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Abstract: Eu-doped Y2O3 coated diatomite nanostructures with variable Eu3+ contents were syn-
thesized by a facile hydrothermal technique. The products were characterized by means of energy
dispersive X-ray photoelectron spectroscopy (EDX), scanning electron microscopy (SEM), powder
X-ray diffraction (PXRD), Brunauer–Emmett–Teller (BET), UV-vis diffuse reflectance spectroscopy,
and photoluminescence spectroscopy techniques. As claimed by PXRD, the particles were crystallized
excellently and attributed to the cubic phase of Y2O3. The influence of substitution of Eu3+ ions into
Y2O3 lattice caused a redshift in the absorbance and a decrease in the bandgap of as-prepared coated
compounds. The pore volume and BET specific surface area of Eu-doped Y2O3-coated diatomite
is greater than uncoated biosilica. The sonophotocata-lytic activities of as-synthesized specimens
were evaluated for the degradation of Reactive Blue 19. The effect of various specifications such as
ultrasonic power, catalyst amount, and primary dye concentration was explored.

Keywords: sono-photocatalytic degradation; europium; diatomite; luminescent; reactive blue 19

1. Introduction

Advanced oxidation processes (AOPs) have achieved a substantial research interest
for decolorization of toxic organic pollutants in different wastewater. The main mechanism
of AOPs is the generation of •OH radicals which have greater oxidizing performance and
led to attain faster and more effective decomposition of pollutants [1–6].

One kind of AOP operation is sonocatalysis that has recently been utilized for degra-
dation of organic contaminants [7–12]. The chemical impact of ultrasonic irradiation is
raised via the acoustic cavitation and results in collapse growth, and generation of bubbles
inside a solution. Through collapsing the bubbles, localized hot spots are created with
elevated temperature and pressure. Take into account such sever condition, the dissolved
oxygen and water molecules can encounter straight thermal dissociation to produce partic-
ularly reactive radical species such as oxygen (•O), •OH, and hydrogen (•H) operating a
substantial act to oxidize organic compounds in water [13–16].

The blend of photocatalysis and sono-catalysis seems to promote the decolorization
share of organic contaminants due to synergistic results [17]. Besides the generation of
reactive oxygen species (ROS) through cavitation, employing ultrasound in photocatalytic
procedure has other satisfaction, such as boosting the functional surface area of the cata-
lyst through blocking the aggregation of particles, incrementing the contaminants’ mass
transfer between the catalyst surfaces and solution, intercepting catalyst deactivation via
constantly cleansing absorbed molecules from the catalyst surface through micro bubbling
and micro streaming, and increasing the number of high temperature and pressure regions
via breaking up micro-bubbles made via the ultrasound into smaller ones in the existence
of catalyst nanoparticles [17–19].
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Diatomite (diatomaceous earth), fossilized diatoms, is already used as adsorbent and
carrier material. Additionally, the porous structure of diatom made it a potential hetero-
geneous catalyst [20–22]. Yttrium oxide (Y2O3) is an essential engineering compound
in various fields because of its physical and chemical properties, such as relatively large
bandgap energy, high melting point, and high permittivity [23–26]. Previously, Eu-doped
Y2O3 nanostructures were prepared through several processes such as the combustion
method [27], hydrothermal method [28], laser vaporization [29], sol gel method [30] and
co-precipitation method [31], Precipitation method [32], and evaporation method [33]
for various applications of thermoluminescence, photoluminescence imaging and lumi-
nescence. Lanthanide-incorporated nano-structured semiconductors have freshly been
employed as active sonocatalyst and photocatalysts. With empty 5d orbitals and partly
occupied 4f orbitals, Ln3+ cations could also remarkably boost the separation rate of
photoinduced charge carriers within semiconductor catalysts and promote markedly the
sonocatalytic performance [1,34–38]. The photoluminescence properties of Eu3+-doped
Y2O3 nanostructures have attracted much attention due to its red phosphors characteristics
in the last decade [39–41].

This work deals with describing a simple hydrothermal route for the preparation of
coated-diatom with europium-doped Y2O3 (EuxY2−xO3) nanomaterials. The nanoparticles’
sonocatalytic activity was assessed for RB 19 (see Table 1). No report exists on the sono-
catalytic degradation of Reactive Blue 19 (RB 19) in the presence of coated-diatom with
europium-doped Y2O3. The sono-photocatalytic degradation of organic dye was examined
and optimized and the influence of inorganic ions on the degradation effects of RB19 was
investigated.

Table 1. The characteristics of C.I. reactive blue 19.

Chemical Structure
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Color index name Reactive Blue 19

Molecular formula C22H16N2Na2O11S3

Color index number 219-949-9

λmax (nm) 592

Mw (g/mol) 626.54

2. Experimental Methods
2.1. Chemicals and Materials

The chemicals used in this work had analytical grades and utilized with no fur-
ther purification. Diatomaceous earth (97.5% SiO2), YCl3 (99.99%), ethanol (99%), and
Eu(NO3)3·5H2O were purchased from Sigma-Aldrich(Seoul, Korea). RB19 was acquired
from the Zhejiang Yide Chemical Company (Hangzhouwan Industrial Park, Shangyu, China).

2.2. Characterization

Using PXRD characterization at room temperature, the samples’ crystal phase compo-
sition was determined via a D8 Advance diffractometer (Bruker, Karlsruhe, Germany) with
an emission current of 30 mA, monochromatic high-intensity Cu Ka radiation (λ = 1.5406 Å),
and accelerating voltage of 40 kV. Elemental analyses were obtained using a linked ISIS-300,
(Oxford Instruments, Abingdon, UK) (energy dispersion spectroscopy) detector. Using
an electron microscope (SEM, S-4200, Hitachi, Tokyo, Japan), the surface state and the
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morphology were observed. Moreover, the obtained SEM images were analyzed using
manual microstructure distance measurement software (Nahamin Pardazan Asia Co., Iran)
to determine the diameter size distribution of obtained samples. A diffuse reflectance
UV-Vis spectrophotometer was used to evaluate the samples’ optical absorption spectra
(Varian Cary 3 Bio, Australia). Via a Spex FluoroMax-3 spectrometer (Longjumeau, France),
photoluminescence spectra were acquired after dispersing a small amount of specimen
in distilled water using ultrasound. The Specific surface areas were performed through a
single point BET technique utilizing Micrometrics Gemini V and Gemini 2375. Cell para an
emission current of 30 mA, an emission current of 30 mA, an emission current of 30 mA, an
emission current of 30 mA, an emission current of 30 mA, an emission current of 30 mA, an
emission current of 30 mA, an emission current of 30 mA, an emission current of 30 mA, an
emission current of 30 mA, meters were calculated with Celref program from powder XRD
patterns, and reflections have been determined and fitted using a profile fitting procedure
with the Winxpow program. The reflections observed in 2θ = 10–70◦ were used for the
lattice parameter determination.

2.3. Preparation of Eu-Doped Y2O3 Nanoparticles

Eu-doped yttrium oxide nanomaterials with various Eu contents (0–8 mol%) were
acquired hydrothermally. In a typical synthesis, Eu (NO3)3.5H2O and proper molar ratios
of YCl3 were dissolved first in 40 mL of deionized water. Therefore, EDTA (0.4 g) and
2 mmol NaOH were added drop-wise to the solution at moderate speed with stirring. The
above solution was transferred into 100-mL autoclave with Teflon-lined stainless steel.
Then it was settled in an oven at 250 ◦C for 72 h and finally allowed to cool to room
temperature naturally. Gathering the as-prepared EuxY2-xO3 nanoparticles, they were
rinsed several times with distilled water and absolute ethanol for eliminating remained
impurities, and then dried for 2 h at 60 ◦C at vacuum. The result was a white powder.

2.4. Diatomite Coated with Eu-Doped Y2O3 Nanoparticles

The diatom was weighed and added to 25 mL deionized water and was continuously
stirred to spread evenly. Then, 1.5 g Eu-doped Y2O3 compounds with various Eu content
were added to the above solution to fully disperse. After 1 h of ultrasonic irradiation, the
solution transferred into a 100-mL autoclave with Teflon-lined stainless steel, settled in
an oven at 160 ◦C for 12 h, and then cools down naturally to room temperature. The final
coated-diatom was obtained after washing and drying the precipitates at 60 ◦C.

2.5. The Evaluation of Catalytic Activity

The sonophotocatalytic activity of the diatom biosilica coated with Eu-doped yttria
nanomaterial was examined to degrade RB19 as a model organic pollutant. In a general
route, suspending the nanocatalyst (0.1 g) was carried out in an aqueous solution of the
model dye (100 mL) of with a recognized initial concentration at pH = 6. So, the suspension
was radiated into the ultrasonic bath via a 40 W compact fluorescent visible lamp armed
with a cutoff filter to show visible light illumination (λ of higher than 420 nm). To determine
the removal of dye, A UV–vis spectrophotometer was employed through the absorbance at
λmax = 592 nm. The degradation effectiveness (DE) was calculated as follows:

DE (%) =

(
1− C

C0

)
× 100 (1)

where C0 and C are the dye’s initial and ultimate concentrations within the solution (mg/L),
respectively. To evaluate the nanocatalyst’s reusability, the utilized catalyst was separated
from the solution, rinsed with distilled water, and utilized in a new run after drying at
70 ◦C.



Inorganics 2021, 9, 88 4 of 19

3. Results and Discussion
3.1. Characterizing the Synthesized Samples

Figure 1 presents the PXRD pattern of uncoated diatomite, Y2O3, and diatom-coated
with Eu-doped Y2O3. The diatomite PXRD pattern is indexed readily to SiO2 (JCPDS card
no. 00-001-0647) whilst the four broad and strong peaks with attributed reflections (222),
(400), (440), (622) and 2θ = 29.1, 33.7, 48.6, and 58.2◦ are related to the cubic structure
of yttria, respectively (JCPDS card no. 41-1105) [42]. The indistinguishable forms of the
PXRD patterns of the Y2O3 and the coated with EuxY2-xO3 compounds propose that the
surface of the diatom is equally covered. As illustrated in Figure 1, the substitution of
yttria by Eu3+, only the peaks related to the Y2O3 were still noticed and no other peaks
corresponding to Y(OH)3, Eu2O3 or other impurities were detected, which displays that the
Eu3+ ions substitute Y3+ ions in yttria structure. A negligible shift was observed to lower
diffraction for diatomite-coated with Eu-dopedY2O3 samples. This could be attributed
with the Y2O3 lattice’s contraction owing to the substitution of Eu3+ ions, with a bigger
radius (1.07 Å) in comparison to Y3+ ions (1.02 Å) [7,35]. The XRD pattern of diatom-coated
with 6%Eu-doped Y2O3 is provided in Supplementary Materials as Figure S1.
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The cell parameters of the synthesized materials were calculated from the PXRD
patterns. With increasing dopant content (x), a parameter for Eu3+ increases (Figure 2).
The trend for lattice constants can be correlated to the effective ionic radii of the Ln3+ ions,
which results in larger lattice parameters for Eu3+ doped materials.
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Figure 3 displays SEM images of the diatom-coated with 6% Eu-doped Y2O3 and
uncoated sample produced by the hydrothermal route. The skeletal-remain biosilica with
high porosity structure is shown in Figure 3a. High porosity and the surface morphology
of diatom can be employed as the template to enhance the potential of functional materials.
Figure 3b represents the image of 6% Eu-doped Y2O3 nanoparticles which diameter of these
particles is around 20–60 nm. The size distribution of 6% Eu-doped Y2O3 is provided in
Supplementary Materials as Figure S2 indicating the particles size mainly around 20–60 nm.
Following the immobilization of 6% Eu-doped yttrium oxide, the SEM image of diatomite
is seen in Figure 3c,d. Changing the mass ratio of the substrate–diatomite and the coating
material–doped-Y2O3 controls the thickness of the coating layers. To achieve smooth,
stable, and uniform coating, the optimum ratio is 1.5.

Figure 4 displays the TEM and HRTEM images of 6% Eu-doped Y2O3-coated diatomite
at different magnification. The SAED pattern of as-prepared 6% Eu doped samples shows
good crystallinity of obtained compounds (Figure 4b). The HRTEM images also confirms
the nanosized coated Eu-doped Y2O3 on biosilica as shown in Figure 4c,d.The size of
coated particles are around 8–20 nm, respectively. More characterization results related to
various content of Eu are provided in Supplementary Materials as Figures S3–S7.

The elemental mapping of O, Y, Eu and Si in the diatom-coated with Eu-doped Y2O3
sample was shown in Figure 5 confirming the XRD outcome and purity of sample. The
atomic percent of as-prepared sample are provided in Table 2 displaying the composition,
elements and there is no impurity in the prepared sample.
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Table 2. The atomic percent of 6% Eu-doped Y2O3-coated diatomite.

Element Line Type wt% Atomic % Factory Standard

O K series 55.50 69.38 Yes

Si K series 39.50 28.27 Yes

Y L series 3.88 2.21 Yes

Eu M series 1.12 0.14 Yes

Total: 100.00 100.00
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Figure 6a shows the absorbance spectra of Eu-doped Y2O3 coated diatomite com-
pounds. A redshift in absorbance spectra is seen with increasing dopant content.

The as-synthesized compound’s band-gap energy can be calculated from the intercep-
tion of the obtained linear area with the energy axis according to (hvα)2 versus (hv) (Tauc
plot) (Figure 6b). Compared to the pure sample, the doped Y2O3 has lower Eg values, and
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it is deducted by incrementing the dopant. Table 3 lists the band-gap energy for Eu-doped
Y2O3 coated diatomite nanoparticles.

Table 3. Bandgap energy of diatom coated with Eu-doped Y2O3 nanostructures.

Sample Band Gap (eV)

Diatom coated with Y2O3 4.94
diatom coated with 4% Eu-doped Y2O3 4.73
diatom coated with 6% Eu-doped Y2O3 4.64
diatom coated with 8% Eu-doped Y2O3 4.53
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Figure 7 displays the PL spectra of the as-prepared diatom coated with 6% and 8%
Eu-doped Y2O3 samples (EuxY2-xO3). Under UV irradiation, the samples present a strong
emission centered at 614 nm, and other emission feature is an indication of europium
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cations in the cubic Y2O3 host lattice. The emission spectra are consisting of Eu3+ 5D0–
7FJ transitions (J = 0, 1, 2, 3 and 4) with the eminent peak 5D0–7F2 (614 nm). Other
peaks at 583 (5D0–7F0), 596 (5D0–7F1), 633 (D0–7F3) and 711 nm (5D0–7F4) were observed,
respectively [43]. The schematic bandgap model for the luminescence of Eu3+ doped in
Y2O3 lattice was provided in Supplementary Materials as Figure S8.
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Adsorption/desorption isotherm of nitrogen for uncoated diatomite and coated with
6% Eu3+-substituted Y2O3 are shown in Figure 8. In the case of both specimens, two
isotherms with obvious hysteresis loop were noticed in the pressure range of 0.3–1.0 p/p0.
The BET specific surface area of biosilica is 1.5 m2/g. Additionally, the BET specific surface
area of diatomite coated with 6% Eu-substituted Y2O3 (8.7 m2/g) considerably exceeds
that of uncoated diatom. A superior adsorption performance is expected for coated-diatom
with europium-doped Y2O3 nanoparticles.

3.2. Synergistic Effect of Photocatalysis and Sonocatalysis on the Degradation of RB19 Using
Diatomite Coated with Eu-Doped Y2O3 Nanoparticles

By comparative evaluations, the photo-, sono-, and sono-photocatalytic performance
of the prepared diatomite coated with Eu-doped Y2O3 were assessed, for which the re-
sults are displayed in Figure 9. The degradation percent was very low in the absence of
catalyst nanoparticles under light irradiation, which demonstrates that photolysis doesn’t
contribute to the RB19 elimination from the solution.
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Eu-doped Y2O3 (b).

The findings of the assay conducted in dark condition present that surface adsorption
has no remarkable effect on degrading the dye solution. The degradation efficiency by
the photocatalytic route was less than 64%. The degradation efficiency through sonocat-
alytic degradation (52%) was higher than sonolysis (7%). The degradation percentage was
outstandingly boosted in the sonophotocatalytic process (96.45%) owing to synergistic
impacts between photo- and sono-catalysis. This can be simplified as: firstly, the production
of several ROSs through the integrated cavitation effects and photocatalytic procedure,
secondly, the elevated mass transfer rates, thirdly, the catalyst nanoparticles disaggregation
by ultrasound and the larger active surface areas, and fourthly, the creation of more hot
spots through catalyst nanoparticles [17–19]. Figure 10 shows the spectra of the lamp used
for catalytic process.
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As displayed in Figure 11, the graph of (−ln (C/C0) vs. time indicates linear trend
for all three sono-photocatalytic, photocatalytic and sonocatalytic processes, displaying
pseudo-first-order kinetics [1,44,45]. It is apparent that the pseudo-first-order kinetic
constant and degradation ability in sono-photocatalysis (kobs,sono-photo) are bigger than
those for sonocatalysis (kobs,sono) and photocatalysis (kobs,photo). These outcomes totally
introduce the concept of a synergistic impact.
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To examine the decolorization process’s mechanism and to reveal the chief oxidative
species, assays were conducted in the presence of proper scavengers of active species. As
stated by Figure 12, the addition of t-BuOH (a scavenger of hydroxyl radicals) results in
decreasing of 14% in the decomposition percent. By addition of oxalate (a scavenger of
h+

VB), the decolorization efficiency reduced to 54%. In the case of Cl− and I− (scavenger of
hole) it reaches to 27 and 33% respectively. The dye degradation was inhibited remarkably
as benzoquinone (BQ) was added (a scavenger of superoxide radicals). These results
display that the superoxide radicals and h+

VB were the substantial oxidative species in
degradation of organic dye. In addition, the hydroxyl radicals also affect the degradation.
Considering the synergistic impacts of photo- and sono-catalysis, a possible mechanism for
the decolorization procedure can be proposed [17,19]:
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(1) The two light irradiation and US can excite the catalyst particles to formation of
electron-hole pairs:

Eu-doped Y2O3 coated diatom + (hν and US)→ h+ + e− (2)

(2) The reaction of adsorbed oxygen molecules and electrons of conduction band lead
to produce •O2

−, HO2
•, and H2O2:

e− + O2 → •O2
− (3)

•O2
− + H+→ HO2

• (4)

e− + H+ + HO2
• → H2O2 (5)

(3) Water molecules or hydroxyl anions can be oxidized by the photogenerated holes
to produce hydroxyl radicals:

OH− + h+ → •OH (6)

h+ + H2O→ •OH + H+ (7)

(4) The pyrolysis of water molecule can be boosted by the US to generate hydrogen
and hydroxyl radicals:

H2O + US→ H• + •OH (8)
•OH + •OH→ H2O2 (9)

(5) Eventually, the molecules of dye can be decomposed by the produced active spices:

Reactive blue 19 + reactive oxygen species (ROSs)→ degrading dye molecules

3.3. Effect of Eu3+ Content of Diatom Coated Eu-Doped Y2O3 Nanoparticles

The removal effectiveness of RB 19 over diatomite coated Eu-doped Y2O3 sonocat-
alysts during 70 min of sonophotolysis is shown in Figure 13. The doped samples with
proper content of Eu3+ ion had much better catalytic performance compared with uncoated
biosilica. For diatom coated 6% Eu doped Y2O3 nanoparticles, the highest decolorization
efficiency was achieved. Two mechanisms can explain these findings. First, rare-earth
cations such as Eu3+ restrain the electron–hole recombination and act as an electron scav-
enger. Second, the new energy level under the conduction band edge of Y2O3 is created by
substituting of Eu3+ into yttria lattice [46,47]. Considering the standard redox potentials
of E0 (Eu3+/Eu2+) = −0.35 V and E0 (O2/O2

−) = 0.338 V, the existence of Eu3+ in yttria
structure can improve the following reactions [48]:

Eu3+ + e→ Eu2+ (10)

Eu2+ + O2 → Eu3+ + O2
•− (11)

O2
•− + H+ → HO•2 (12)

2HO•2→ H2O2 + O2
• (13)

•OH, H2O2 and O2
• radicals are well-known powerful oxidants for the degrading of

organic dye [49].
The UV–vis absorption spectra of RB 19 at various irradiation periods for the sonopho-

tocatalytic process are shown in Figure 14. The reducing concentration of RB 19 during the
catalytic process is used to examine the performance of the catalyst.
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3.4. Primary Dye Concentration Effect

Various initial dye concentrations in the range of 20 to 40 mg/L were used in this study.
As seen in Figure 15, DE % reduced from 96.54 to 49.21% in the case of initial concentration
20 to 40 mg/L. Filling the energetic sites on the catalyst’s surface by pollutants molecules
at high concentration results in an astounding decrease in the degradation effectiveness.
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The prevention of diffusion of light to the catalyst’s surface can led to unsatisfactory
performance at dense concentration of dye solution [50].
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3.5. The Amount of Catalyst Effect

The effect of catalyst value on the removal percentage of RB 19 is seen in Figure 16. The
sonication period and primary dye concentration were 70 min and 20 mg/L, respectively.
At concentration of 0.5, 0.75, 1.0, 1.25 and 1.5 g/L, the color removal ratio was 78.43, 85.92,
90.76 and 96.45%, sequentially. The DE% increased from 0.5 to 1.25 g/L, and then reduced.
This could be explained by the aggregation of catalyst beyond 1.25 g/L which led to
reducing ultrasound scattering and decreasing the number of active sites [7,17].
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3.6. Effect of Sonication Energy

The decolorization percent of RB19 under different ultrasonic power in the range
60 to 150 W was also investigated. Employing the 50 to 150 W/L sonication power, the
degradation percentage is increased from 84.17% to 96.45% (Figure 17). Enhanced degra-



Inorganics 2021, 9, 88 16 of 19

dation ratio was achieved through increasing the ultrasonic power which the production
of •OH radicals increases. Moreover, the disturbance of the solution was elevated with
significant power and accordingly promotes the mass transfer rate of dye, reactive species
and intermediates between catalyst’s surface and the bulk solution [51]. In order to save
energy, the experiments set on 120 W due to slight contrast of degradation percentage
between 120 and 150 W.
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3.7. Photocatalyst Recycling and Photostability

Figure 18 displays the reusability of diatomite coated 6% Eu-doped yttrium oxide,
which was tested at a reaction period of 70 min, a dye concentration of 20 mg/L and
1.25 g/L of catalyst powder. These settings are the optimum operational parameters
values verified through experiments. After five continuous tests, the reduction in the
sono-photocatalytic procedure was slight, which validates the prepared particles’ high
potential stability and reusability.

Inorganics 2021, 9, x FOR PEER REVIEW 17 of 20 
 

 

3.6. Effect of Sonication Energy 
The decolorization percent of RB19 under different ultrasonic power in the range 60 

to 150 W was also investigated. Employing the 50 to 150 W/L sonication power, the deg-
radation percentage is increased from 84.17% to 96.45% (Figure 17). Enhanced degrada-
tion ratio was achieved through increasing the ultrasonic power which the production of 
•OH radicals increases. Moreover, the disturbance of the solution was elevated with sig-
nificant power and accordingly promotes the mass transfer rate of dye, reactive species 
and intermediates between catalyst’s surface and the bulk solution [51]. In order to save 
energy, the experiments set on 120 W due to slight contrast of degradation percentage 
between 120 and 150 W. 

. 

Figure 17. Ultrasound power effect on the degrading RB 19 by diatomite coated 6% Eu-doped Y2O3. 
[Catalyst] = 1.25 g/L, pH = 6 and [dye] = 20 mg/L. 

3.7. Photocatalyst Recycling and Photostability 
Figure 18 displays the reusability of diatomite coated 6% Eu-doped yttrium oxide, 

which was tested at a reaction period of 70 min, a dye concentration of 20 mg/L and 1.25 
g/L of catalyst powder. These settings are the optimum operational parameters values 
verified through experiments. After five continuous tests, the reduction in the sono-pho-
tocatalytic procedure was slight, which validates the prepared particles’ high potential 
stability and reusability. 

 

Figure 18. Reusability of the diatomite coated 6% Eu-doped yttrium oxide nanostructures within
five runs. [Catalyst] = 1.25 g/L, [dye] = 20 mg/L, pH = 6 and the reaction time = 70 min.

In comparison to other routine semiconductors such as TiO2, ZnO, CdS, etc., Eu-
doped Y2O3 coated-diatom displays astonishing photocatalytic activity toward degradation
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of organic dye. It is notable that the time of degradation process is 70 min and the
decolorization efficiency is over 90 percent competing with previous ordinary catalysts.

4. Conclusions

Europium-doped Y2O3-coated diatomite nanomaterials were prepared via facile hy-
drothermal route and employed for degradation of reactive blue 19 in an aqueous solution.
Substitution of Eu3+ into yttrium oxide lattice led to a redshift in absorbance spectra and
reduction of bandgap respectively. The PL spectra of as-prepared Eu-doped Y2O3 coated
diatomite are composed of 5D0–7FJ transitions. The decolorization effectiveness of the
as-synthesized compounds was much bigger in sono-photocatalytic procedure than that
of other routes. 6% Eu3+-incorporated Y2O3 coated diatom exhibits the best degradation
ratio. Radical scavengers reduce the sonophotocatalytic degradation percentage of R B 19
particularly subject to 1,4 benzoquinone. The results revealed that diatomite coated with
Eu3+-incorporated yttrium oxide nanoparticle can be employed in numerous experimental
runs with no notable drop in photocatalytic performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/inorganics9120088/s1, Figure S1: XRD pattern of diatom-coated with 6% Eu-doped Y2O3
nanoparticles; Figure S2: SEM image of 2% Eu-doped Y2O3 coated biosilica; Figure S3: SEM image of
8% Eu-doped Y2O3 coated biosilica; Figure S4: TEM image of 2% Eu-doped Y2O3-coated diatomite;
Figure S5: TEM image of 8% Eu-doped Y2O3-coated diatomite; Figure S6: EDX spectra of 2% Eu-
doped Y2O3-coated diatomite; Figure S7: EDX spectra of 2% Eu-doped Y2O3-coated diatomite;
Figure S8: Schematic band-gap model for the luminescence of Eu3+ doped in Y2O3.
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