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Abstract: Propargyl alcohol is a useful synthon in synthetic organic chemistry. We found that the
ruthenium(II) complex [Cp*RuCl(diene)] (Cp* = η5-C5Me5; diene = isoprene or 1,5-cyclooctadiene
(cod)) catalyzes dimerization of 1,1-diphenylprop-2-yn-1-ol (1,1-diphenylpropargyl alcohol, 1a) at
room temperature to afford an alkylidenebenzocyclobutenyl alcohol 2a quantitatively. Meanwhile,
a stoichiometric reaction of the related hydrido complex [Cp*RuH(cod)] with 1a at 50 ◦C led to
isolation of a ruthenocene derivative 4 bearing a cyclopentadienyl ring generated by dehydrogenative
trimerization of 1a. Detailed structures of 2a and 4 were determined by X-ray crystallography. The
reaction mechanisms for the formation of 2a and 4 were proposed.
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1. Introduction

Propargyl alcohol and their derivatives have been attractive starting materials in synthetic
organic chemistry [1–7]. As one of the various transition-metal catalysts, ruthenium complexes
with cyclopentadienyl co-ligands have been used effectively for their catalytic transformations
involving carbon–carbon and carbon–heteroatom bond formations [8,9]. For example, the Hidai’s
thiolato-bridged dinuclear Cp*Ru (Cp* = η5-C5Me5) complexes catalyze nucleophilic propargylic
substitution of terminal propargylic alcohols owing to facile and reversible formation of an
allenylidene intermediate [10–12]. Recently, Fürstner and co-workers described that regioselective
hydrometalation [13,14] and ene–yne coupling [15] of propargylic alcohols are catalyzed by Cp*RuCl
complexes. The latter reactions are guided by the intramolecular hydrogen bonds between the
hydroxy group in the alcohol and the chlorido ligand. As an extension of our study on catalytic
transformation of propargylic and structurally related allylic compounds [16–19], we report here the
reactions of the Cp*Ru complexes [Cp*RuX(diene)] (X = Cl, H) with a 1,1-diphenylprop-2-yn-1-ol
(1,1-diphenylpropargyl alcohol) HC≡CC(OH)Ph2 (1a). The phenyl substituent in 1a proved to
undergo unexpectedly facile C–H bond cleavage or to migrate in the coordination sphere of the
Cp*Ru complexes, leading to catalytic formation of a benzocyclobutene as a dimerization product
and a novel ruthenocene complex bearing a highly functionalized cyclopentadienyl ring derived from
dehydrogenative trimerization of 1a.
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2. Results and Discussion

2.1. Ruthenium-Catalytic Dimerization of 1,1-Arylpropargyl Alcohol

The addition of the ruthenium(II) complex [Cp*RuCl(diene)] (diene = isoprene or
1,5-cyclooctadiene (cod)) to 50 equiv. of 1,1-diphenylpropargyl alcohol 1a in THF at room temperature
resulted in full conversion of the alcohol. A subsequent chromatographic workup afforded a novel
alkylidenebenzocyclobutenyl alcohol 2a in 97% yield (Scheme 1). The p-methoxyphenyl analogue
1b was also converted to 2b. The products 2 were characterized by X-ray analysis of 2a as well
as 1H and 13C{1H} NMR spectroscopy. Figure 1 clearly shows the benzocyclobutene framework
of 2a. The C–C bond distances in the six-membered ring of the benzocyclobutene core fall in the
range of 1.383(2)–1.398(2) Å, indicating the delocalization of the double bonds. Meanwhile, the short
C2–C15 and C16–C17 distances (1.337(2) Å) as well as the long C15–C16 distance (1.456(2) Å) in 2
are in agreement with the butadiene skeleton derived from dimerization of 1. The hydroxy groups is
preserved throughout the reaction despite of their ease of dehydration in the coordination sphere [20].
The 1H NMR spectrum of 2a displays three mutually coupled vinyl resonances at δ 6.27, 6.32, and 6.45;
these signals are assigned to the H14, H12, and H13 atoms shown in Figure 1, respectively, by HMQC
and HMBC experiments.
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Scheme 1. Catalytic dimerization of 1,1-diarylpropargyl alcohols 1 with the Cp*RuCl complex.
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Figure 1. Crystal structure of 2a·0.5acetone. The solvated molecule is omitted for clarity. Ellipsoids
are drawn at the 30% probability level. Selected bond distances (Å) and angles (deg.): C1–C2, 1.565(2);
C1–C8, 1.539(2); C2–C3, 1.473(2); C2–C15, 1.337(2); C3–C8, 1.390(2); C15–C16, 1.456(2); C16–C17,
1.337(2); C17–C18, 1.516(2); C2–C1–C8, 84.14(11); C1–C2–C3, 89.27(11); C1–C2–C15, 133.32(14);
C3–C2–C15, 137.20(15); C2–C3–C8, 93.11(12); C1–C8–C3, 93.48(12).

The catalytic formation of 2 should entail the orthometalation of one of the aryl group in 1 in
addition to the C–C bond formation. We confirmed that a potential intermediate enyne 3 [21], which
would be formed by head-to-head dimerization of 1a [22,23], does not undergo the C–H cleavage
reaction under the present dimerization conditions (Scheme 2). The result may also exclude the
involvement of analogous orthometalation of the terminal monoyne 1 in the catalysis, although a
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related C–H cleavage reaction of 1a on an osmium complex was known [24]. On the other hand, a
labeling experiment using 1a-d1 with a deuterium at the acetylenic position revealed that the hydrogen
atom derived from the aromatic C–H bond cleavage is selectively incorporated into the vinyl group
adjacent to the C(OH)Ph2 moiety in 2a (Scheme 3).
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On the basis of these observations, we propose the mechanism for the catalytic dimerization
of 1a (Scheme 4). Two molecules of 1a first bind to the ruthenium atom to form a ruthenacycle
A [8,9,25]. Subsequent σ-bond metathesis in A would result in the formation of the vinyl intermediate
B, which would then undergo E–Z isomerization. Reductive elimination from the hydrido(vinyl)
complex C affords the dimerization product 2a. The mechanism is consistent with the deuterium
labeling experiment illustrated in Scheme 3. In related reactions of propargylic alcohols without
1-aryl substituents, Dixneuf and co-workers obtained alkylidenecyclobutene derivatives by a
three-component dehydrative condensation of propargylic alcohols and carboxylic acid with a
Cp*Ru catalyst [26]. They isolated a cyclobutadiene complex, which may be derived from reductive
elimination form A, as the reaction intermediate. Trost and co-workers also described a ruthenacycle
similar to A as a key intermediate in CpRu-catalyzed reactions of propargylic alcohols [27,28].
On the other hand, Chan and co-workers synthesized indene derivatives by the iron-catalyzed
self-condensation of 1-arylpropargyl alcohols involving aromatic C–H bond cleavage [29].
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2.2. Reaction of a (Hydrido)ruthenium Complex with 1,1-Diphenylpropargyl Alcohol

In order to gain further insight into the mechanism of the catalytic dimerization of 1a shown
in Scheme 1, we examined the reaction of 1a with a related hydrido complex. When the hydrido
complex [Cp*RuH(cod)] was treated with a slight excess of 1a at 50 ◦C, a novel ruthenocene complex
4 was obtained in moderate yield (Scheme 5). The 1H NMR spectrum of 4 exhibits two mutually
coupled doublets at δ 3.56 and 4.24 with a 1H intensity each, which are assignable to the newly formed
cyclopentadienyl ligand. Figure 2 depicts the crystal structure of 4 featuring a fused bicyclic hemiketal
skelton derived from dehydrative condensation of three molecules of 1a. The two cyclopentadinyl
rings in 4 are slightly tilted with a dihedral angle of 12.9◦. The Cp-fused six-membered ring adopts a
half-chair conformation with an axial hydroxy group, and two vicinal phenyl groups in the ring lie in
the anti configuration.
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The mechanism for the formation of 4 remains open to speculation; however, the reaction
apparently involves 1,2-migration of the phenyl group in the propragylic alcohol. A plausible route is
suggested in Scheme 6. Formation of the ruthenacycle A as in the dimerization of 1a (Scheme 4) would
be followed by protonation of the hydrido ligand and enyne metathesis to yield the seven-membered
ruthenacycle B. Subsequent 1,2-migration of the phenyl group to the electrophilic carbene atom [30]
would generate C. Rearrangement of C leads to ring contraction to afford the ruthenabenzene D,
which would undergo reductive elimination. Ring closure of the resultant ruthenocene E gives rise to
the formation of the hemiketal 4 as the final product.



Inorganics 2017, 5, 80 5 of 8
Inorganics 2017, 5, 80  5 of 8 

 

 

Scheme 6. Proposed mechanism for formation of 4. Ru = Cp*Ru. 

3. Experimental 

3.1. General 

All manipulations were performed under an atmosphere of argon using standard Schlenk 
techniques unless otherwise specified. Solvents were dried by refluxing over sodium benzophenone 
ketyl (THF, diethyl ether, diglyme, toluene, and hexane), P2O5 (dichloromethane and acetonitrile), 
and Mg(OMe)2 (methanol), and distilled before use. Formic acid was dried over boric oxide and 
distilled. The ruthenium complexes [Cp*RuCl(diene)] [31] and [Cp*RuH(cod)] [32] were prepared 
according to the literature. 1H (399.8 MHz) and 13C{1H} (100.53 MHz) NMR spectra were obtained on 
a JEOL JNM-ECX-400 spectrometer (JEOL Ltd., Tokyo, Japan). 1H NMR shifts are relative to the 
residual CHCl3 (δ 7.26), while 13C shifts are referenced to CDCl3 (δ 77.0). Elemental analyses were 
performed on a Perkin–Elmer 2400II CHN analyzer (PerkinElmer, Waltham, MA, USA). ESI-MS 
spectra were obtained on a JEOL JMS-T100LC spectrometer (JEOL Ltd., Tokyo, Japan) with a positive 
ionization mode. 

3.2. Catalytic Dimerization of 1,1-Diarylprop-2-yn-1-ols to Give 2 

To a solution of [Cp*RuCl(isoprene)] (10.2 mg, 0.030 mmol) in THF (6 mL) was added 1,1-
diphenylprop-2-yn-1-ol (1a, 312.0 mg, 1.5 mmol), and the mixture was stirred for 2.5 h at room 
temperature. After removal of the solvent in vacuo, the residue was chromatographed on a column 
of silica. Elution with hexane/ethyl acetate (9:1 v/v) afforded 2a (302.6 mg, 97%). Single crystals 
suitable for X-ray analysis were obtained by recrystallization from acetone–pentane. 1H NMR (CDCl3) 
δ: 2.36, 2.87 (s, 1H each, OH), 6.27 (d, 3JHH = 15.2 Hz, 1H, CH=C(OH)Ph2), 6.32 (d, 3JHH = 11.3 Hz, 1H, 
CH=C(cyclobutene)), 6.45 (dd, 3JHH = 15.2, 11.3 Hz, 1H, CH–CH=CH), 7.20–7.35 (m, 19H, aryl). 13C{1H} 
NMR (CDCl3) δ: 79.1 (C(OH)Ph2), 86.2 (C(OH)Ph), 116.2 (C=C(cyclobutene)), 119.3, 121.3, 125.4, 125.6, 
126.8 (CH=CHC(OH)Ph2), 126.9, 127.0 (m), 127.9, 128.1, 129.5, 130.0, 131.9, 139.3 (CHC(OH)Ph2), 141.9, 
144.8 (CH=C(cyclobutene)), 145.8, 145.9, 149.8, 153.4. Anal. Calcd. for C30H24O2·0.5acetone: C, 84.91; 
H, 6.11. Found: C, 84.66; H, 6.00. 

Data for 2b: Yield 84%. 1H NMR (CDCl3) δ: 2.60, 3.21 (s, 1H each, OH), 3.74 (m, 9H, OMe), 3.77 
(s, 3H, OMe), 6.18 (d, 3JHH = 15.2 Hz, 1H, vinyl), 6.20 (d, 3JHH = 11.3 Hz, 1H, vinyl), 6.42 (dd, 3JHH = 15.2, 
11.3 Hz, 1H, CH–CH=CH), 6.72–6.78 (m, 8H, aryl), 7.07–7.22 (m, 7H, aryl). ESI-MS (m/z): calcd. for 
C34H32O6 + Na+, 559.2096; found, 559.2091. 

Ru
Ph

Ph
OH

Ph

Ph
HO

H

H

Ru
Ru

Ph

OH
Ph

Ph
HO

H H

Ph
HO

Ph

Ru

Ph

1a 1a – H2

Ru

O Ph

Ph

Ph

Ph

HO

Ph

Ph
OH

H

Ph
Ph

OH

Ph
Ph
O

Ph
Ph

OH
Ru

H

H H
Ph

Ph
OH

Ph
Ph

OH

Ph
Ph

O

Ru
H

H H

reductive 
elimination

4

Ph
Ph

OH

HO

Ph

Ph

Ph

O
Ph

Ru

Ph

OH
Ph

Ph
HO

H

Ph
O
Ph

Ph

+

–

enyne
metathesis

–

1,2-migration
Ru

Ph
Ph

OH

HO

Ph

Ph O

Ph +

PhRu
Ph

H

Ph
O

HO

Ph

Ph

Ph

Ph

OH

A

BC

D E
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3. Experimental

3.1. General

All manipulations were performed under an atmosphere of argon using standard Schlenk
techniques unless otherwise specified. Solvents were dried by refluxing over sodium benzophenone
ketyl (THF, diethyl ether, diglyme, toluene, and hexane), P2O5 (dichloromethane and acetonitrile),
and Mg(OMe)2 (methanol), and distilled before use. Formic acid was dried over boric oxide and
distilled. The ruthenium complexes [Cp*RuCl(diene)] [31] and [Cp*RuH(cod)] [32] were prepared
according to the literature. 1H (399.8 MHz) and 13C{1H} (100.53 MHz) NMR spectra were obtained
on a JEOL JNM-ECX-400 spectrometer (JEOL Ltd., Tokyo, Japan). 1H NMR shifts are relative to
the residual CHCl3 (δ 7.26), while 13C shifts are referenced to CDCl3 (δ 77.0). Elemental analyses
were performed on a Perkin–Elmer 2400II CHN analyzer (PerkinElmer, Waltham, MA, USA). ESI-MS
spectra were obtained on a JEOL JMS-T100LC spectrometer (JEOL Ltd., Tokyo, Japan) with a positive
ionization mode.

3.2. Catalytic Dimerization of 1,1-Diarylprop-2-yn-1-ols to Give 2

To a solution of [Cp*RuCl(isoprene)] (10.2 mg, 0.030 mmol) in THF (6 mL) was added
1,1-diphenylprop-2-yn-1-ol (1a, 312.0 mg, 1.5 mmol), and the mixture was stirred for 2.5 h at room
temperature. After removal of the solvent in vacuo, the residue was chromatographed on a column
of silica. Elution with hexane/ethyl acetate (9:1 v/v) afforded 2a (302.6 mg, 97%). Single crystals
suitable for X-ray analysis were obtained by recrystallization from acetone–pentane. 1H NMR (CDCl3)
δ: 2.36, 2.87 (s, 1H each, OH), 6.27 (d, 3JHH = 15.2 Hz, 1H, CH=C(OH)Ph2), 6.32 (d, 3JHH = 11.3 Hz, 1H,
CH=C(cyclobutene)), 6.45 (dd, 3JHH = 15.2, 11.3 Hz, 1H, CH–CH=CH), 7.20–7.35 (m, 19H, aryl). 13C{1H}
NMR (CDCl3) δ: 79.1 (C(OH)Ph2), 86.2 (C(OH)Ph), 116.2 (C=C(cyclobutene)), 119.3, 121.3, 125.4, 125.6,
126.8 (CH=CHC(OH)Ph2), 126.9, 127.0 (m), 127.9, 128.1, 129.5, 130.0, 131.9, 139.3 (CHC(OH)Ph2), 141.9,
144.8 (CH=C(cyclobutene)), 145.8, 145.9, 149.8, 153.4. Anal. Calcd. for C30H24O2·0.5acetone: C, 84.91;
H, 6.11. Found: C, 84.66; H, 6.00.

Data for 2b: Yield 84%. 1H NMR (CDCl3) δ: 2.60, 3.21 (s, 1H each, OH), 3.74 (m, 9H, OMe), 3.77 (s,
3H, OMe), 6.18 (d, 3JHH = 15.2 Hz, 1H, vinyl), 6.20 (d, 3JHH = 11.3 Hz, 1H, vinyl), 6.42 (dd, 3JHH = 15.2,
11.3 Hz, 1H, CH–CH=CH), 6.72–6.78 (m, 8H, aryl), 7.07–7.22 (m, 7H, aryl). ESI-MS (m/z): calcd. for
C34H32O6 + Na+, 559.2096; found, 559.2091.
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3.3. Synthesis of 4

A mixture of [Cp*RuH(cod)] (52.0 mg, 0.151 mmol) and 1,1-diphenylprop-2-yn-1-ol (1a, 94.0 mg,
0.451 mmol) in toluene (5 mL) was heated at 50 ◦C for 17 h. After removal of the solvent in vacuo, the
resultant solid was recrystallized from THF–diethyl ether to give 4 as yellow crystals (70.9 mg, 0.0824
mmol, 55%). 1H NMR (CDCl3, δ): 1.70 (s, 15H, C5Me5), 2.01, 2.11 (s, 1H each, OH), 3.31 (s, 1H, CH),
3.56, 4.24 (d, 1H each, 3JHH = 2.5 Hz, C5H), 4.91 (d, 1H, JHH = 7.6 Hz, aryl), 6.35 (m, 1H, aryl), 6.91–7.04
(m, 11H, aryl), 7.12–7.43 (m, 13H, aryl), 7.57 (m, 2H, aryl), 8.21 (d, 1H, JHH = 7.9 Hz, aryl). Anal. Calcd.
for C55H50O3Ru: C, 76.81; H, 5.86. Found: C, 76.53; H, 5.84.

3.4. Crystallography

Single crystals suitable for X-ray analyses were mounted on a fiber loop. Diffraction experiments
were performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo Kα

radiation (λ = 0.710 73Å). Intensity data were corrected for Lorentz–polarization effects and for
absorption. Structure solution and refinements were carried out by using the Crystal Structure
program package [33]. The heavy-atom positions were determined by a direct methods program
(SIR92 [34]) and the remaining non-hydrogen atoms were found by subsequent Fourier syntheses and
refined by full-matrix least-squares techniques against F2 using the SHELXL-2014/7 program [35].
The hydrogen atoms were included in the refinements with a riding model. The hydroxy hydrogen
atoms in 2a·0.5acetone were placed at two disordered positions linked to hydrogen acceptors (carbonyl
and hydroxy groups) with 50% occupancies. Details of crystallographic data are summarized in
Supplementary Materials.

Crystal Data for 2a·0.5acetone (Supplementary Materials) : C31.5H27O2.5 (M = 445.56 g/mol),
triclinic, space group P1 (no. 2), a = 10.337(6) Å, b = 10.816(6) Å, c = 12.119(7) Å, α = 72.216(16)◦,
β = 84.13(2)◦, γ = 69.554(17)◦, V = 1209.0(12) Å3, Z = 2, T = 93 K, µ(Mo Kα) = 0.076 mm−1,
Dcalc. = 1.224 g/cm3, 9706 reflections measured (6.2◦ ≤ 2Θ ≤ 55.0◦), 5322 unique (Rint = 0.0336) which
were used in all calculations. The final R1 was 0.0510 (I > 2σ(I)) and wR2 was 0.1477 (all data).

Crystal Data for 4: C55H50O3Ru (M = 860.07 g/mol), monoclinic, space group P21/c (no. 14),
a = 17.089(4) Å, b = 12.512(3) Å, c = 20.001(4) Å, β = 107.378(2)◦, V = 4081.5(15) Å3, Z = 4, T = 123 K,
µ(Mo Kα) = 0.431 mm−1, Dcalc. = 1.400 g/cm3, 31910 reflections measured (6.4◦ ≤ 2Θ ≤ 55.0◦), 9326
unique (Rint = 0.0300) which were used in all calculations. The final R1 was 0.0332 (I > 2σ(I)) and wR2
was 0.0795 (all data).

4. Conclusions

We found that the ruthenium(II) complex [Cp*RuCl(diene)] catalyzed a novel mode of
dimerization of 1,1-diarylpropargyl alcohols 1 to afford the highly functionalized cyclobutenes 2,
which has been unambiguously characterized by NMR spectroscopy and X-ray crystallography.
The proposed mechanism for the catalytic formation of 2 involves the ordinary five-membered
ruthenacycle as a primary intermediate. However, the presence of the aryl substituents in 1 led
to unexpected aromatic C–H bond cleavage to afford the benzocyclobutenes 2 with high efficiency and
selectivity. Formation of the five-membered ruthenacycle intermediate before the C–H bond cleavage
was supported by the reaction of the related hydrido complex [Cp*RuH(cod)]. The dehydrogenative
cyclization of three molecules of 1a therein took place without the C–H bond cleavage to generate the
fused cyclopentadienyl ring in the product 4. These results added new aspects to the coordination
chemistry and catalysis of the Cp*Ru complexes [8,9,12,36,37].

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/4/80/s1. Cif
and cif-checked files. CCDC-1582525 (2a·0.5acetone) and CCDC-1582526 (4) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.
ac.uk/conts/retrieving.html.
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