Next Article in Journal
The Role of Anisotropic Exchange in Single Molecule Magnets: A CASSCF/NEVPT2 Study of the Fe4 SMM Building Block [Fe2(OCH3)2(dbm)4] Dimer
Next Article in Special Issue
Rare Earth and Actinide Complexes
Previous Article in Journal
Zirconium-Catalyzed Alkene Hydrophosphination and Dehydrocoupling with an Air-Stable, Fluorescent Primary Phosphine
Previous Article in Special Issue
A Structural and Spectroscopic Study of the First Uranyl Selenocyanate, [Et4N]3[UO2(NCSe)5]
Article Menu

Export Article

Open AccessArticle
Inorganics 2016, 4(3), 27; doi:10.3390/inorganics4030027

Optical Properties of Heavily Fluorinated Lanthanide Tris β-Diketonate Phosphine Oxide Adducts

1
Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M19 9PL, UK
2
Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK
*
Author to whom correspondence should be addressed.
Academic Editors: Moris S. Eisen and Yi Luo
Received: 13 June 2016 / Revised: 27 July 2016 / Accepted: 9 August 2016 / Published: 20 September 2016
(This article belongs to the Special Issue Rare Earth and Actinide Complexes)
View Full-Text   |   Download PDF [1967 KB, uploaded 21 September 2016]   |  

Abstract

The construction of lanthanide(III) chelates that exhibit superior photophysical properties holds great importance in biological and materials science. One strategy to increase the luminescence properties of lanthanide(III) chelates is to hinder competitive non-radiative decay processes through perfluorination of the chelating ligands. Here, the synthesis of two families of heavily fluorinated lanthanide(III) β-diketonate complexes bearing monodentate perfluorinated tris phenyl phosphine oxide ligands have been prepared through a facile one pot reaction [Ln(hfac)3{(ArF)3PO}(H2O)] and [Ln(F7-acac)3{(ArF)3PO}2] (where Ln = Sm3+, Eu3+, Tb3+, Er3+ and Yb3+). Single crystal X-ray diffraction analysis in combination with photophysical studies have been performed to investigate the factors responsible for the differences in the luminescence lifetimes and intrinsic quantum yields of the complexes. Replacement of both bound H2O and C–H oscillators in the ligand backbone has a dramatic effect on the photophysical properties of the complexes, particularly for the near infra-red emitting ion Yb3+, where a five fold increase in luminescence lifetime and quantum yield is observed. The complexes [Sm(hfac)3{(ArF)3PO}(H2O)] (1), [Yb(hfac)3{(ArF)3PO}(H2O)] (5), [Sm(F7-acac)3{(ArF)3PO}2] (6) and [Yb(F7-acac)3{(ArF)3PO}2] (10) exhibit unusually long luminescence lifetimes and attractive intrinsic quantum yields of emission in fluid solution (ΦLn = 3.4% (1); 1.4% (10)) and in the solid state (ΦLn = 8.5% (1); 2.0% (5); 26% (6); 11% (10)), which are amongst the largest values for this class of compounds to date. View Full-Text
Keywords: lanthanide; luminescence; perfluorinated β-diketonates; intrinsic quantum yield lanthanide; luminescence; perfluorinated β-diketonates; intrinsic quantum yield
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Swinburne, A.N.; Langford Paden, M.H.; Chan, T.L.; Randall, S.; Ortu, F.; Kenwright, A.M.; Natrajan, L.S. Optical Properties of Heavily Fluorinated Lanthanide Tris β-Diketonate Phosphine Oxide Adducts. Inorganics 2016, 4, 27.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Inorganics EISSN 2304-6740 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top