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Abstract: We report the CoII-substitution effect on a cyanido-bridged three-dimensional FeII spin-crossover
network, Fe2[Nb(CN)8](4-pyridinealdoxime)8·2H2O. A series of iron–cobalt octacyanidoniobate,
(FexCo1−x)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O, was prepared. In this series, the behavior of FeII

spin-crossover changes with the CoII concentration. As the CoII concentration increases, the transition
of the spin-crossover becomes gradual and the transition temperature of the spin-crossover shifts
towards a lower temperature. Additionally, this series shows magnetic phase transition at a low
temperature. In particular, (Fe0.21Co0.79)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O exhibits a Curie
temperature of 12 K and a large coercive field of 3100 Oe.
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1. Introduction

The spin-crossover phenomenon between low-spin (LS) and high-spin (HS) states has been
extensively studied in many fields [1–13]. This phenomenon can be modulated by various physical
and chemical stimulations (e.g., light, pressure, temperature, vapor molecule, and metal substitution),
and it has potential for sensor and memory applications [14,15]. To control the spin-crossover behavior,
the metal substitution effect on the spin-crossover behavior for some FeII spin-crossover materials has
been investigated [16–25].

In the field of molecule-based magnets [26–30], cyanido-bridged metal assemblies have
drawn attention because they exhibit various magnetic functionalities such as a high Curie
temperature (Tc) [31–34], a charge transfer transition [35–42], and an externally stimulated
phase transition phenomena [43–47]. In the recent years, we have synthesized several kinds of
magnetic cyanido-bridged bimetal assemblies possessing Fe spin-crossover sites. For example,
CsFe[Cr(CN)6]·1.3H2O exhibits a spin-crossover phenomenon at 211 K in the cooling process
(T1/2↓) and 238 K in the heating process (T1/2↑), and a ferromagnetic phase transition at 9 K [48].
Fe2[Nb(CN)8](3-pyridylmethanol)8·4.6H2O shows a gradual spin-crossover phenomenon at 250 K and
a ferrimagnetic phase transition at 12 K [49]. However, the photoresponsivities were not reported for
these compounds.

In 2011, we synthesized a cyanido-bridged metal assembly, Fe2[Nb(CN)8](4-pyridinealdoxime)8·2H2O,
which shows a spin-crossover phenomenon at 130 K [50]. When this material is irradiated with 473-nm
light, a spontaneous magnetization is observed. This photoinduced ferrimagnetic phase exhibits a TC

value of 20 K and a coercive field (Hc) value of 240 Oe. This is the first demonstration of light-induced
spin crossover ferrimagnetism. In 2014, we prepared Fe2[Nb(CN)8](4-bromopyridine)8·2H2O, which is
the first chiral photomagnet, and observed 90◦ optical switching of the polarization plane of second
harmonic light [51].
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From the viewpoint of controlling the magnetic performance of a photomagnetic material,
metal replacement is effective. In particular, Co2[Nb(CN)8](4-pyridinealdoxime)8·2H2O, which is
a metal-substituted compound of Fe2[Nb(CN)8](4-pyridinealdoxime)8·2H2O described above as
the first photoinduced spin-crossover magnet, shows a large coercive field of 15,000 Oe [52].
In this work, we synthesize cyanido-bridged metal assemblies containing both Fe and Co ions,
(Fe1−xCox)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O, and discuss the crystal structures, spectroscopic
properties, and magnetic properties.

2. Results and Discussions

2.1. Syntheses

The preparation of (Fe1−xCox)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O was performed by reacting
a mixed aqueous solution of FeCl2·4H2O, CoCl2·6H2O, L-(+)-ascorbic acid, and 4-pyridinealdoxime,
with an aqueous solution of K4[Nb(CN)8]·2H2O with Fe/Co ratios [Fe]/([Fe] + [Co]) of 0, 0.1,
0.25, 0.5, 0.75, and 1, yielding a microcrystalline powder. Stirring was continued for 1 h.
Then the solution was filtered and washed twice by water. Elemental analyses indicate that
the chemical formulae of the obtained compounds are Fe2[Nb(CN)8](4-pyridinealdoxime)8·3H2O
(x = 0, compound 1), (Fe0.92Co0.08)2[Nb(CN)8](4-pyridinealdoxime)8·3H2O (x = 0.08, compound 2),
(Fe0.71Co0.29)2[Nb(CN)8](4-pyridinealdoxime)8·3H2O (x = 0.29, compound 3), (Fe0.50Co0.50)2[Nb(CN)8]
(4-pyridinealdoxime)8·3H2O (x = 0.50, compound 4), (Fe0.21Co0.79)2[Nb(CN)8](4-pyridinealdoxime)8 ·3H2O
(x = 0.79, compound 5), and Co2[Nb(CN)8](4-pyridinealdoxime)8·3H2O (x = 1, compound 6). (See Section 3)
The compounds of 1 and 6 in this work correspond well to the formulae in our previous reports [50,52].

2.2. Crystal Structures and Spectroscopic Properties

Table 1 and Figure 1 show the results of the Rietveld analyses of the powder X-ray diffraction
(XRD) patterns for 1–6. Structural analyses show that the crystal structures of 1 and 6 are isostructural
to those reported in our previous papers [50,52]. Rietveld analyses of the XRD patterns of 2–5 were
performed using the crystal structure of 1 as the initial structure with the occupancies of Fe and Co
based on the chemical formula. The lattice constant versus x value (Co content) plot shows that the
lattice constant of the a-axis decreases from 20.2893 Å (x = 0) to 20.2105 Å (x = 1) (0.4% decrease),
while that of the c-axis slightly decreases from 15.0224 Å (x = 0) to 15.0066 Å (x = 1) (0.1% decrease),
and the unit cell volume decreases from 6184.1 Å3 (x = 0) to 6129.7 Å3 (x = 1) (0.9% decrease) with
increasing x value (Table 1, Figure 2). It is noteworthy that the XRD peaks become broader with an
increasing x value. The SEM images indicate that this broadening is caused by the reduction of the
crystallite size (Figure S1).

Table 1. Crystal system, space group, and lattice constants of 1–6.

1 2 3 4 5 6

Crystal system Tetragonal Tetragonal Tetragonal Tetragonal Tetragonal Tetragonal

Space group I41/a I41/a I41/a I41/a I41/a I41/a

a(b)/Å 20.2893(5) 20.2683(5) 20.2572(6) 20.2453(8) 20.2203(12) 20.2105(1)
c/Å 15.0224(5) 15.0156(5) 15.0154(6) 15.0151(8) 15.0047(13) 15.0066(13)

V/Å3 6184.1(3) 6168.5(3) 6161.6(3) 6154.2(5) 6134.8(8) 6129.7(7)
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Figure 1. XRD patterns with Rietveld analyses of 1–6. Red plots, black lines, blue lines, green bars, 
and black bars are the observed patterns, calculated patterns, residue between the calculated and 
observed patterns, calculated positions of the Bragg reflections in the sample, and those of the silicon 
(Si) standard, respectively. The XRD peaks due to Si are shown as black sticks. Representative 
reflection indexes are shown in the XRD pattern of 1. 
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Figure 1. XRD patterns with Rietveld analyses of 1–6. Red plots, black lines, blue lines, green bars,
and black bars are the observed patterns, calculated patterns, residue between the calculated and
observed patterns, calculated positions of the Bragg reflections in the sample, and those of the silicon
(Si) standard, respectively. The XRD peaks due to Si are shown as black sticks. Representative reflection
indexes are shown in the XRD pattern of 1.



Inorganics 2017, 5, 63 4 of 12
Inorganics 2017, 5, 63 4 of 12 

 

 
(a) (b) (c) 

Figure 2. x dependence of (a) the a-axis; (b) the c-axis; and, (c) the unit cell volume (V). 

The crystal structure and coordination geometries of this series are explained using 3 as an 
example. 3 has a tetragonal crystal structure in the I41/a space group with a = 20.2572(6) Å and c = 
15.0154(6) Å. The asymmetric unit is composed of a quarter of the [Nb(CN)8] anion, half of the [M(4-
pyridinealdoxime)4] (M = Fe or Co) cation, and a water molecule. Here, we assume that Fe and Co 
are randomly incorporated. The coordination geometries of the Nb and M sites are dodecahedron 
(D2d) and pseudo-octahedron (D4h), respectively. For the eight CN groups of Nb(CN)8, four CN 
groups are bridged to the M ions, and the other four CN groups are not bridged. Two cyanide 
nitrogen atoms coordinate to the two axial positions of the M site and four pyridyl nitrogen atoms of 
4-pyridinealdoxime are located at the other four equatorial positions. A cyanido-bridged three-
dimensional (3D) network structure is formed by the M–NC–Nb component (Figure 3). 
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Figure 3. Crystal structure and coordination geometries around the metal centers for 3. (a) 
Coordination geometry around the metal centers; (b) crystal structure viewed from the a-axis; and, 
(c) from the c-axis. Water molecules are omitted for clarity. 

The infrared spectrum of 1 shows two CN stretching peaks at 2130 cm−1 and 2151 cm−1, which 
are ascribed to the CN stretching peak due to non-bridged CN (Nb–CN) and bridged CN between 
Nb and Fe (Nb–CN–Fe), respectively. In 2–6, a different peak is observed around 2160 cm−1, and its 
intensity increases with an increasing CoII concentration, while the peak around 2151 cm−1 decreases. 
This indicates that the peak around 2160 cm−1 is due to the bridged CN between Nb and Co (Nb–CN–
Co) (Figure 4). 
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Figure 2. x dependence of (a) the a-axis; (b) the c-axis; and, (c) the unit cell volume (V).

The crystal structure and coordination geometries of this series are explained using 3 as an
example. 3 has a tetragonal crystal structure in the I41/a space group with a = 20.2572(6) Å and
c = 15.0154(6) Å. The asymmetric unit is composed of a quarter of the [Nb(CN)8] anion, half of
the [M(4-pyridinealdoxime)4] (M = Fe or Co) cation, and a water molecule. Here, we assume that
Fe and Co are randomly incorporated. The coordination geometries of the Nb and M sites are
dodecahedron (D2d) and pseudo-octahedron (D4h), respectively. For the eight CN groups of Nb(CN)8,
four CN groups are bridged to the M ions, and the other four CN groups are not bridged. Two
cyanide nitrogen atoms coordinate to the two axial positions of the M site and four pyridyl nitrogen
atoms of 4-pyridinealdoxime are located at the other four equatorial positions. A cyanido-bridged
three-dimensional (3D) network structure is formed by the M–NC–Nb component (Figure 3).
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Nb and Fe (Nb–CN–Fe), respectively. In 2–6, a different peak is observed around 2160 cm−1, and its 
intensity increases with an increasing CoII concentration, while the peak around 2151 cm−1 decreases. 
This indicates that the peak around 2160 cm−1 is due to the bridged CN between Nb and Co (Nb–CN–
Co) (Figure 4). 

Nb

Fe/Co

C
N

a

b

c

b

Nb

Fe/Co

C
N

c

b

Nb

Fe/Co

C
N

Figure 3. Crystal structure and coordination geometries around the metal centers for 3. (a) Coordination
geometry around the metal centers; (b) crystal structure viewed from the a-axis; and, (c) from the c-axis.
Water molecules are omitted for clarity.

The infrared spectrum of 1 shows two CN stretching peaks at 2130 cm−1 and 2151 cm−1,
which are ascribed to the CN stretching peak due to non-bridged CN (Nb–CN) and bridged CN
between Nb and Fe (Nb–CN–Fe), respectively. In 2–6, a different peak is observed around 2160 cm−1,
and its intensity increases with an increasing CoII concentration, while the peak around 2151 cm−1

decreases. This indicates that the peak around 2160 cm−1 is due to the bridged CN between Nb and
Co (Nb–CN–Co) (Figure 4).
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2.3. Magnetic Properties

Figure 5a shows the temperature dependence of the product of the magnetic susceptibility and
the temperature (χMT) of 1–6 under an external magnetic field of 5000 Oe. The χMT values of 1–6
at 300 K are 7.04, 7.08, 6.77, 6.11, 5.79, and 5.16 K·cm3·mol−1, respectively. These values agree with
the estimated values of 6.96, 6.83, 6.48, 6.14, 5.79, and 5.16 K·cm3·mol−1, which are obtained by
Equation (1)

χMT =
NAµB

2

3kB
{2xgCo

2SCo(SCo + 1) + 2(1− x)gFe
2SFe(SFe + 1) + gNb

2SNb(SNb + 1)} (1)

where NA is Avogadro’s constant, µB is the Bohr magneton, kB is the Boltzmann constant, gi is the
g value of atom i, Si is the spin quantum number of atom i, and x is the Co content [53,54], assuming
gFe = 2.1, gCo = 2.4, gNb = 2.0, SFe = 2, SCo = 3/2, and SNb = 1/2.
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As the temperature decreases, the χMT values decreases at intermediate temperatures in 1–5,
while the χMT value of 6 is almost constant between 50 K and 300 K. Thus, the occurrence of the FeII

spin-crossover phenomenon for all of the FeII containing compounds is confirmed by the magnetic
susceptibility measurements. The thermal spin-crossover temperature (T1/2), which is estimated as the
temperature where the temperature differential of χMT is maximized, shows that with an increasing
x value, T1/2 shifts to a lower temperature (Figure 5b and Figure S2). In addition, with an increasing
x value, spin crossovers become more gradual. According to the reported observations [16–25],
these results are explained as follows. Since the ionic radii of Co(II)HS (0.75 Å) is closer to Fe(II)HS

(0.78 Å) than Fe(II)LS (0.61 Å) [55], the spin-crossover from Fe(II)HS to Fe(II)LS becomes unfavorable,
leading to a decrease of the spin transition temperature. Additionally, because the distance between
spin-crossover sites becomes longer by metal substitution, the cooperativity between spin-crossover
sites decreases, resulting in a gradual spin-crossover behavior.

Next, we measured the magnetic properties in the low temperature region. Figure 6a shows the
magnetization vs. temperature plots of 1–6 with cooling temperature at an external magnetic field of
10 Oe. The magnetization vs. temperature curves of 2 and 3 show a small shoulder below 15 K. 4, 5,
and 6 clearly show spontaneous magnetization with critical temperatures (Tc) of 8 K, 12 K, and 18 K,
respectively. The magnetization vs. external magnetic field plots at 2 K show that the magnetic coercive
fields of 4, 5, and 6 are 1400 Oe, 3100 Oe, and 13,000 Oe, respectively (Figure 6b). The singleness of
the Tc values and the shape of magnetic hysteresis loop indicate that Fe and Co are mixed with each
other on the atomic level. The observation of such a large coercive field is attributed to the single-ion
anisotropy of Co ion possessing an unquenched orbital angular momentum.
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(Fe0.71Co0.29)2[Nb(CN)8](4-pyridinealdoxime)8·3H2O (3), (Fe0.50Co0.50)2[Nb(CN)8](4-pyridinealdoxime)8

·3H2O (4), (Fe0.21Co0.79)2[Nb(CN)8](4-pyridinealdoxime)8·3H2O (5), and Co2[Nb(CN)8](4-pyridinealdoxime)8
·3H2O (6). Calcd. for 1: Fe, 7.74; Nb, 6.43; C, 46.59; H, 3.77; N, 23.28. Found for 1: Fe, 7.98; Nb, 6.69; C,
46.71; H, 3.72; N, 23.39. Calcd. for 2: Fe, 7.11; Co, 0.65; Nb, 6.43; C, 46.57; H, 3.77; N, 23.28. Found for 2:
Fe, 7.07; Co, 0.67; Nb, 6.40; C, 46.57; H, 3.66; N, 23.33. Calcd. for 3: Fe, 5.49; Co, 2.36; Nb, 6.43; C, 46.53;
H, 3.77; N, 23.25. Found for 3: Fe, 5.68; Co, 2.45; Nb, 6.44; C, 46.44; H, 3.69; N, 23.39. Calcd. for 4: Fe,
3.86; Co, 4.07; Nb, 6.42; C, 46.49; H, 3.76; N, 23.23. Found for 4: Fe, 3.81; Co, 4.13; Nb, 6.32; C, 46.40; H,
3.69; N, 23.39. Calcd. for 5: Fe, 1.62; Co, 6.42; Nb, 6.41; C, 46.43; H, 3.76; N, 23.20. Found for 5: Fe, 1.56;
Co, 6.47; Nb, 6.39; C, 46.71; H, 3.71; N, 23.12. Calcd. for 6: Co, 8.13; Nb, 6.41; C, 46.39; H, 3.75; N, 23.18.
Found for 6: Co, 8.26; Nb, 6.54; C, 46.37; H, 3.71; N, 23.18.

3.2. Measurements

Elemental analyses for C, H, and N were carried out by standard microanalytical methods while
those for Fe, Co, and Nb were analyzed by inductive plasma mass spectroscopy. FT-IR spectra were
recorded on a FT-IR4100 spectrometer (JASCO, Tokyo, Japan). X-ray powder diffraction was measured
on a Ultima-IV powder diffractometer (Rigaku, Tokyo, Japan). Rietveld analyses were performed using
PDXL program (Rigaku, Tokyo, Japan). Magnetic susceptibility and magnetization measurements
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were carried out using a MPMS superconducting quantum interference device (SQUID) magnetometer
(Quantum Design, San Diego, CA, USA).

4. Conclusions

In this work, we synthesized and characterized ternary metal cyanido-bridged metal
assemblies of (FexCo1−x)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O. The magnetic measurements
reveal that all of the Fe-containing systems present a spin-crossover phenomenon. In particular,
(Fe0.21Co0.79)2[Nb(CN)8](4-pyridinealdoxime)8·zH2O exhibits a coexistence of a spin-crossover
phenomenon and a magnetic phase transition with Tc of 12 K and a large Hc of 3100 Oe. Additional
investigations on the photomagnetic effect are in progress.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/4/63/s1. Cif and
cif-checked files of 1–6. Figure S1: SEM images and particle size distributions of 1–6; Figure S2: Co fraction (x)
dependence of spin-crossover transition temperature of 1–5.
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