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Abstract: In this contribution is reported the synthesis, characterization, and aggregation
properties in solution of a novel Zn(II) complex, (R)-2, derived from the enantiopure chiral
trans-1,2-diaminocyclohexane and a substituted salicylaldehyde. Detailed 1H NMR, DOSY NMR,
optical absorption, and circular dichroism spectroscopic studies and chemical evidence allowed to
investigate the nature of aggregate species in solution. The high solubility of (R)-2 in solution
of the non-coordinating chloroform solvent leads to formation of various aggregates, some of
them consisting of large oligomers estimated to contain up to 27 monomeric units. The chiral
trans-stereochemistry of the bridging diamine favors a different aggregation mode in these complexes,
both in the oligomers and dimers, involving a tetrahedral coordination geometry around the metal
center. Overall data suggest the formation of helical oligomers, (ZnL)n, in freshly prepared chloroform
solutions which, by standing or heating, evolve towards a more thermodynamically stable, dinuclear
double-helicate Zn2L2 dimer.
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1. Introduction

Molecular aggregation is a topic of current interest involving various properties and
applications [1–4]. In recent years we have been involved in the study of the aggregation properties
of bis(salicylaldiminato)zinc(II) Schiff-base complexes, derivatives from substituted salicylaldehydes
and 1,2-diamines [5–11]. Their aggregation properties are related to the Lewis acidic character of
the metal center which, in turn, is strongly connected to the nature of the bridging diamine [12].
Therefore, a variety of supramolecular architectures [13–18], mesomorphic [19–22], and self-assembled
nanostructures [23–27] have been found, mostly because of intermolecular Zn···O axial interactions
involving pentacoordinated square-pyramidal Zn(II) geometries. Moreover, these species exhibit
interesting photophysical properties [28–31] and are sensors of various Lewis bases [32–53].

In this context, a singular behavior has been observed for Zn(II) complexes, ZnL, derived
from the 1,2-diaminocyclohexane and the 4-methoxysalicylaldehyde. In fact, while in the case of
the cis-1,2-diaminocyclohexane derivative an asymmetric dimeric aggregate with a typical Zn(II)
pentacoordination has been found [7], complexes derived from the enantiopure (1S,2S)-(+)- or
(1R,2R)-(−)-trans-1,2-diaminocyclohexane, 1, involved the existence of various species in solution [6].
In particular, chloroform solutions of 1 were characterized by the presence of three species, exhibiting a
strong concentration dependence, the predominant of which consisting of large oligomeric aggregates.
Heating or after standing chloroform solutions of 1 all species are irreversibly converted into a dimer,

Inorganics 2018, 6, 8; doi:10.3390/inorganics6010008 www.mdpi.com/journal/inorganics

http://www.mdpi.com/journal/inorganics
http://www.mdpi.com
https://orcid.org/0000-0002-2682-269X
https://orcid.org/0000-0002-7120-1817
http://dx.doi.org/10.3390/inorganics6010008
http://www.mdpi.com/journal/inorganics


Inorganics 2018, 6, 8 2 of 13

1C, which has been described as a dinuclear, double-helicate Zn2L2 structure with a tetrahedral
coordination around the Zn(II) atoms [6].

The peculiar aggregation features of these chiral complexes are doubtless related to the defined
stereochemistry of the trans-1,2-diaminocyclohexane bridge. It is, therefore, of interest to further
investigate on these complexes, to better understand the physicochemical features responsible for their
unusual aggregation behavior. Thus, maintaining the skeleton structure of the chiral ligand we have
considered a different substituent on the salicylidene rings, in order to improve the solubility of the
related Zn(II) complex in the involved solvents. Accordingly, the complex with the 4-diethylamino
substituent, (R)-2, has been synthesized (Chart 1) with a significant increase of solubility. This, in turn,
leads to even more interesting aggregation characteristics in solution which are detailed described in
this contribution.
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2. Results

The synthesis of (R)-2 was carried out by standard template method [5–10], using
4-(diethylamino)-2-hydroxybenzaldehyde and (1R,2R)-trans-1,2-diaminocyclohexane in methanol
solution and a stoichiometric excess of triethylamine. Then, complexation with the Zn(II) ion was
accomplished by using zinc perchlorate. The isolated pale-yellow solid of (R)-2 is very soluble in
chloroform and in most polar solvents.

The 1H NMR spectrum of (R)-2 in solution of the coordinating DMSO-d6 solvent (1.0 × 10−2

M) shows the presence of a single set of signals (Figure 1), independent from the concentration,
indicating the existence of monomeric species in solution, as usually observed for Zn(II) Schiff-base
complexes [6–11]. To further investigate about the structure of (R)-2 in solution, we performed
diffusion-ordered NMR spectroscopy (DOSY) measurements, by using a known internal reference to
estimate the molecular mass of species in solution [5–10]. The DOSY spectrum of (R)-2 in DMSO-d6

(1.0 × 10−2 M) confirms the presence of a single component in the diffusion dimension (D = 2.5 ×
10−10 m2·s-1), with an estimated molecular mass (679 Da) consistent with the (R)-2·DMSO adduct
(Table 1).

The 1H NMR spectrum of (R)-2 in solution of the non-coordinating CDCl3 solvent (1.0 × 10−2 M),
unlike the spectrum in DMSO-d6, appears much more complex for the presence of many signals
(Figure 1), indicating the existence of various species in solution. In fact, the related DOSY
spectrum is separated into six components, 2A–F, in the diffusion dimension (Figure 2, Table 1),
three of them having definitely lower D values (D ~2 × 10−10 m2·s−1) than the remaining three
(D ~6 × 10−10 m2·s−1). In particular, assuming 2F as internal reference dimeric species (vide infra) the
molecular mass of remaining components was estimated. Thus, while 2D and 2E are also dimeric
species, instead 2A–C result to be larger oligomeric aggregates, containing up to 27 monomeric units.
In comparison with previous results on the (R)-1 complex in the same non-coordinating chloroform
solvent, present data indicate the existence in solution of a greater number of species, some of them
having larger estimated molecular masses. This behavior may be related to the greater solubility
of (R)-2, thus allowing for a higher degree of aggregation in solution. Note that, despite the rather
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large oligomeric nature of aggregates 2A–C, they are characterized by sharp 1H NMR signals, whose
resonance of the imine protons is comparable to that found for the (R)-2·DMSO adduct (Figure 1).
On the other hand, the resonance of the imine protons in 2F results to be up-field shifted (0.9 ppm)
with respect that of 2A.
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Figure 1. 1H NMR spectra of (R)-2 (1.0 × 10−2 M) in DMSO-d6 and CDCl3. Asterisks indicate residual
solvent peaks. The labeling of the 1H NMR signals related to the CDCl3 solution refers to species
(R)-2A (denoted by the red squares) and (R)-2F (denoted by the black triangles). Inset: (a) expansion of
the N-CH2-CH3 signal and (b) of the N-CH2-CH3 signal of (R)-2 in DMSO-d6.

Table 1. Diffusion coefficients, D, and estimated molecular mass, m, for (R)-2 in DMSO-d6 and CDCl3.

Compound Species D ×
1010/m2·s−1

D (solvent) ×
1010/m2·s−1 m (n) 1/Da m (n) 2/Da

(R)-2 2·DMSO-d6 2.5 7.1(DMSO-d6) 679 3 612.2
(R)-2 2A 1.7 26.3(CDCl3) 14,046(26.6) 14,256(27)

2B 1.9 26.3(CDCl3) 11,244(21.3) 11,088(21)
2C 2.2 26.3(CDCl3) 8387(15.9) 8448(16)
2D 5.8 26.3(CDCl3) 1207(2.3) 1056(2)
2E 6.0 26.3(CDCl3) 1128(2.1) 1056(2)
2F 6.2 26.3(CDCl3) 1056(2) 1056(2)

(R)-2 4 2F 5.9 24.8 (CDCl3) 1017(1.9) 1056(2)
1C 6.3 24.8 (CDCl3) 892(2) 891.7(2)

1 Estimated molecular mass using the species (R)-2F as internal reference. Values in parentheses (n) indicate the
order of aggregation. 2 Expected molecular mass. Values in parentheses (n) indicate the order of aggregation. 3

Estimated molecular mass using the solvent as an internal reference. 4 CDCl3 solution of (R)-2F in the presence of
(R)-1C used as internal reference (see Figure S1).
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Figure 2. 1H NMR DOSY spectrum of (R)-2 in CDCl3 (1.0 × 10−2 M; 27 ◦C). Species 2A–F are shown
with a different color.

Chloroform solutions of (R)-2 exhibit a pronounced concentration dependence. In particular,
starting from concentrated solutions (5.0 × 10−2 M), the progressive dilution leads to a decrease of 2A
and an increase of the other species (Figure S2). In other terms, dilution favors fragmentation of the
largest aggregate 2A into the other oligomers.

Addition of a Lewis base to solutions of non-coordinating solvents of ZnL aggregates generally
leads to disaggregation with the formation of monomeric adducts [6–11]. 1H NMR studies of (R)-2 in
mixtures of non-coordinating/coordinating (CDCl3/DMSO-d6) solvents further support the existence
of various aggregate species in the former solvent (Figure S3). Actually, the successive addition of
defined amounts of DMSO-d6 (up to ca. 230-fold mole excess) to a freshly prepared CDCl3 solution of
(R)-2 leads mainly to the progressive disappearance of oligomer 2A and the appearance of a new set of
signals consistent with the formation of the (R)-2·DMSO adduct. Only upon addition of ca. 1400-fold
mole excess of DMSO-d6 the complete disappearance of all species is observed, and the resulting
solution shows a 1H NMR spectrum almost comparable to that recorded in DMSO-d6 (Figure 1 and
Figure S3). However, even in such large stoichiometric excess the species 2F remains almost unaltered,
indicating a strong stability of this dimeric species.

The relative distribution of aggregates 2A–F exhibits remarkable changes after standing
chloroform solutions of (R)-2 at room temperature for some time, as can be evaluated from 1H NMR
signals of each species (Figure 3). In particular, freshly prepared chloroform solutions (5.0 × 10−2 M)
show the predominant presence of 2A (82%), while 2B (6%) and 2C–F (3% each) are minor species.
After standing, a progressive conversion of 2A into 2F is observed, while the relative percentage of the
other species remain almost unchanged. After three weeks, a complete conversion of all species into
2F is obtained. Moreover, starting from more diluted CDCl3 solutions (5.0 × 10−3 M) the complete
conversion of all species into 2F occurs in a shorter time (one week). An analogous result, that is the
complete conversion of all species into 2F, is achieved by heating chloroform solutions of (R)-2 at 60 ◦C
for four hours.
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Figure 3. 1H NMR spectra of (R)-2 (5.0 × 10−2 M) in CDCl3 recorded at different time intervals:
(a) freshly prepared solution; (b) after 12 h; (c) after one week; and (d) after three weeks. The asterisk
indicates the residual solvent peak. The labeling of the 1H NMR signals refers to species (R)-2A
(denoted by the red squares) and (R)-2F (denoted by the black triangles).

The isolated pale-yellow solid obtained from heated CHCl3 solutions of (R)-2 was characterized
in chloroform by ESI and DOSY measurements as a dimeric species having identical 1H NMR
spectroscopic characteristics of 2F. Specifically, DOSY experiments were performed using (R)-1C
as an internal reference (Figure S1). The dimeric species 2F presents some characteristic features
previously observed for 1C [6]. In fact, analogously to 1C, on passing from DMSO-d6 solutions of (R)-2
to CDCl3 solutions of 2F a strong up-field shift, ca. 0.8 ppm, is observed. Moreover, the chemical shift
of the CH=N signal in 2F (7.22 ppm) is comparable to that found in 1C (7.35 ppm).

Optical absorption spectra of (R)-2 in DMSO and CHCl3 solutions are comparable to each other,
consisting of a strong band centered at 341 nm and a shoulder at 366 nm (Figure 4), despite the
different nature of the involved species in solution: monomeric adduct vs. oligomeric aggregates,
respectively. In contrast, the UV–Vis spectrum of (R)-2F in CHCl3 is very different because, in addition
to the absorption band at 341 nm, shows the appearance of a new intense band at longer wavelengths
centered at 371 nm, consistent with the existence of strong interligand interactions. These results are
indicative of a different aggregation mode on switching from oligomers to the (R)-2F dimer. On the
other hand, no relevant interligand interactions are likely operating in (R)-2 oligomers given the
comparable UV–Vis features to those of the monomeric (R)-2·DMSO adduct.

The differences observed in optical absorption spectra are reflected in circular dichroism (CD)
spectra (Figure 4). Thus, while a comparable bisignate signal is observed for solutions of (R)-2 in
DMSO and CHCl3, in contrast a stronger and redshifted bisignate signal is noticed for (R)-2F.
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Figure 4. (Top) UV–Vis absorption spectra of (R)-2 (5.0 × 10−4 M) in CHCl3 and DMSO, and (R)-2F
(5.0 × 10−4 M) in CHCl3. (Bottom) CD spectra of (R)-2 (5.0 × 10−4 M) in CHCl3 and DMSO, and
(R)-2F (5.0 × 10−4 M) in CHCl3.

3. Discussion

For this family of complexes, we have established that the chemical shift of the imine hydrogens
is diagnostic of their aggregation mode [5–11]. In particular, the switching from pentacoordinated
monomeric adducts in coordinating solvents to dimeric aggregates in chloroform solutions has always
accompanied by an up-field shift of these signals, because of the involved hydrogens lie under
the shielding zone of the π electrons of a conjugated system [7–11]. Moreover, a further up-field
shift has been observed for dinuclear double-helicate structures with a tetrahedral coordination
around the Zn(II) metal center, as in 1C, because of the stronger shielding effects caused by the
aromatic ring of the subunit of the other ligand [6]. Relevant chemical shifts for some 4-substituted
bis(salicylaldiminato)Zn(II) Schiff-base complexes in CDCl3 solution and their aggregation properties
are collected in Table 2. Therefore, given the observed comparable chemical shifts of the CH=N signal
for 1C and 2F, we can hypothesize an analogous dinuclear double-helicate, Zn2L2, structure for the
latter species. Moreover, 2F hardly deaggregates with the addition of a Lewis base, such as DMSO.
In fact, starting from a 1.0 × 10−2 M CDCl3 solution of 2F no appreciable variation of 1H NMR signals
is observed even after addition of 1.5 × 103-fold mole excess of DMSO-d6. This indicates a low Lewis
acidic character of this dimeric species.
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Table 2. Comparison of the CH=N chemical shift for some 4-substituted bis(salicylaldiminato)Zn(II)
Schiff-base complexes in CDCl3 solution and their aggregation properties.

Diamino Bridge 4-substituent δ (ppm) ∆δ (ppm) 1 Zn(II)
Coordination

Aggregate
Structure Ref.

2,3-diamino-maleonitrile –OC11H21 8.35 0.03 penta (ZnL)2 [10]
benzene-1,2-diamine –OC10H20 8.47 0.39 penta (ZnL)2 [9]
ethane-1,2-diamine –OC16H33 7.61 0.67 penta (ZnL)2 [8]

cis-cyclohexane-1,2-diamine –OMe 8.08; 8.33 0.22; −0.03 penta (ZnL)2 [7]

trans-cyclohexane-1,2-diamine –OMe
8.33 −0.12 tetra (ZnL)n

2
[6]

7.35 0.86 tetra 1C, Zn2L2

trans-cyclohexane-1,2-diamine –NEt2
8.14 −0.11 tetra 2A, (ZnL)n This work7.22 0.81 tetra 2F, Zn2L2

trans-cyclopentane-1,2-diamine –OMe 7.50 0.69 tetra Zn2L2 [5]
1 Difference of the chemical shifts between DMSO-d6 and CDCl3 solutions. 2 Referred to (R)-1 oligomers.

The high degree of aggregation of (R)-2 in freshly-prepared chloroform solutions with the
prevalent formation of 2A, without any broadening of the 1H NMR signals and chemical shifts
comparable to those of the monomeric (R)-2·DMSO adduct, is in contrast to what is commonly
observed for other bis(salicylaldiminato)zinc(II) Schiff-base complexes (Table 2). In fact, in the case
of intermolecular interactions involving pentacoordinated square-pyramidal Zn(II) geometries, on
switching from monomeric adducts to dimeric aggregates, chemical shifts are always up-field shifted,
accompanied by a broadening of 1H NMR signals when an oligomerization occurs [7–11]. These
observations suggest that in freshly prepared chloroform solutions of (R)-2 a different type aggregation
occurs, likely involving a different coordination environment around the metal center, consequence of
the preorganized structure of the chiral ligand derived from trans-1,2-diaminocyclohexane (Figure 5a).
In particular, we hypothesize a tetrahedral coordination geometry in which each metal center is bonded
to a bidentate subunit of two different ligands with formation of helical oligomers, (ZnL)n, resulting in
no shielding effects on the chemical shift of CH=N and aromatic signals. An analogous structure is
proposed for (R)-1 oligomers. By standing or heating, chloroform solutions of (ZnL)n oligomers are
irreversibly converted in a more thermodynamically stable, dinuclear double-helicate Zn2L2 dimer
(2F in Figure 5b) having a weak Lewis acidic character.
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Figure 5. (a) DFT optimized geometry (B3LYP) for the chiral ligand derived from
trans-1,2-diaminocyclohexane. Hydrogens and ethyl groups are omitted for clarity. (b) Proposed helical
structure for oligomeric aggregates of (R)-2 in chloroform solution. By heating, or after standing,
oligomers are irreversibly converted into a thermodynamically stable, dinuclear double-helicate
dimer 2F. Both the oligomers and the dimer involve a tetrahedral coordination geometry around
the metal center.

This picture is fully consistent with the optical absorption and circular dichroism spectroscopic
results. In fact, (ZnL)n oligomers behave as monomeric (R)-2·DMSO adducts, with no evidence of
relevant interactions between the subunits of two different ligands, since no shift of the UV–Vis spectral
feature, related to π→π* transitions [54], is observed. In contrast, these interactions are operating in the
double-helicate Zn2L2 dimer with consequent red-shift and hyperchromism of the longer wavelength
absorption band. Due to the chiral trans-1,2-diaminocyclohexane bridge all involved species exhibit a
bisignate CD signal characteristic of helical structures.

4. Experimental Section

4.1. Materials and General Procedures

All the reactions were executed under nitrogen. Zinc perchlorate hexahydrate,
4-(diethylamino)-2-hydroxybenzaldehyde, (1R,2R)-1,2-diaminocyclohexane, and triethylamine
(Aldrich, Milan, Italy) were used as received. Chloroform (Aldrich, Milan, Italy) stabilized with
amylene was used for UV–Vis and CD measurements. CDCl3 (Aldrich, Milan, Italy) was stored over
molecular sieves (3 Å), while DMSO-d6 was used as obtained.

4.2. Physical Measurements

Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer (Carlo Erba, Milan,
Italy). ESI-MS spectra were recorded on a AB Sciex API 2000 LC/MS/MS System (AB Sciex Italia,
Milan, Italy). All NMR experiments were recorded at 27 ◦C on a Varian Unity S 500 spectrometer
(Varian, Palo Alto, CA, USA), using tetramethylsilane (Si(CH3)4, TMS) as an internal reference. DOSY
experiments were performed as reported elsewhere [5–10]. Optical absorption and CD spectra were
recorded at room temperature using a UV–Vis Jasco V-630 spectrophotometer (Jasco Europe, Cremella
(LC), Italy) and a Jasco 810 spectropolarimeter (Jasco Europe, Cremella (LC), Italy), respectively.
All UV–Vis and CD measurements were recorded using a 1 mm path length cuvette.
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4.3. Computational Method

Geometry optimization for the ligand was performed by means of first principle DFT calculations,
using Becke’s three-parameter exchange functional supplemented with the Lee-Yang-Parr correlation
functional, B3LYP [55,56]. The tight optimization criteria along with an ultrafine grid were adopted for
the geometry optimization. Calculations were computed with the Gaussian 09 program [57] using the
6-31G basis set.

4.4. Syntheses

4.4.1. {N,N-Bis[4-(diethylamino)-2-hydroxybenzylidene]-(1R,2R)-trans-1,2-diaminocyclohexane-
diaminato}Zn(II) (R)-2

(1R,2R)-1,2-Diaminocyclohexane (0.114 g, 1.00 mmol) was dissolved in methanol (20.0 mL). Then,
4-(diethylamino)-2-hydroxybenzaldehyde (0.387 g, 2.00 mmol) was added. The mixture obtained was
heated at reflux with stirring for 2 h. The yellow solution so obtained was treated with zinc perchlorate
hexahydrate (0.372 g, 1.00 mmol) and triethylamine (1.00 mL) to obtain a mixture that was refluxed and
stirred overnight. After cooling to room temperature, the precipitated solid was collected by filtration,
washed with methanol, and dried in a vacuum desiccator at 120 ◦C over sulfuric acid. Pale-yellow
powder (0.502 g, 95%). C28H38N4O2Zn (528.02): Calcd. C, 63.69; H, 7.25; N, 10.61; Found C, 63.58; H,
7.24; N, 10.63. 1H NMR (500 MHz, DMSO-d6): δ = 1.10 (t, 3JHH = 7.0 Hz, 12H, NCH2CH3), 1.24 (br,
2H, cyclohexyl-H), 1.36 (br, 2H, cyclohexyl-H), 1.87 (br, 2H, cyclohexyl-H), 2.35 (br, 2H, cyclohexyl-H),
2.99 (br, 2H, CH–N=CH), 3.30 (q, 3JHH = 7.0 Hz, 8H; NCH2CH3), 5.77 (d, 4JHH = 2.0 Hz, 2H; ArH), 5.91
(dd, 3JHH = 8.5 Hz, 4JHH = 2.0 Hz, 2H; ArH), 6.91 (d, 3JHH = 8.5 Hz, 2H; ArH), 8.02 (s, 2H; CH=N). 13C
NMR (125 MHz, DMSO-d6): δ = 12.86, 24.10, 27.80, 43.67, 64.30, 99.30, 101.86, 110.58, 136.51, 151.25,
161.82, 163.02.

4.4.2. (R)-2F

A sample of (R)-2 (0.0528 g, 0.10 mmol) was dissolved in chloroform (10 mL) and refluxed under
nitrogen until all the other species 2A–E disappeared in the 1H NMR spectrum (typically four hours).
The solvent was evaporated under vacuum to give 2F as pale-yellow powder in quantitative yield.
ESI-MS: m/z = 1053 [M + H]+, 1075 [M + Na]+. 1H NMR (500 MHz, CDCl3): δ = 1.21 (t, 3JHH = 7.0 Hz,
24H; NCH2CH3), 1.25 (br, 4H, cyclohexyl-H), 1.56 (br, 4H, cyclohexyl-H), 1.65 (br, 8H, cyclohexyl-H),
3.31 (br, 4H, –CH–N=CH), 3.39 (q, 3JHH = 7.0 Hz, 16H; NCH2CH3), 6.02 (m, 8H; ArH), 6.55 (d, 3JHH

= 10.0 Hz, 4H; ArH), 7.22 (s, 4H; CH=N). 13C NMR (125 MHz, CDCl3): δ = 12.95, 25.29, 37.87, 44.46,
68.61, 101.03, 101.43, 109.97, 138.37, 153.18, 169.23, 171.55.

5. Conclusions

This study further demonstrated the intriguing and variegate aggregation characteristics of
bis(salicylaldiminato)zinc(II) Schiff-base complexes. Thanks to the 4-diethylamino substituent on the
salicylidene rings, the greater solubility of (R)-2, in comparison with the (R)-1 analogue, allows a
higher degree of aggregation in solution. The chiral trans-stereochemistry of the bridging diamine
favors a different aggregation mode in these complexes, either in the oligomers and dimers, involving
a tetrahedral coordination geometry around the metal center. Experimental data suggest the formation
of helical oligomers, (ZnL)n, in freshly-prepared solutions of non-coordinating solvents which, by
standing or heating, evolve towards a more thermodynamically stable, dinuclear double-helicate
Zn2L2 dimer.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/6/1/8/s1. Figure S1:
1H NMR DOSY spectrum of (R)-2F in the presence of (R)-1C used as internal reference; Figure S2: Concentration
dependence of 1H NMR spectra of (R)-2 in CDCl3 solution; Figure S3: 1H NMR spectra of (R)-2 in CDCl3 (1.0 ×
10−2 M; 6.0 × 10−6 mol) (a), and with addition of 2.8 × 10−4 mol (b), 7.0 × 10−4 mol (c), 1.4 × 10−3 mol (d), and
8.4 × 10−3 mol (e) of DMSO-d6.
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