Tetraruthenium Metallamacrocycles With Potentially Coordinating Appended Functionalities

Patrick Anders, Mario Robin Rapp, Michael Linseis and Rainer F. Winter*

Fachbereich Chemie der Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany;

Supporting Information

Figure S1: ¹ H-NMR spectrum of IL1 in CDCl₃	4
Figure S2: ¹³ C{ ¹ H}-NMR spectrum of IL1 in CDCl₃	4
Figure S3: ¹³ C{ ¹ H}-NMR spectrum of IL2 in CDCl₃	5
Figure S4: ¹³ C{ ¹ H}-NMR spectrum of IL2 in CDCl ₃	6
Figure S5: ¹ H-NMR spectrum of IL3 in CDCI₃	7
Figure S6: ¹³ C{ ¹ H}-NMR spectrum of IL3 in CD ₂ Cl ₂	7
Figure S7: ¹ H-NMR spectrum of IL4 in dmso-d6	8
Figure S8: ¹³ C{ ¹ H}-NMR spectrum of IL4 in dmso- <i>d6</i>	9
Figure S9: ¹ H-NMR spectrum of 1 in C ₆ D ₆	10
Figure S10: ¹³ C{ ¹ H}-NMR spectrum of 1 in C ₆ D ₆ .	11
Figure S11: ³¹ P{ ¹ H}-NMR spectrum of 1 in C ₆ D ₆ .	12
Figure S12: ¹ H-NMR spectrum of 2 in C ₆ D ₆	13
Figure S13: ¹³ C{ ¹ H}-NMR spectrum of 2 in C ₆ D ₆	14
Figure S14: ³¹ P{ ¹ H}-NMR spectrum of 2 in C ₆ D ₆ .	14
Figure S15: ¹ H-NMR spectrum of 3 in C ₆ D ₆	15
Figure S16: ¹³ C{ ¹ H}-NMR spectrum of 3 in C ₆ D ₆	15
Figure S17: ${}^{31}P{}^{1}H$ -NMR spectrum of 3 in C ₆ D ₆	16
Figure S18 Figure S19: ¹ H-NMR spectrum of 4 in C ₆ D ₆	16
Figure S20: ¹³ C{ ¹ H}-NMR spectrum of 4 in C ₆ D ₆ .	17
Figure S21: ³¹ P{ ¹ H}-NMR spectrum of 4 in C ₆ D ₆	17
Figure S22: ESI-MS of complex 1	18
Figure S23: [M] ²⁺ peak: Experimental data (top), calculated (bottom).	19
Figure S24: ESI-MS of complex 2	20
Figure S25: [M] ²⁺ -2 P ^{<i>i</i>} Pr ₃ peak: Experimental (top), simulation (bottom)	21
Figure S26: ESI-MS of complex 4.	22
Figure S27: [M] ⁺ peak: Experimental (top), simulation (bottom)	23
Figure S28: Packing of solvent molecules within the unit cell of macrocycle 4	24
Figure S29: Association of macrocycle 4 in the crystal by hydrogen bonding	24

Table S1: Crystal and structure refinement data for macrocycle 4.
Table S2: Bond lengths [Å] for 4 26
Table S3: Bond Angles in [°] for 4 28
Figure S30: Cyclic voltammogram of 1
Figure S31: Cyclic voltammogram of 1 (TBA BArF electrolyte)
Figure S32: Cyclic voltammogram of 2
Figure S33: Cyclic voltammogram of 4 32
Figure S34 Cyclic voltammogram of 4 (TBA BArF)
Figure S35: Square wave voltammetric analysis of 1
Figure S36 Square wave voltammetric analysis of 1 (TBA BArF)
Figure S37: Square wave voltammetric analysis of 2
Figure S38: Square wave voltammetric analysis of 3
Figure S39: Square wave voltammetric analysis of 4
Figure S40 Square wave voltammetric analysis of 4 (TBA BArF)
Figure S41: IR spectroscopic changes in the CO-region during the first oxidation of 2 in 1,2-C ₂ H ₄ Cl ₂
/ TBAPF ₆
Figure S42: Spectroscopic changes in NIR during the first oxidation of $\bf{2}$ in 1,2-C ₂ H ₄ Cl ₂ / TBAPF ₆ .37
Figure S43: IR spectroscopic changes in the CO-region during the second oxidation of 2 in 1,2-
C ₂ H ₄ Cl ₂ / TBAPF ₆
Figure S44: Spectroscopic changes in NIR during the second oxidation of ${f 2}$ in 1,2-C ₂ H ₄ Cl ₂ /
TBAPF ₆
Figure S45: IR spectroscopic changes in the CO-region during the first oxidation of $\bf{3}$ in 1,2-C ₂ H ₄ Cl ₂
/ TBAPF ₆
Figure S46: Spectroscopic changes in NIR during the first oxidation of ${\bf 3}$ in 1,2-C ₂ H ₄ Cl ₂ / TBAPF ₆ .41
Figure S47: IR spectroscopic changes in the CO-region during the second oxidation of 3 in 1,2-
C ₂ H ₄ Cl ₂ / TBAPF ₆
Figure S48: Spectroscopic changes in NIR during the second oxidation of 3 in 1,2-C ₂ H ₄ Cl ₂ /
TBAPF ₆
Figure S49: IR spectroscopic changes in the CO-region during the first oxidation of $\bf{4}$ in 1,2-C ₂ H ₄ Cl ₂
/ TBAPF ₆
Figure S50: Spectroscopic changes in NIR during the first oxidation of ${f 4}$ in 1,2-C ₂ H ₄ Cl ₂ / TBAPF ₆ .45
Figure S51: IR spectroscopic changes in the CO-region during the second oxidation of 4 in 1,2-
C ₂ H ₄ Cl ₂ / TBAPF ₆
Figure S52: Spectroscopic changes in NIR during the second oxidation of 4 in 1,2-C ₂ H ₄ Cl ₂ /
TBAPF ₆ 47

Figure S54: UV/Vis/NIR-SEC for the second oxidation of 1 in $1,2-C_2H_4Cl_2$ / TBAPF ₆	48
Figure S55: UV/Vis/NIR-SEC for the first oxidation of ${\bf 2}$ in 1,2-C ₂ H ₄ Cl ₂ / TBAPF ₆	49
Figure S56: UV/Vis/NIR-SEC for the second oxidation of ${\bf 2}$ in 1,2-C ₂ H ₄ Cl ₂ / TBAPF ₆	49
Figure S57: UV/Vis/NIR-SEC for the first oxidation of 4 in $1,2-C_2H_4CI_2$ / TBAPF ₆	50
Figure S58: UV/Vis/NIR-SEC for the second oxidation of 4 in $1,2-C_2H_4CI_2$ / TBAPF ₆	50
Figure S59: EPR spectrum of [1] ²⁺ at r.t	51
Figure S60: EPR spectrum of [1] ⁴⁺ at r.t	51
Figure S61: EPR spectrum of [1] ²⁺ at 123 K	52
Figure S62: EPR spectrum of [1] ⁴⁺ at 123 K	52
Figure S63: EPR spectrum of [2] ²⁺ at r.t	53
Figure S64: EPR spectrum of [2] ⁴⁺ at r.t	53
Figure S65: EPR spectrum of [2] ²⁺ at 123 K	54
Figure S66: EPR spectrum of [2] ⁴⁺ at 123 K	54
Figure S67: EPR spectrum of [4] ²⁺ at r.t	55
Figure S68: EPR spectrum of [4] ⁴⁺ at r.t	55
Figure S69: EPR spectrum of [4] ²⁺ at 123 K	56
Figure S70: EPR spectrum of [4] ⁴⁺ at 123 K	56

Figure S1: ¹H-NMR spectrum of IL1 in CDCl₃

Figure S2: ${}^{13}C{}^{1}H$ -NMR spectrum of IL1 in CDCl₃

Figure S3: ¹³C{¹H}-NMR spectrum of IL2 in CDCI₃

Figure S4:¹³C{¹H}-NMR spectrum of IL2 in CDCI₃

Figure S6: ${}^{13}C{}^{1}H$ -NMR spectrum of IL3 in CD₂Cl₂

Figure S7: ¹H-NMR spectrum of **IL4** in dmso-d6

Figure S8:¹³C{¹H}-NMR spectrum of **IL4** in dmso-*d6*.

Figure S9: ¹H-NMR spectrum of 1 in C₆D₆.

Figure S10: ${}^{13}C{}^{1}H$ -NMR spectrum of **1** in C₆D₆.

Figure S11: ${}^{31}P{}^{1}H$ -NMR spectrum of **1** in C₆D₆.

Figure S12: ¹H-NMR spectrum of 2 in C₆D₆.

Figure S13: ${}^{13}C{}^{1}H$ -NMR spectrum of **2** in C₆D₆

Figure S14: ${}^{31}P{}^{1}H$ -NMR spectrum of **2** in C₆D₆.

Figure S16: ${}^{13}C{}^{1}H$ -NMR spectrum of **3** in C₆D₆

Figure S17: $^{31}\text{P}\{^{1}\text{H}\}\text{-NMR}$ spectrum of $\boldsymbol{3}$ in C_6D_6

Figure S18 Figure S19:¹H-NMR spectrum of 4 in C₆D₆

Figure S21: ${}^{31}P{}^{1}H$ -NMR spectrum of **4** in C₆D₆

ESI-MS

Figure S22: ESI-MS of complex 1.

Figure S23: [M]²⁺ peak: Experimental data (top), calculated (bottom).

Figure S24: ESI-MS of complex 2.

Figure S25: [M]²⁺-2 P^{*i*}Pr₃ peak: Experimental (top), simulation (bottom).

Figure S26: ESI-MS of complex 4.

Figure S27: [M]⁺ peak: Experimental (top), simulation (bottom).

X-ray Crystallography

Figure S28: Packing of solvent molecules within the unit cell of macrocycle 4.

Figure S29: Association of macrocycle 4 in the crystal by hydrogen bonding

Table S1: Crystal and structure refinement data for macrocycle 4.

4

Compound

Formula	C182H262O14P8Ru4S2
D_{calc}/q cm ⁻³	1 2418
u/mm^{-1}	0 477
Formula Weight	3390.28
Colour	Yellow
Shape	plate
Size/mm ³	$0.30 \times 0.20 \times 0.10$
7/K	100.03
Crystal System	triclinic
Space Group	P-1
a/Å	15.108(3)
b/Å	17.069(2)
c/Å	19.293(3)
α/°	70.272(11)
β/°	75.988(13)
v/°	88.927(12)
V∕ų	4533.1(13)
Ζ	1
Ζ'	0.5
Wavelength/Å	0.71073
Radiation type	Μο Κα
$\theta_{min}/^{\circ}$	1.82
$\theta_{max}/^{\circ}$	25.68
Measured Refl.	39232
Independent Refl.	17156
Reflections with	4672
l≥σ(I)	
R _{int}	0.1875
Parameters	971
Restraints	0
Largest Peak	1.3945
Deepest Hole	-2.0282
GooF	0.8167
wR ₂ (all data)	0.1389
wR ₂	0.0916
R₁ (all data)	0.2633
R_1	0.0739

Atom	Atom	Length/Å	Atom	Atom
Ru2	P3	2.402(4)	C38	C40
Ru2	P4	2.402(4)	C35	C36
Ru2	O41	2.205(6)	C35	C37
Ru2	O31	2.287(6)	C32	C34
Ru2	C10	1.982(10)	C32	C33
Ru2	C12	1,763(10)	C29	C31
u1	P1	2 398(4)	C29	C30
u1	P2	2413(4)	C26	C27
.u1	Ω^2	2.183(6)	C26	C28
.u.1	01	2.105(0)	C23	C25
λ1	C1	1.076(0)	C23	C24
01	C11	1.570(5)	C50	C52
.u i		1.704(10)	C50	C51
1		1.010(10)	C50	C51
1	0.17	1.647(14)	C50	C50
3	C47	1.818(11)	C56	057
3	C41	1.880(10)	053	055
'3	C44	1.827(10)	C53	0.54
'4	C50	1.847(9)	C47	C48
24	C56	1.833(11)	C47	C49
' 4	C53	1.836(10)	C41	C42
' 1	C29	1.838(10)	C41	C43
' 1	C26	1.866(10)	C44	C46
' 1	C23	1.849(12)	C44	C45
2	C38	1.864(9)	C89	C88
2	C35	1.859(10)	C89	C90
2	C32	1.855(9)	C88	C87
2	C13	1 266(10)	C91	C90
1	C13	1 275(10)	C91	C86
)6	C12	1 194(10)	C86	C87
5	C11	1 104(10)	C60	C59
,J 14	C20	1 295(10)	000 C60	C61
17 12	C20	1.233(10)	C59	C61 ¹
3	C20	1.271(11)	C64	C65
// \	021	1.130(13)	C64	C03
· I	C2	1.301(11)	004	C66
,Z	03	1.401(12)	000	C00
, 3		1.390(13)		
.J	04	1.396(11)	067	
58	U7	1.382(11)	062	003
;/	C6	1.392(11)	C85	080
26	C5	1.367(12)	C85	C84
6	C9	1.498(12)	C80	C81
5	C4	1.381(11)	C81	C82
29	C10	1.310(12)	C82	C83
213	C14	1.506(11)	C83	C84
C14	C15	1.381(12)	C74	C75
C14	C19	1.392(12)	C74	C79
215	C16	1.408(11)	C75	C76
216	C20	1.466(13)	C76	C77
:16	C17	1 392(12)	C77	C78
17	C18	1 351(13)	C78	C79
18	C19	1 422(12)	C71	C72
· · 0	C22	1.722(12) 1.665(17)	C71	C70
>28 1 7 1	C20	1.540(12)	C72	C73
000	039	1.040(13)	C72	C68
			010	· ·· ·· ··

Table S2: Bond lengths [Å] for 4.

Length/Å 1.572(13) 1.533(13) 1.515(13) 1.522(11) 1.515(13) 1.550(12)1.512(14) 1.521(13) 1.547(14) 1.588(15) 1.544(14) 1.547(12) 1.500(13) 1.592(14) 1.547(12) 1.564(12) 1.550(15) 1.547(14) 1.551(12) 1.512(12)1.529(12) 1.547(12) 1.521(12) 1.426(18) 1.398(15) 1.308(17) 1.354(15) 1.387(17) 1.342(17) 1.370(15) 1.376(14) 1.399(16) 1.388(16) 1.383(17) 1.389(17) 1.326(18) 1.392(16) 1.347(16) 1.361(16) 1.354(17) 1.355(16) 1.344(16)1.386(17) 1.399(18) 1.371(17) 1.382(17) 1.387(19) 1.396(19)1.364(19) 1.391(18) 1.37(3) 1.48(4) 1.31(2) 1.30(2)

1.376(19)

Atom	Atom	Length/Å
C69	C70	1.35(2)

¹-x,1-y,1-z

		P4	C50	101.4(5)			
Atom	Atom	Atom	Angle/°	C53	P4	C56	109.5(5)
> 4	Ru2	P3	176 83(12)	C29	P1	Ru1	114.8(4)
141	Ru2	P3	90.2(2)	C26	P1	Ru1	112.9(4)
ך 1ער	Du2		86 6(2)	C26	P1	C29	102 9(5)
24 ¹	Ru2	F4	00.0(2)	C23	P1	Ru1	102.0(0) 114 0(4)
	Ru2	P3	07.32(19)	C23		C20	102 2(5)
)31	Ru2	P4	91.02(19)	023		029	102.3(3)
)3'	Ru2	04	59.1(2)	023		C26	100.0(0)
:10	Ru2	P3	88.6(3)	C38	PZ	Ruí	114.3(4)
C10	Ru2	P4	92.1(3)	C35	P2	Ru1	111.1(4)
C10	Ru2	O41	101.9(3)	C35	P2	C38	108.6(5)
C10	Ru2	O31	160.5(3)	C32	P2	Ru1	116.3(4)
20 ¹	Ru2	P3	89.2(3)	C32	P2	C38	101.7(4)
C201	Ru2	P4	88.0(3)	C32	P2	C35	104.0(5)
C201	Ru2	O41	29.8(3)	C13	O2	Ru1	93.5(6)
C201	Ru2	O31	29.3(2)	C13	O1	Ru1	87.2(5)
C201	Ru2	C10	131.6(4)	C20	O4	Ru2 ¹	92.3(6)
C12	Ru2	P3	91.7(4)	C20	O3	Ru2 ¹	89.3(6)
C12	Ru2	P4	91.4(4)	C2	C1	Ru1	135.9(8)
C12	Ru2	O41	168.9(4)	C3	C2	C1	128.2(9)
C12	Ru2	$O3^{1}$	110 1(4)	C8	C3	C2	124.5(8)
C12	Ru2	C10	89 1(4)	C4	C3	C2	119.2(9)
C12	Ru2	$C20^{1}$	139 2(4)	C4	C3	C8	116.3(9)
D2	Ru1	D1	170 72(12)	C7	C8	C3	121 7(9)
02	Du1	D1	80 5(2)	C6	C7	C8	1214(10)
02	Du1		09.3(2)	C5	C6	C7	116 9(9)
02	Du1		30.4(2)	C9	00 C6	C7	121 3(9)
01	Ru1		90.72(10)	C9	00 C6	C5	121.0(0)
		F2	69.02(10)	C4	C5	C6	127.7(3)
	RUI Dut	02	30.7(2)	C5	C4	C3	122.3(3)
	Rui		92.3(3)	C10	C4	C5	121.3(9)
	Ru1	P2	88.0(3)	C10	C9		131.0(9)
	Ruí	02	97.9(3)	C9	C10		130.0(0)
C1	Ru1	01	156.3(3)	02	C13	Ru I Du 1	57.3(5) 62.2(4)
C13	Ru1	P1	89.4(2)	01	013	Rui	63.3(4)
C13	Ru1	P2	90.4(2)	01	013	02	120.6(8)
C13	Ru1	02	29.2(2)	C14	013	Ru1	175.9(8)
C13	Ru1	O1	29.5(2)	C14	C13	02	119.7(9)
C13	Ru1	C1	127.1(4)	C14	C13	01	119.7(9)
C11	Ru1	P1	87.1(4)	C15	C14	C13	118.7(9)
C11	Ru1	P2	92.9(4)	C19	C14	C13	121.0(9)
C11	Ru1	O2	172.2(4)	C19	C14	C15	120.3(9)
C11	Ru1	O1	114.4(4)	C16	C15	C14	120.9(9)
C11	Ru1	C1	89.3(4)	C20	C16	C15	120.9(9)
C11	Ru1	C13	143.6(4)	C17	C16	C15	117.9(9)
C21	S1	C18	94.3(7)	C17	C16	C20	120.9(9)
C47	P3	Ru2	111.4(4)	O4	C20	Ru2 ¹	57.9(5)
C41	P3	Ru2	116.2(4)	O3	C20	Ru2 ¹	61.5(5)
C41	P3	C47	102.7(5)	O3	C20	O4	119.3(9)
C44	P3	Ru2	120.5(4)	C16	C20	Ru2 ¹	174.4(8)
C44	P3	C.47	103 3(5)	C16	C20	04	117.7(9)
C44	P3	C.41	100.4(5)	C16	C20	03	123.0(9)
C50	D/	Ru2	11/3(1)	C18	C17	C16	121 5(9)
000 056	P 4 D/		112 1/4)	C17	C18	S1	122 0(8)
C56	Г4 D/		104 2/5	C10	C18	S1	116 6(8)
050	F4		104.3(3)	C10	C18	C17	120 7(0)
603	P4	Ku2	113.2(4)	013	010	017	120.7(9)

Atom

Atom

Atom

Angle/°

Atom	Atom	Atom	Angle/°
C18	C19	C14	118.3(10)
O6	C12	Ru2	175.1(10)
O5	C11	Ru1	178.2(11)
07	C21	S1	134.6(14)
C22	C21	S1	111.4(10)
C22	C21	07	113.8(14)
C39	C38	P2	114.0(7)
C40	C38	P2	115.6(7)
C40	C38	C39	107.7(9)
C30	C35	P2 D2	110.0(7)
C37	C35	C36	111 8(10)
C34	C32	P2	114.1(7)
C33	C32	P2	112.0(7)
C33	C32	C34	111.1(9)
C31	C29	P1	115.6(7)
C30	C29	P1	111.7(7)
C30	C29	C31	108.2(9)
C27	C26	P1	113.6(8)
C28	C26	P1	117.1(8)
C28	C26	C27	108.3(10)
C20	C23		112.0(8)
C24	C23	C25	112.0(0)
C52	C50	P4	110.3(7)
C51	C50	P4	117.2(7)
C51	C50	C52	107.6(8)
C58	C56	P4	116.2(7)
C57	C56	P4	115.5(7)
C57	C56	C58	106.5(9)
C55	C53	P4	114.1(8)
C54	C53	P4	114.4(7)
C54	C53	C55	108.9(9)
C48	C47	P3 D2	110.3(8)
C49 C49	C47	г3 С48	109 0(9)
C42	C41	P3	113 9(7)
C43	C41	P3	111.2(8)
C43	C41	C42	111.2(8)
C46	C44	P3	114.5(7)
C45	C44	P3	118.2(7)
C45	C44	C46	109.4(9)
C90	C89	C88	116.9(14)
C87	C88	C89	121.0(15)
C86	C91	C90	122.9(13)
C91	C90	C09	110.7(14)
C86	C87	C91 C88	17.1(14) 123 $J(16)$
C61	C60	C59	120.4(10)
C61 ¹	C59	C60	121.0(12)
C59 ¹	C61	C60	118.1(12)
C63	C64	C65	120.1(14)́
C66	C65	C64	117.7(14)
C67	C66	C65	121.4(14)
C62	C67	C66	121.0(15)
C63	C62	C67	119.0(14)
C62	C63	C64	120.7(13)
C84	C85	C80	123.0(16)

Atom	Atom	Atom	Angle/°
			110 2(1 <i>1</i>)
	000	005	110.3(14)
C82	C81	C80	120.5(15)
C83	C82	C81	122.3(14)
C84	C83	C82	116.9(14)
C83	C84	C85	119.0(15)
C79	C74	C75	119.9(16)
C76	C75	C74	118.3(18)
C77	C76	C75	122.4(17)
C78	C77	C76	118.3(18)
C79	C78	C77	119.9(18)
C78	C79	C74	121.2(16)
C70	C71	C72	107.7(19)
C73	C72	C71	135(3)
C68	C73	C72	113(2)
C69	C68	C73	124(2)
C70	C69	C68	120(2)
C69	C70	C71	120(2)

¹-x,1-y,

Voltammograms of 1,2 and 4

Figure S310: Cyclic voltammogram of 1.

Figure S321: Cyclic voltammogram of **1** (TBA BArF electrolyte).

Figure S332: Cyclic voltammogram of 2.

Figure S343: Cyclic voltammogram of 4.

Figure S354 Cyclic voltammogram of 4 (TBA BArF).

Square Wave voltammetry:

Figure S365: Square wave voltammetric analysis of 1

Figure S376 Square wave voltammetric analysis of 1 (TBA BArF).

Complex 3

Figure S38: Square wave voltammetric analysis of 3

Figure S39: Square wave voltammetric analysis of 4

Figure S390 Square wave voltammetric analysis of 4 (TBA BArF).

Results of IR spectroelectrochemical experiments of 2, 3 and 4

Figure S401: IR spectroscopic changes in the CO-region during the first oxidation of 2 in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S412: Spectroscopic changes in NIR during the first oxidation of ${\bf 2}$ in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S423: IR spectroscopic changes in the CO-region during the second oxidation of 2 in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S434: Spectroscopic changes in NIR during the second oxidation of ${\bf 2}$ in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S445: IR spectroscopic changes in the CO-region during the first oxidation of **3** in $1,2-C_2H_4Cl_2$ / TBAPF₆.

Figure S456: Spectroscopic changes in NIR during the first oxidation of $\bf{3}$ in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S47: IR spectroscopic changes in the CO-region during the second oxidation of **3** in $1,2-C_2H_4Cl_2$ / TBAPF₆.

Figure S48: Spectroscopic changes in NIR during the second oxidation of **3** in 1,2- $C_2H_4Cl_2$ / TBAPF₆.

Figure S49: IR spectroscopic changes in the CO-region during the first oxidation of ${\bf 4}$ in 1,2-C_2H_4Cl_2 / TBAPF_6.

Figure S460: Spectroscopic changes in NIR during the first oxidation of **4** in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S471: IR spectroscopic changes in the CO-region during the second oxidation of **4** in $1,2-C_2H_4Cl_2$ / TBAPF₆.

Figure S482: Spectroscopic changes in NIR during the second oxidation of **4** in 1,2-C₂H₄Cl₂ / TBAPF₆.

Results of UV/Vis/NIR spectroelectrochemical experiments of

1,2 and 4

Figure S493: UV/Vis/NIR-SEC for the first oxidation of 1 in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S504: UV/Vis/NIR-SEC for the second oxidation of 1 in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S515: UV/Vis/NIR-SEC for the first oxidation of **2** in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S526: UV/Vis/NIR-SEC for the second oxidation of ${f 2}$ in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S5753: UV/Vis/NIR-SEC for the first oxidation of 4 in 1,2-C₂H₄Cl₂ / TBAPF₆.

Figure S58: UV/Vis/NIR-SEC for the second oxidation of ${\bf 4}$ in 1,2-C₂H₄Cl₂ / TBAPF₆.

EPR spectra of di- and tetracations of macrocycles 1, 2 and 4 Complex 1

Figure S5954: EPR spectrum of [1]²⁺ at r.t.

Figure S550: EPR spectrum of [1]⁴⁺ at r.t.

Figure S61: EPR spectrum of [1]²⁺ at 123 K.

Figure S562: EPR spectrum of [1]⁴⁺ at 123 K.

Figure S573: EPR spectrum of [2]²⁺ at r.t.

Figure S584: EPR spectrum of [2]⁴⁺ at r.t.

Figure S595: EPR spectrum of [2]²⁺ at 123 K.

Figure S606: EPR spectrum of [2]⁴⁺ at 123 K.

Figure S67: EPR spectrum of [4]²⁺ at r.t.

Figure S68: EPR spectrum of [4]⁴⁺ at r.t.

Figure S69: EPR spectrum of [4]²⁺ at 123 K.

Figure S610: EPR spectrum of [4]⁴⁺ at 123 K.