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Abstract: The self-assembly reaction between NiI2, benzoic acid (PhCO2H) and the Schiff base
chelate, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in the presence of the organic
base triethylamine (NEt3), has resulted in the isolation and the structural, spectroscopic, and
physicochemical characterization of the dodecanuclear [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I
(1) cluster compound in ~30% yield. Complex 1 has a cage-like conformation, comprising twelve distorted,
octahedral NiII ions that are bridged by five µ3-OH−, one µ-OH−, an I− in 55% occupancy, five PhCO2

−

groups (under the η1:η1:µ, η1:η2:µ3 and η2:η2:µ4 modes), and the naphthoxido and carboxylato O-atoms
of five doubly deprotonated nacb2− groups. The overall {Ni12} cluster exhibits a nanosized structure
with a diameter of ~2.5 nm and its metallic core can be conveniently described as a series of nine
edge- or vertex-sharing {Ni3} triangular subunits. Complex 1 is the highest nuclearity coordination
compound bearing the nacbH2 chelate, and a rare example of polynuclear NiII complex containing
coordinating I− ions. Direct current (DC) magnetic susceptibility studies revealed the presence of
predominant antiferromagnetic exchange interactions between the NiII ions, while photophysical
studies of 1 in the solid-state showed a cyan-to-green centered emission at 520 nm, upon maximum
excitation at 380 nm. The reported results demonstrate the rich coordination chemistry of the
deprotonated nacb2− chelate in the presence of NiII metal ions, and the ability of this ligand to adopt
a variety of different bridging modes, thus fostering the formation of high-nuclearity molecules with
rare, nanosized dimensions and interesting physical (i.e., magnetic and optical) properties.

Keywords: polynuclear metal complexes; nickel(II); schiff base ligands; N-naphthalidene-2-amino-
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1. Introduction

Polynuclear 3d-metal complexes (or 3d-metal clusters) remain one of the most attractive research
fields in the cross-disciplinary areas of chemistry, physics, and materials science [1]. This is mainly
due to the ability of these nanosized molecular species to exhibit very interesting magnetic, optical,
biological, and catalytic properties, to name just a few [2]. From a structural perspective, the motifs
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of these cluster compounds often resemble the aesthetically beautiful structures of highly-symmetric
inorganic solids, such as cubic and hexagonal structures, perovskites, brucites, and supertetrahedra,
due to the presence of multiple bridging oxido and hydroxido groups [3]. In the molecular magnetism
arena, ferromagnetically-coupled 3d-systems with a large ground state spin value, S, and an appreciable
magnetic anisotropy of the Ising (or easy-axis) type can behave as single-molecule magnets (SMMs) [4].
SMMs exhibit slow magnetization relaxation over and/or through an anisotropy barrier and they
represent a molecular or “bottom-up” approach to nanoscale magnetism with potential applications in
the fields of information storage, molecular electronics and spintronics [5].

The first and most well-studied family of SMMs is the mixed-valence [MnIII
8MnIV

4O12(O2CR)16(X)4],
where RCO2

− and X are various carboxylate bridging groups and terminal solvate molecules,
respectively [6]. The SMM behavior of these compounds originates from the combined S = 10
spin ground state and the enhanced magnetic anisotropy resulting from the parallel alignment of the
MnIII Jahn-Teller axes. In polynuclear NiII cluster chemistry, the number of SMMs is substantially
smaller [7] and only a few of them show slow relaxation of magnetization in the absence of an
external DC field, as well as magnetization hysteresis, the diagnostic property of a magnet. This is
predominately due to the small zero-field splitting parameter, D, that a polynuclear NiII complex
often exhibits when the NiII atoms adopt the favorable octahedral coordination geometry. Exceptional
examples of NiII cluster-based SMMs are the ferromagnetic [Ni12(chp)12(O2CMe)12(THF)6(H2O)6] with
a ring-like topology [8], and the family of [Ni4(hmp)4(ROH)4Cl4] complexes with a distorted cubane
[Ni4(OR)4]4+ core [9], where chpH and hmpH are the organic chelates chloro-2-hydroxypyridine and
2-hydroxymethylpyridine, respectively, and ROH are various terminally-bound alcohol solvates.

It becomes apparent that the choice of the organic chelating/bridging ligand is of fundamental
importance in the self-assembly synthesis of high-nuclearity NiII complexes with high-spin values and
interesting magnetic dynamics. To this end, we have recently started a research program aiming at the
exploration of Schiff base chelates, which are based on the tridentate N-salicylidene-o-aminophenol
(saphH2, Scheme 1) scaffold, in 3d-metal cluster chemistry as a means of obtaining nanosized
molecular materials, primarily those with interesting magnetic properties [10]. To increase the
coordination and bridging potential of the organic chelate, we initially turned our attention to
the tetradentate ligand N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2, Scheme 1); this has
led to the structurally impressive {Ni18} and {Ni26} clusters [11], and a {Dy2} SMM with a large
energy barrier for magnetization reversal [12]. A reasonable leap forward would be the replacement
of the phenyl ring of the N-salicylidene moiety with a naphthalene one. The resulting ligand
N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2, Scheme 1) shows the following salient
features: (a) it is still a tetradentate like sacbH2, but is undoubtedly more rigid and sterically demanding
than sacbH2, and (b) it includes the naphthalene substituent, a well-known fluorescent group [13],
which could open new prospects in the emission properties of NiII coordination compounds with O-
and N-donor atoms. Both features presage the synthesis of new cluster compounds with potentially
interesting magnetic and emission properties. Indeed, the initial employment of nacbH2 in NiII

chemistry has afforded a series of {Ni5} and {Ni6} clusters with diverse magnetic and optical properties,
but with limited bridging affinity for nacb2− [14]. In this work, we have unveiled the bridging capacity
of nacb2− in conjunction with ancillary bridging benzoate groups. We herein report an unprecedented
{Ni12} cluster compound with the highest nuclearity in metal cluster chemistry of nacbH2, and one of
the rarest nuclearities in NiII cluster chemistry.
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2. Results and Discussion

2.1. Synthetic Comments

The general reaction system NiX2/nacbH2, where X− are various anions with either a strong
(i.e., NO3

−, β-diketonates and pseudohalides) or weak coordinating (Cl−, Br− and ClO4
−) ability,

has been studied by us [15], and—in almost all the cases—small in nuclearity clusters (i.e., {Ni5}
and {Ni6}) were isolated and structurally characterized [14]. These results have demonstrated the
unpredictability of the nacbH2 chelate toward the coordination with 3d-metal ions in solution and
subsequently the stabilization of different cluster compounds in the solid-state. We have thus decided
to introduce to the NiII/nacbH2 system anions with very limited coordinating capacity, such as iodides
(I−), in conjunction with organic anionic groups with a superior bridging ability, such as benzoates
(PhCO2

−), in an attempt to harness a flexible ”synthetic blend” which would potentially lead to
high-nuclearity NiII clusters. Indeed, the reaction between NiI2, nacbH2, PhCO2H, and NEt3 in a 2:1:1:3
molar ratio, in solvent acetonitrile (MeCN), afforded dark-green crystals of the dodecanuclear cluster
compound [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I (1) in 30% yield. The general formation of
1 is summarized by the following stoichiometric Equation (1).

12 NiI2 + 5 nacbH2 + 5 PhCO2H + 21 NEt3 + 10 H2O + 4 MeCN→
[Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I + 21 NHEt3I

(1)

Under the context of chemical reactivity, several synthetic parameters were explored to either
increase the yield of the isolated product 1 or alter the nuclearity of the {Ni12} compound and
subsequently isolate a new product. In particular, the employment of NiCl2 or NiBr2 in place of NiI2

afforded the already reported (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] [14], whereas the replacement of
PhCO2H by other carboxylic acids, such as MeCO2H or EtCO2H, led to green-colored microcrystalline
products, of which we were unable to determine the crystal structures due to the very small size of
the obtained crystallites. The presence of NEt3 as an external base was also essential for the clean
preparation of 1, providing a proton acceptor to facilitate the complete deprotonation of nacbH2

and PhCO2H, and fostering the metal-assisted deprotonation of H2O molecules in solution to the
coordinating OH− groups (vide infra). Various similar reactions in other organic solvents (i.e., alcohols
(ROH), CH2Cl2 and mixtures of MeCN/ROH) and/or external bases (i.e., trimethylamine (NMe3),
tripropylamine (NPr3), diethylamine (Et2NH), dimethylamine (Me2NH) and tetramethylammonium
hydroxide (Me4NOH) yielded amorphous solids that we were unable to recrystallize and further
characterize. Finally, it is worth mentioning that the presence of iodide ions, either as bound groups
or counterions, or both, in NiII coordination chemistry is limited to a handful of previously reported
dinuclear or trinuclear compounds [16–19].

2.2. Description of Structure

A partially labeled representation of the cation of complex 1 is shown in Figure 1. The positively
charged cluster cation [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]+ is counterbalanced by an
I− anion in the crystal lattice of 1. The I− counterion (I7) is closely held with the {Ni12} cluster
through H-bonding interactions with three of the bridging OH− groups; these separations are:
O1···I7 = 3.226(3) Å, O2···I7 = 3.425(1) Å and O3···I7 = 3.222(3) Å. Selected interatomic distances and
angles of 1 are listed in Table 1. Bond valence sum (BVS) calculations for the inorganic bridging
O-atoms with 100% occupancies gave values of: 1.23 (for O1), 1.16 (for O2 and O8), 1.10 (for O4),
and 1.18 (for O9), in excellent agreement with their assignment as OH− groups. Oxygen BVS values
in the ~1.7–2.0, ~1.0–1.2, and ~0.2–0.4 ranges are indicative of non-, single- and double-protonation,
respectively [20].
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Ni6–N4 2.013(6) Ni12–O4 2.045(6)     

Figure 1. Partially labeled representation of the cation of complex 1. Color scheme: NiII: green; Cl:
cyan; I: purple; O: red; N: blue; C: gray. H atoms are omitted for clarity.

Table 1. Selected interatomic distances (Å) and angles (◦) for complex 1.

Bond Distances Bond Distances Bond Angles Bond Angles

Ni1–O1 1.994(5) Ni7–O8 2.017(5) Ni3–I1–Ni2 78.6(4) Ni2–O8–Ni6 116.0(2)
Ni1–O26 2.020(6) Ni7–O9 2.017(5) Ni3–I1–Ni1 81.6(4) Ni7–O8–Ni6 99.2(2)
Ni1–O15 2.087(5) Ni7–O23 2.114(5) Ni2–I1–Ni1 78.4(4) Ni8–O9–Ni7 126.9(3)
Ni1–O3 2.151(6) Ni7–O17 2.128(5) Ni1–O1–Ni10 96.6(2) Ni8–O9–Ni11 112.0(3)
Ni1–I2 2.484(2) Ni7–O12 2.137(5) Ni1–O1–Ni2 112.8(2) Ni7–O9–Ni11 102.8(2)
Ni1–I1 2.643(1) Ni7–O14 2.176(5) Ni10–O1–Ni2 104.7(2) Ni9–O10–Ni8 98.8(2)
Ni2–O1 2.005(5) Ni8–O21 2.005(6) Ni3–O2–Ni5 113.3(2) Ni9–O11–Ni8 99.2(2)
Ni2–O8 2.007(5) Ni8–O9 2.006(5) Ni3–O2–Ni2 107.2(2) Ni9–O12–Ni7 113.7(2)
Ni2–O27 2.014(5) Ni8–O19 2.031(6) Ni5–O2–Ni2 120.9(2) Ni10–O14–Ni7 118.6(2)
Ni2–O2 2.057(5) Ni8–O11 2.113(6) Ni3–O3–Ni1 103.8(2) Ni10–O15–Ni1 92.9(2)
Ni2–O16 2.134(5) Ni8–O10 2.138(6) Ni3–O4–Ni12 101.5(2) Ni2–O16–Ni10 95.3(2)
Ni2–I1 2.628(1) Ni8–I4 2.479(5) Ni3–O4–Ni4 97.5(2) Ni7–O17–Ni11 91.2(2)
Ni3–O2 2.001(5) Ni9–N1 1.988(7) Ni12–O4–Ni4 99.4(2) Ni6–O23–Ni7 97.4(2)
Ni3–O4 2.040(6) Ni9–O10 2.025(6) Ni3–O5–Ni4 94.9(2) Ni6–O24–Ni5 100.7(2)
Ni3–O5 2.061(5) Ni9–O11 2.039(6) Ni6–O7–Ni5 94.9(2) Ni3–O29–Ni12 99.6(2)
Ni3–O29 2.063(5) Ni9–N2 2.092(8) Ni2–O8–Ni7 119.0(2) Ni12–O30–Ni4 99.2(2)
Ni3–O3 2.150(5) Ni9–O12 2.117(5)
Ni3–I1 2.532(1) Ni9–I5 2.367(9)

Ni4–O31 1.996(6) Ni10–N3 1.994(6)
Ni4–N9 2.016(7) Ni10–O1 2.000(5)
Ni4–O4 2.049(5) Ni10–O15 2.026(5)
Ni4–O30 2.069(6) Ni10–O25 2.039(6)
Ni4–O5 2.113(5) Ni10–O14 2.126(5)
Ni4–I3 2.498(5) Ni10–O16 2.158(5)
Ni5–O2 2.011(5) Ni11–O20 2.015(6)
Ni5–O24 2.063(5) Ni11–O18 2.016(6)
Ni5–O28 2.064(6) Ni11–O9 2.019(6)
Ni5–O6 2.066(5) Ni11–O22 2.050(6)
Ni5–N8 2.093(7) Ni11–N5 2.115(9)
Ni5–O7 2.126(5) Ni11–O17 2.283(5)
Ni6–O24 1.997(5) Ni12–N6 2.024(7)
Ni6–O23 2.002(5) Ni12–O30 2.030(6)
Ni6–N4 2.013(6) Ni12–O4 2.045(6)
Ni6–O8 2.044(5) Ni12–N7 2.076(8)
Ni6–O13 2.052(5) Ni12–O29 2.081(5)
Ni6–O7 2.120(5) Ni12–I6 2.482(4)
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Complex 1 is a closed cage-like cluster consisting of 12 NiII ions that are bridged by five
µ3-OH−, one µ-OH−, an I− in 55% occupancy, and the naphthoxido and carboxylato O-atoms of five
double-deprotonated nacb2− groups. The latter are arranged into three classes (Figure 2), with all of
them acting as tridentate chelates to a NiII ion, and additionally bridging two (η1:η1:η2:η1:µ3 mode),
three (η2:η1:η2:η1:µ4 mode) and four (η2:η1:η2:η2:µ5 mode) metal ions. The variety of binding modes
of nacb2− in complex 1 clearly emphasizes the coordination affinity of this Schiff base ligand with NiII

ions, and its ability to stabilize high-nuclearity 3d-metal clusters with unprecedented structural motifs
and nanosized dimensions. To this end, the space-filling plot (Figure 3) shows that 1 has a nearly
”bowl”-shaped conformation with the longest intramolecular C···C distance being ~25 Å, excluding the
H atoms. The shortest Ni···Ni distance between neighboring {Ni12} clusters in the crystal is 12.246(2)
Å, thus confirming the good separation of the cluster compounds due to the bulky naphthalene
substituents of the nacb2− ligands.
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Additional bridging about the twelve NiII ions is provided by five PhCO2
− groups, which

are arranged into three classes; three of them are bridging under the η1:η1:µ mode, one is acting
as an η1:η2:µ3 ligand, and the last one adopts the rare η2:η2:µ4 mode. Thus, the resulting core is
[Ni12(µ3-OH)5(µ3-I/H2O)(µ-OR)15]3+ (Figure 4), and peripheral ligation about this core is further
provided by four terminally bound MeCN molecules (on Ni5, Ni9, Ni11, and Ni12) and a total of five
I−/H2O group combinations (on Ni1, Ni4, Ni8, Ni9, and Ni12). All NiII atoms are six-coordinate with
distorted octahedral geometries. The metallic core of 1 can be conveniently described as a series of
nine edge- or vertex-sharing {Ni3} triangular subunits (Figure 5), which are held together by µ3-OH−

and µ-OR− groups. An alternative description of the {Ni12} metal arrangement is that of a central
{Ni7} subunit possessing a distorted disk-like topology [Ni(1,2,3,5,6,7,10)], which is attached to a {Ni3}
triangular [Ni(3,4,12)] and a {Ni4} rhombus-shaped [Ni(7,8,9,11)] subunits by sharing the common
Ni3 and Ni7 vertices, respectively. Finally, the nuclearity of complex 1 is the largest reported to date
of a metal cluster bearing nacb2− chelate, and it joins a relatively rare family of {Ni12} Werner-type
compounds with a cage-like conformation [21–24].
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2.3. Solid-State Magnetic Susceptibility Studies

Variable-temperature (2.0–300 K range), direct-current (DC) magnetic susceptibility measurements
were performed on a freshly-prepared microcrystalline solid of 1 under a weak DC field of 0.03 T to
avoid saturation effects. The data are shown as χMT versus T plot in Figure 6. The value of the χMT
product at 300 K is 10.40 cm3 Kmol−1, slightly lower than the value of 12 cm3 Kmol−1 (calculated with
g = 2.0) expected for twelve non-interacting, high-spin NiII (S = 1) atoms. Upon cooling, the χMT
product continuously decreases down to a value of 3.06 cm3 Kmol−1 at 2 K. A slightly different curvature
of the plot is observed below ~5 K, and this likely due to the onset of zero-field splitting, intermolecular
antiferromagnetic interactions between the {Ni12} clusters, and/or Zeeman effects [11,15]. The overall
shape of the χMT versus T plot is suggestive of the presence of predominant antiferromagnetic
exchange interactions between the metal centers, as frequently observed in many high-nuclearity
and low-symmetry NiII cage-like clusters where many different magnetic exchange pathways are in
effect [11]. To this end, a fit of the experimental data to a theoretical model (H = −2JijŜi·Ŝj convention)
was not feasible. Undoubtedly, 1 possesses a small ground-state spin value, with the χMT value at 2 K
being consistent with an S ~ 2 ground state (for g = 2). The antiferromagnetic response of the {Ni12}
compound can be tentatively assigned to the majority of obtuse Ni–O–Ni bond angles (close to or
larger than 100◦) and the presence of {Ni3} triangular subunits, which are prone to spin frustration
effects [25]. Magnetization (M) versus field (H) measurements (Figure 6, inset) at 2 K show a continuous
increase of M as the field increases, reaching a non-saturated value of 6.0 NµB at 5 T; this is likely
due to the presence of low-lying excited states, as reported previously for other high-nuclearity NiII

complexes [26]. As a result, attempts to fit the reduced magnetization data assuming that only the
ground state is populated were very poor.
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Figure 6. Temperature dependence of the χMT product for complex 1 at 0.03 T. (inset) Plot of
magnetization (M) versus field (H) for 1 at 2 K.

2.4. Solid-State Emission Studies

The photophysical properties of complex 1 were carried out in the solid-state and at room
temperature due to its structural instability in solution. This was confirmed by performing electrospray
ionization mass spectrometry (ESI-MS) studies in various solvent media (Figure S1). The optical
response of the free-ligand nacbH2 has been reported by us in a previous work [15]. Briefly, it was
shown that nacbH2 is a promising “antenna” group for the promotion of energy transfer effects.
Upon maximum excitation at ~350 nm, nacbH2 exhibits a strong emission in the visible range with
two clear maxima at ~390 and 410 nm, and a weak shoulder at ~480 nm. Complex 1 shows an
interesting photophysical response, given its large nuclearity, the presence of many different binding
groups, and the possible quenching effects from the coordinating O- and N-atoms. The dodecanuclear
compound 1 exhibits a cyan-to-green centered emission at 520 nm, upon maximum excitation at 380 nm
(Figure 7). The red-shifted emission of 1 with respect to the free nacbH2 can be tentatively assigned
to the coordination of the deprotonated nacb2− ligands with the metal ions and/or the presence of
additional binding groups with emission efficiency, such as benzoates, which could affect the charge
transfer process and resulting emission [14,15].

In general, the loss of energy due to vibrations is reduced as a result of the coordination of a
ligand to a metal center; this binding enhances the organic ligand’s rigidity [27]. In addition, the
usually observed optical quenching effects from the paramagnetic metal ions can be prevented using
organic fluorescent groups, such as the naphthalene, anthracene, and phenanthrene substituents [28].
Red-shifted emissions are commonly observed in most fluorescent compounds in the solid-state, likely
due to the π–π stacking interactions of the aromatic rings [29]. Due to the structural complexity of 1, as
a result of the many different ligands present and the number of metal ions, among other electronic
and steric perturbations, an in-depth analysis of the photophysical properties of 1 would be unrealistic.Inorganics 2020, 8, x FOR PEER REVIEW 8 of 12 
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3. Materials and Methods

3.1. Materials, Physical and Spectroscopic Measurements

All manipulations were performed under aerobic conditions using materials (reagent grade) and
solvents as received unless otherwise noted. The Schiff base ligand nacbH2 was prepared, purified, and
characterized as described elsewhere [14,15]. Elemental analyses (C, H, and N) were performed on a
Perkin-Elmer 2400 Series II Analyzer (Foster City, CA, USA). Infrared spectra were recorded in the solid
state on a Bruker’s FT-IR spectrometer (ALPHA’s Platinum ATR single reflection) (Billerica, MA, USA)
in the 4000–400 cm−1 range. Excitation and emission spectra were recorded in the solid state at room
temperature conditions using a Cary Eclipse spectrofluorometer. The repeatability and reproducibility
of the emission was verified by recording the emission spectra of the material three times in two
different days using the same scan rate and the same excitation and emission monochromator slits.
Variable-temperature magnetic susceptibility studies were performed on a MPMS5 Quantum Design
magnetometer equipped with a 5 T magnet and operating in the 2–300 K range. The microcrystalline
sample was embedded in solid eicosane to prevent torquing. Diamagnetic corrections were applied to
the observed paramagnetic susceptibility using Pascal’s constants [30].

3.2. Synthesis of [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I (1)

To a stirred, orange suspension of nacbH2 (0.07 g, 0.20 mmol) in MeCN (20 mL) was added NEt3

(84 µL, 0.60 mmol). Solids NiI2 (0.13 g, 0.40 mmol) and PhCO2H (0.03 g, 0.20 mmol) were added to
the resulting yellow solution, and a noticeable color change to a dark-green solution was observed
over the period of 1 h, under a continuous magnetic stirring. The final solution was filtered, and the
filtrate was carefully layered with Et2O (40 mL). After 20 days, X-ray quality dark-green plate-like
crystals of 1 were formed, and these were collected by filtration, washed with cold MeCN (2 × 3 mL)
and Et2O (2 × 3 mL), and dried in air. The yield was 30% (based on the ligand available). The air-dried
solid was found to be slightly hygroscopic and it was satisfactorily analyzed as 1·3H2O. Anal. calc. for
C133H107N9O38Ni12Cl5I3 (found values in parentheses): C 43.16% (43.31%), H 2.91% (3.06%), N 3.41%
(3.28%). Selected IR data (ATR): ν = 3300 (mb), 1598 (s), 1575 (s), 1535 (s), 1503 (w), 1472 (m), 1450 (m),
1427 (m), 1406 (s), 1382 (w), 1337 (s), 1298 (m), 1249 (m), 1217 (m), 1180 (m), 1156 (m), 1113 (m), 1088
(m), 985 (m), 961 (w), 885 (w), 852 (m), 828 (m), 743 (s), 718 (s), 670 (w), 630 (w), 555 (w), 451 (m).

3.3. Single-Crystal X-ray Crystallography

A suitable single-crystal of complex 1 was selected and mounted on the respective cryoloop using
adequate inert oil [31]. Diffraction data were collected on a Bruker X8 Kappa APEX II Charge-Coupled
Device (CCD) area-detector diffractometer (Billerica, MA, USA) controlled by the APEX2 software [32]
package (Mo Kα graphite-monochromated radiation, λ = 0.71073 Å), and equipped with an Oxford
Cryosystems Series 700 cryostream, monitored remotely with the software interface Cryopad [33].
Images were processed with the software SAINT+ [34], and the absorption effects were corrected by
the multi-scan method implemented in SADABS [35]. The structure was solved using the algorithm
implemented in SHELXT-2014 [36,37], and refined by successive full-matrix least-squares cycles on
F2 using the latest SHELXL-v.2014 [36,38]. The non-hydrogen atoms of the crystal structure were
successfully refined using anisotropic displacement parameters, and H-atoms bonded to carbon of
the ligands were placed at their idealized positions using appropriate HFIX instructions in SHELXL.
All these atoms were included in subsequent refinement cycles in riding-motion approximation
with isotropic thermal displacement parameters (Uiso) fixed at 1.2 or 1.5 × Ueq of the relative atom.
The refinement model revealed the presence of two coordinated iodide (I−) ions and four coordinated
H2O molecules partially disordered over six coordinative positions with distinct complementary
occupancies (I1/O1W = 0.55/0.45; I2/O2W = 0.35/0.65; I3/O3W = 0.30/0.70; I4/O4W = 0.25/0.75;
I5/O5W = 0.25/0.75, and I6/O6W = 0.30/0.70). In addition, the non-coordinated I− ion is disordered
over two positions with occupancies of 0.65 and 0.35. As a result of the severely disordered structure
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of 1, the H-atoms of the coordinated water molecules and hydroxido groups were not included in the
refined model, but they were considered in the final molecular formula of the compound.

Substantial electron density was found on the data of complex 1, most probably due to additional
disordered solvate molecules occupying the spaces originated by the close packing of the cluster
compound. Various efforts to properly locate, model, and refine these residues were unsuccessful,
and the examination for the total potential solvent area using the software package PLATON [39]
clearly confirmed the existence of cavities with potential solvent accessible void volume. Thus, the
original data set was treated with the program SQUEEZE [40], which calculates the contribution of the
smeared electron density in the lattice voids and adds this to the calculated structure factors from the
structural model when refining against the hkl file. The programs used for molecular graphics were
MERCURY [41] and DIAMOND [42]. Unit cell parameters, structure solution and refinement details
for 1 are summarized in Table 2. Further crystallographic details can be found in the corresponding
CIF file provided in the ESI. Crystallographic data (excluding structure factors) for the structure
reported in this work have been deposited to the Cambridge Crystallographic Data Centre (CCDC) as
supplementary publication number: CCDC-1988904. Copies of the data can be obtained online using
https://summary.ccdc.cam.ac.uk/structure-summary-form.

Table 2. Crystallographic data for complex 1.

Parameter 1

Empirical formula C133H101N9O35Ni12Cl5I3
FW/g mol−1 3647.69

Temperature/K 150(2)
Crystal type Green plate

Crystal size/mm3 0.22 × 0.10 × 0.04
Crystal system Triclinic

Space group P-1
a/Å 19.422(2)
b/Å 22.654(3)
c/Å 25.321(3)
α/◦ 115.783(4)
β/◦ 92.992(5)
γ/◦ 109.118(5)

Volume/Å3 9443(2)
Z 2

ρcalc/g cm−3 1.283
µ/mm−1 1.786
F(000) 3644
θ range/◦ 3.65 to 25.03
Radiation Mo Kα (λ = 0.71073)

Index ranges
−23 ≤ h ≤ 22
−22 ≤ k ≤ 26
−30 ≤ l ≤ 30

Reflections collected 134,933
Independent reflections 32,481 (Rint = 0.0476)
Goodness-of-fit on F2 1.040

Final R indexes [I ≥ 2σ(I)] a,b R1 = 0.0872
wR2 = 0.2099

Final R indexes [all data] R1 = 0.1221
wR2 = 0.2361

(∆ρ)max,min/e Å−3 1.613 and −1.594
a R1 =

∑
(||Fo | − |Fc||)/

∑
|Fo|. bwR2 = [

∑
[w(Fo

2
− Fc

2)2]/
∑

[w(Fo
2)2]1/2, w = 1/[σ2(Fo

2) + (ap)2 + bp], where p = [max(Fo
2,

0) + 2Fc
2]/3.

4. Conclusions and Perspectives

In conclusion, we have herein reported the synthesis, and structural and physicochemical
characterization, of a new dodecanuclear NiII cluster compound with an unprecedented structural
motif and nanoscale dimensions, resulted from the successful employment of the nacbH2/I−/PhCO2

−

”ligand blend” in NiII chemistry. The N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2) ligand
also contributed to the observation of unquenched optical emission from the {Ni12} complex 1 in
the solid-state, a very unusual phenomenon in high-nuclearity 3d-metal cluster chemistry with

https://summary.ccdc.cam.ac.uk/structure-summary-form
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N-/O-donor atoms. Complex 1 is by far the highest nuclearity NiII cluster compound with coordinating
I− ions, also supported by ancillary chelating and bridging organic groups, thus presaging a new
synthetic approach to nanoscale molecular materials with interesting structural motifs and physical
properties. We are currently investigating the NiII/RCO2

−/nacbH2 tertiary system as a means of
obtaining higher-nuclearity, nanosized NiII clusters with interesting magneto-optical properties.

Supplementary Materials: The CIF and the checkCIF output files of complex 1 are available online at
http://www.mdpi.com/2304-6740/8/5/32/s1. Figure S1. Positive ion ES mass spectrum of 1 in a solvent mixture of
MeCN/CH2Cl2.
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