compound 6 decomposed to unknown products in solution over time.
This suggests that compound 6 is highly reactive, and as such could only be characterized
by NMR spectroscopy after formation in situ. As monitoring the formation of 6 from 1 by
NMR spectroscopy showed complete conversion, we believe this compound could be used
as a ligand transfer reagent after its formation in situ, and in the absence of silicone grease.

Crystals of 6 suitable for an X-ray diffraction study were formed by the addition of
n-hexane to a concentrated toluene solution of 6 at room temperature. The molecular
structure (Figure 3) shows the compound crystallizing as a dimer, with the potassium
centers having trigonal planar geometries, being N,N-chelated by a β-diketiminate, as
well as possessing an intermolecular C···K interaction with a meta-carbon of an opposing
TCHP group of the second [K(TCHPNacnac)] monomer unit. The N-K distances (2.633(3)
and 2.619(3) Å) are in the expected range and correspond well to those previously reported
for [K(DipNacnac)] (2.681 Å mean) [27]. The C···K distance of 3.309(3) Å is outside the sum
of the covalent radii for the two elements (2.71 Å [28]), but well within the sum of their van
der Waals radii (4.45 Å [29]).
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Compound 7 crystallized as a colorless material from the toluene reaction solution,
upon cooling it to room temperature from 60 ◦C. However, it should be noted that, like 6,
compound 7 undergoes decomposition to the proteo-ligand 2 in the presence of silicone
grease. Crystals of 7 suitable for an X-ray diffraction were obtained from a saturated
benzene solution, and its molecular structure is shown in Figure 4. It is polymeric, similar
to previously reported [K(DipNacnac)] [27]. The polymer is propagated via intermolecular
C···K interactions between the potassium centers and para- and meta-carbons of a Dip
group on an adjacent monomer unit. The K···C bond distances are 3.178(4) Å for K–Cpara
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and 3.254(3) Å for K–Cmeta. These separations are slightly shorter than the equivalent
C···K interactions in [K(DipNacnac)], which are 3.214(3) Å for K–Cpara, and 3.351(3) Å and
3.276(3) Å for K–Cmeta interactions. The K-N distances in the compound are comparable to
those in 6.

Inorganics 2021, 9, x  5 of 10 
 

 

 
Figure 3. Partial thermal ellipsoid plot (25% probability surface for displayed ellipsoids) of the mo-
lecular structure of 6 (hydrogen atoms omitted; TCHP groups shown as wireframe for clarity). Se-
lected bond lengths (Å) and angles (°): K(1)-N(1) 2.633(3), K(1)-N(2) 2.619(3), K(1)-C(9)’ 3.309(3), 
N(1)-K(1)-N(2) 68.23(10). 

Compound 7 crystallized as a colorless material from the toluene reaction solution, 
upon cooling it to room temperature from 60 °C. However, it should be noted that, like 6, 
compound 7 undergoes decomposition to the proteo-ligand 2 in the presence of silicone 
grease. Crystals of 7 suitable for an X-ray diffraction were obtained from a saturated ben-
zene solution, and its molecular structure is shown in Figure 4. It is polymeric, similar to 
previously reported [K(DipNacnac)] [27]. The polymer is propagated via intermolecular 
C∙∙∙K interactions between the potassium centers and para- and meta-carbons of a Dip 
group on an adjacent monomer unit. The K∙∙∙C bond distances are 3.178(4) Å for K–Cpara 
and 3.254(3) Å for K–Cmeta. These separations are slightly shorter than the equivalent C∙∙∙K 
interactions in [K(DipNacnac)], which are 3.214(3) Å for K–Cpara, and 3.351(3) Å and 3.276(3) 
Å for K–Cmeta interactions. The K-N distances in the compound are comparable to those in 6. 

 
Figure 4. Partial thermal ellipsoid plot (25% probability surface for displayed ellipsoids) of the mo-
lecular structure of 7 (hydrogen atoms omitted; Dip groups shown as wireframe, and TCHP group 
truncated for clarity). Selected bond lengths (Å) and angles (°): K(1)-N(1) 2.634(3), K(1)-N(2) 2.713(3), 
K(1)-C(24)’ 3.254(3), K(1)-C(25)’ 3.178(4), N(1)-K(1)-N(2) 68.82(9). 

  

Figure 4. Partial thermal ellipsoid plot (25% probability surface for displayed ellipsoids) of the
molecular structure of 7 (hydrogen atoms omitted; Dip groups shown as wireframe, and TCHP group
truncated for clarity). Selected bond lengths (Å) and angles (◦): K(1)-N(1) 2.634(3), K(1)-N(2) 2.713(3),
K(1)-C(24)’ 3.254(3), K(1)-C(25)’ 3.178(4), N(1)-K(1)-N(2) 68.82(9).

3. Materials and Methods
3.1. General Considerations

All manipulations were carried out using standard Schlenk and glove box techniques
under an atmosphere of high purity dinitrogen. Toluene and hexane were distilled over
molten potassium, while diethyl ether was distilled over 1:1 Na/K alloy. Benzene-d6 was
stored over a mirror of sodium and degassed three times via freeze-pump-thawing before
use. The 1H, 13C{1H} and 7Li NMR spectra were recorded on a Bruker AvanceIII 400
spectrometer and were referenced to the residual resonances of the solvent used or external
1 M LiCl. Mass spectra were collected using an Agilent Technologies 5975D inert MSD
with a solid-state probe. FTIR spectra were collected as Nujol mulls on an Agilent Cary
630 attenuated total reflectance (ATR) spectrometer. Microanalyses were carried out at the
Science Centre, London Metropolitan University or using a PerkinElmer- 2400 CHNS/O
Series II System. Melting points were determined in sealed glass capillaries under dini-
trogen and are uncorrected. The starting materials, TCHPNacnacH 1 [17], DipNacacH [30]
(TCHP)NH2 [31] and benzyl potassium [32], were prepared by literature procedures. All
other reagents were used as received.

3.2. Syntehsis of TCHP/DipNacnacH 2 and Data for TCHPNacacH 3

Preparation of TCHP/DipNacnacH, 2: 2,4,6-Tricyclohexylaniline (4.57 g, 13.5 mmol),
DipNacacH (3.50 g, 13.5 mmol) and p-toluenesulfonic acid (2.32 g, 13.5 mmol) were dis-
solved in toluene (100 mL), and the mixture was heated at reflux for 3 days in a Dean–Stark
apparatus. Volatiles were then removed in vacuo, the resultant oil was dissolved in
dichloromethane (100 mL), the extract washed with a saturated Na2CO3 solution (100 mL,
1 M) and the organic layer was separated. The organic layer was dried over MgSO4 and
volatiles were removed in vacuo. Methanol (5 mL) was added to the oily residue, which
was then sonicated and filtered to yield compound 2 as a crude white powder. This was
dried and recrystallized from hot ethyl acetate to yield pure TCHP/DipNacnacH (2.25 g). A
further crop of the product could be obtained by concentration of the mother liquor, and
letting it stand at room temperature (1.00 g). Total yield: 3.25 g, 42%. X-ray quality crystals
could be grown from the slow evaporation of a diethyl ether solution of TCHP/DipNacnacH.
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M.p: 224–227 ◦C; 1H NMR (400 MHz, C6D6, 298 K): δ = 1.24 (d, 3JHH = 8 Hz, 6H, CH(CH3)2),
1.28 (d, 3JHH = 8 Hz, 6H, CH(CH3)2), 1.31–1.68 (m, 17H, Cyc-CH2), 1.70 (s, 3H, NCCH3),
1.72 (s, 3H, NCCH3), 1.74–2.06 (m, 13H, Cyc-CH2), 2.52–2.60 (m, 1H, p-Cyc-H), 2.95–3.03
(m, 2H, o-Cyc-H), 3.29–3.38 (sept, 3JHH = 8 Hz, 2H, CH(CH3)2), 4.89 (s, 1H, NCCH), 7.18
(s, 2H, ArH), 7.20 (m, 3H, ArH), 12.29 (s, 1H, NH). 13C{1H} NMR (101 MHz, C6D6, 298 K):
δ = 20.6 (NCCH3), 21.4 (NCCH3), 23.8, 24.3 (CH(CH3)2), 26.6, 26.8, 27.4, 2 × 27.7 (Cyc-C),
28.6 (CH(CH3)2), 34.7, 35.3 (Cyc-C), 39.6 (o-Cyc-CH), 45.3 (p-Cyc-CH), 94.1 (NCCH), 123.0,
123.5, 125.0, 137.3, 141.2, 143.3, 143.7, 145.8 (ArC), 159.7 (NCCH3), 163.8 (NCCH3). IR
ν/cm−1 (ATR): 2920 (s), 2847 (s), 1618 (s), 1545 (s), 1442 (s), 1359 (w), 1270 (m), 1175 (m).
Acc. Mass/ESI m/z: calc. 581.4835 found: 581.4841 [M+H]+.

N.B. During one synthesis of 1, β-ketimine 3 was obtained as a low yield by-product.
Data for TCHPNacacH 3. M.p 183–185 ◦C. 1H NMR (400 MHz, C6D6, 298 K): N.B.

integration of resonances for cyclohexyl groups are estimated due to complex overlapping
signals, δ = 1.12–1.44 (m, 10H, Cyc-CH2), 1.46 (s, 3H, NCCH3), 1.48–1.98 (m, 20H, Cyc-CH2),
2.06 (s, 3H, OCCH3), 2.46–2.52 (m, 1H, p-Cyc-CH), 2.78–2.86 (m, 2H, o-Cyc-CH), 5.14 (s,
1H, NCCH), 7.17 (s, 2H, ArH), 12.67 (br, 1H, NH). 13C{1H} NMR (101 MHz, C6D6, 298 K):
δ = 19.1 (NCCH3), 2 × 26.6, 27.3, 2 × 27.4 (Cyc-C), 29.1 (OCCH3), 33.5, 35.1, 35.6, 40.0, 45.2
(Cyc-C), 95.9 (NCCH), 122.9, 132.5, 145.5, 147.8 (ArC), 162.9 (NCCH3), 195.6 (OCCH3). IR
ν/cm−1 (ATR): 2921 (s), 2848 (s), 1611 (s), 1567 (s), 1492 (w), 1445(s), 1351 (m), 1274 (s),
1235 (w), 1185 (w), 1119 (w), 1014 (w), 998 (w), 951 (w), 919 (w), 893 (w), 865 (m), 774 (w),
741 (m), 674 (w). Acc. Mass/ESI m/z: calc. for [M+H]+ 422.3417 found: 422.3422.

3.3. Syntehsis of Complexes 4–7

Preparation of [(TCHPNacnac)Li(OEt2)], 4. TCHPNacnacH (1.15 g, 1.5 mmol) was dis-
solved in diethyl ether (20 mL) and the solution cooled to −78 ◦C. nBuLi (1.05 mL, 1.6 M in
hexanes, 1.7 mmol) was added dropwise via syringe and the resultant solution was allowed
to warm to room temperature and stirred for 2 h. The solution was concentrated in vacuo
and stored at –30 ◦C overnight, yielding large colorless blocks of 4 (0.62 g) suitable for
X-ray diffraction. Further concentration of the mother liquor and storage at −30 ◦C gave
a second crop of crystals (0.14 g). Total yield: 0.76 g, 60%. M.p 112–114 ◦C (decomp): 1H
NMR (400 MHz, C6D6, 298 K) N.B. integration for cyclohexyl groups are estimated due to
complex overlapping signals: δ = 0.67 (br, 6H, (CH3CH2)2O), 1.27–1.84 (m, 50H, Cyc-CH2),
1.90 (s, 6H, NCCH3), 1.98–2.03 (m, 10H, Cyc-CH2), 2.52–2.58 (m, 2H, p-Cyc-CH), 2.96–3.04
(br m, 8H, overlapping o-Cyc-CH & (CH3CH2)2O), 4.88 (s, 1H, NCCH), 7.13 (s, 4H, ArH).
13C{1H} NMR (101 MHz, C6D6, 298 K): δ = 14.3 ((CH3CH2)2O), 23.6 (NCCH3), 26.8, 27.0,
27.6, 27.9, 28.1, 34.8, 35.1, 35.6, 39.4, 45.2 (Cyc-C), 65.2 ((CH3CH2)2O), 92.5 (NCCH), 122.4,
139.8, 141.8, 147.9 (ArC), 164.3 (NCCH3). 7Li NMR (155 MHz, C6D6, 298 K): δ = 1.91. IR
ν/cm−1 (ATR): 2920 (s), 2849 (m), 1601 (m), 1550 (m), 1438 (m), 1401 (s), 1348 (m), 1282
(m), 1250 (w), 1187 (w), 1116 (m), 1070 (m), 1024 (w), 994 (w), 950 (w), 921 (w), 890 (w),
862 (m), 835 (w), 779 (w), 724 (w), 696 (m). EI/MS (70 eV) m/z (%): 83.1 (Cyc+, 26), 364.3
(Cyc)3C6H2NCMe+, 100), 659.6 (TCHPNacnacH–Cyc+, 10), 727.8 (TCHPNacnacH-CH3

+, 17),
742.8 (TCHPNacnacH+, 13), 748.6 (TCHPNacnacLi+, 8). Elemental analysis calculated for
C57H87LiN2O: C 83.16%, H 10.65%, N 3.40%, found: C 83.02%, H 10.40%, N 3.32%.

Preparation of [(TCHP/DipNacnac)Li(OEt2)], 5. TCHP/DipNacnacH (500 mg, 0.86 mmol)
was dissolved in diethyl ether (20 mL) and the solution cooled to −78 ◦C. nBuLi (0.56 mL,
1.6 M in hexanes, 0.90 mmol) was added dropwise via syringe and the resultant solu-
tion was allowed to warm to room temperature and stirred overnight. The solution was
concentrated in vacuo and stored at −30 ◦C overnight, yielding large colorless blocks
of 5 (258 mg, 45%) suitable for X-ray diffraction. M.p 134–136 ◦C (decomp): 1H NMR
(400 MHz, C6D6, 298 K) N.B. integration for cyclohexyl groups are estimated due to com-
plex overlapping signals: δ = 0.47–0.50 (t, 3JHH = 7.0 Hz, 6H, (CH3CH2)2O), 1.26–1.27 (d,
3JHH = 6.9 Hz, 6H, CH(CH3)2), 1.32–1.33 (d, 3JHH = 6.9 Hz, 6H, CH(CH3)2), 1.37–1.83 (m,
25H, Cyc-CH2), 1.88 (s, 3H, NCCH3), 1.93 (s, 3H, NCCH3), 1.95–1.98 (m, 5H, Cyc-CH2),
2.50–2.58 (m, 1H, p-Cyc-CH), 2.75–2.81 (q, 3JHH = 7.0 Hz, 4H, (CH3CH2)2O), 2.94–3.00 (m,
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2H, o-Cyc-CH), 3.40 (sept, 3JHH = 6.9 Hz, 2H, CH(CH3)2) 4.96 (s, 1H, NCCH), 7.08–7.20
(m, 5H, overlapping TCHP-ArH & Dip-ArH). 13C{1H} NMR (101 MHz, C6D6, 298 K):
δ = 13.7 ((CH3CH2)2O), 23.4, 23.5 (NCCH3), 24.0, 24.3 (CH(CH3)2), 26.7, 27.0, 27.6, 27.7,
27.9, (Cyc-C), 28.3 (CH(CH3)2), 34.2, 35.2, 35.6, 39.5, 45.3 (Cyc-C), 63.7 ((CH3CH2)2O), 92.8
(NCCH), 122.3, 123.1, 123.4,‘139.5, 140.9, 141.9, 147.9, 150.1 (ArC), 163.7, 164.0 (NCCH3).
7Li NMR (155 MHz, C6D6, 298 K): δ = 1.88. IR ν/cm−1 (ATR): 621 (w), 1549 (s), 1518 (m),
1148 (w), 1093 (w), 1058 (w), 1016 (w), 953 (w), 926 (w), 863 (m), 831 (w), 788 (w), 758 (s),
731 (s). A reproducible elemental analysis could not be obtained for this compound as it
consistently co-crystallized with small amounts of TCHP/DipNacnacH, which could not be
separated by repeated recrystallizations.

Preparation of [{K(TCHPNacnac)}2], 6: TCHPNacnacH (400 mg, 0.54 mmol) and benzyl
potassium (72 mg, 0.55 mmol) were dissolved in toluene (10 mL) and the mixture stirred
overnight at 60 ◦C. The solution was then cooled to room temperature and volatiles
were removed in vacuo. The subsequent solid was dissolved in n-hexane (5 mL) and the
extract left to stand at room temperature, yielding colorless crystals of 6 suitable for X-ray
diffraction studies. Analysis of the crystalline material by NMR spectroscopy consistently
showed contamination of the product with TCHPNacnacH, which could not be removed,
despite repeated recrystallizations.

In situ preparation of 6: TCHPNacnacH (10 mg, 0.013 mmol) and benzyl potassium
(3 mg, 0.023 mmol) were dissolved in C6D6 (0.6 mL) in a J. Young’s NMR tube equipped
with a Teflon screw cap and the mixture heated overnight at 60 ◦C. The subsequent
reaction solution was analyzed by NMR spectroscopy, showing near complete conversion
to compound 6. 1H NMR (400 MHz, C6D6, 298 K) N.B. integration for cyclohexyl groups
are estimated due to complex overlapping signals: δ = 1.36–1.87 (m, 55H, Cyc-CH2), 1.89 (s,
6H, NCCH3), 2.02–2.06 (m, 5H, Cyc-CH2), 2.54–2.62 (m, 2H, p-Cyc-CH), 3.03–3.10 (m, 4H,
o-Cyc-CH), 4.74 (s, 1H, NCCH), 7.16 (s, 4H, TCHP-ArH). 13C{1H} NMR (101 MHz, C6D6,
298 K): δ = 23.8 (NCCH3), 26.8, 27.0, 27.6, 27.8, 28.2, 35.0, 2 × 35.6, 38.8, 45.2 (Cyc-C), 90.1
(NCCH), 122.8, 138.6, 139.6, 140.0, 149.4, (ArC), 161.2, (NCCH3).

Preparation of [{K(TCHP/DipNacnac)}∞], 7. TCHP/DipNacnacH (516 mg, 0.89 mmol)
and KHMDS (195 mg, 0.98 mmol) were dissolved in toluene (8 mL) and the mixture
heated overnight at 60 ◦C. The solution was cooled to room temperature, after which time
micro-crystalline 7 was deposited. The suspension was filtered, and the solid was dried in
vacuo giving compound 7 as a spectroscopically near pure colorless solid (500 mg, 91%).
Crystals suitable for X-ray diffraction were grown by slow cooling a saturated solution of 7
in C6D6 from 60 ◦C to room temperature. M.p. > 260 ◦C: 1H NMR (400 MHz, C6D6, 298 K)
N.B. integration for cyclohexyl groups are estimated due to complex overlapping signals:
δ = 1.14–1.17 (d, 3JHH = 6.9 Hz, 6H, CH(CH3)2), 1.24–1.30 (m, 2H, Cyc-CH2), 1.32–1.34 (d,
3JHH = 6.9 Hz, 6H, CH(CH3)2), 1.37–1.84 (m, 24H, Cyc-CH2), 1.89 (s, 3H, NCCH3), 1.91 (s,
3H, NCCH3), 1.97–2.04 (m, 4H, Cyc-CH2), 2.53–2.59 (m, 1H, p-Cyc-CH), 2.96–3.04 (m, 2H,
o-Cyc-CH), 3.39 (sept, 3JHH = 6.9 Hz, 2H, CH(CH3)2), 4.80 (s, 1H, NCCH), 7.01–7.19 (m, 5H,
overlapping TCHP-ArH & Dip-ArH). 13C{1H} NMR (101 MHz, C6D6, 298 K): δ = 23.6, 23.7
(NCCH3), 24.0, 24.4 (CH(CH3)2), 26.8, 26.9, 27.6, 27.9 (Cyc-C), 28.0 (CH(CH3)2), 34.5, 35.6,
35.8, 39.1, 45.2 (Cyc-C), 91.2 (NCCH), 121.2, 122.8, 123.7, 138.4, 139.6, 140.0, 149.1, 151.2
(ArC), 160.1, 160.9 (NCCH3). IR ν/cm−1 (ATR): 1566 (m), 1518 (m), 1143 (m), 1016 (w), 923
(w), 890 (w), 862 (m), 819 (w), 792 (m), 770 (m), 727 (s). A reproducible elemental analysis
could not be obtained for this compound as it consistently co-crystallized with small
amounts of TCHP/DipNacnacH, which could not be separated by repeated recrystallizations.

3.4. Crystallographic Details

Crystals of 2–7 suitable for X-ray structural determination were mounted in silicone
oil. Crystallographic measurements were carried out at 123(2) K, and were made using
a Rigaku Synergy diffractometer using a graphite monochromator with Cu Kα radiation
(λ = 1.54184 Å). The structures were solved by direct methods and refined on F2 by full
matrix least squares (SHELX16) [33] using all unique data. All non-hydrogen atoms
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were anisotropic with hydrogen atoms typically included in calculated positions (riding
model). Crystal data, details of the data collection and refinement are given in Table S1 (in
Supplementary Materials). Crystallographic data for the structures have been deposited
with the Cambridge Crystallographic Data Centre (CCDC no. 2105059-2105064). Copies of
this information may be obtained free of charge from The Director, CCDC, 12 Union Road,
Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www:
http://www.ccdc.cam.ac.uk).

4. Conclusions

In summary, the syntheses of four alkali metal complexes of two super bulky β-
diketiminate ligand systems are described. These complexes were characterized by X-ray
crystallography and multinuclear NMR spectroscopy. The solid-state structures of the
lithium etherate complexes are similar to previously reported examples. The molecular
structures of the potassium salts show varied coordination environments in potassium,
depending on the accompanying ligand framework. That is, [{K(TCHPNacnac)}2] 6 is
dimeric with C···K interactions involving a meta-aryl carbon of the opposing monomer unit.
In contrast, [{K{(TCHP/DipNacnac)}∞] 7 is polymeric, and shows comparable connectivity
between monomer units to that seen in the previously reported complex [K(DipNacnac)].
These alkali metal compounds have significant potential for use as ligand transfer reagents
in the synthesis of metal complexes incorporating large TCHP-substituted β-diketiminates.
We are currently exploring the use of these ligands for the kinetic stabilization of low-
oxidation state metal complexes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/inorganics9090072/s1, Table S1: Summary of crystallographic data for 2–7; Figures S1–S14: 1H,
13C{1H}, and 7Li{1H} NMR spectra of 2–7; CIF and CheckCIF files of 2–7.
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