Supplementary Materials: Mesoporous WN/WO₃-Composite Nanosheets for the Chemiresistive Detection of NO₂ at Room Temperature

Fengdong Qu, Bo He, Rohiverth Guarecuco and Minghui Yang

Figure S1. Sensor response of WN/WO₃ composites sensor at RT upon exposure to 200 ppb NO₂ concentration at various relative humidity (RH).

Figure S2. Response of the sensor based on WO₃ nanosheets to 100 ppb NO₂ as a function of the operating temperature.

Figure S3. Resistances of the sensors based on WN and WO₃ to 100 ppb NO₂ at room temperature. (The green area represents the sensors in NO₂ gas.)

Figure S4. The schematic illustration of (**a**) gas sensing analysis system and (**b**) gas mixing line equipment. (The blue color means the sensing films and the yellow color means the electrodes of the sensor.)

Calculation of Theoretical Limit of Detection Using Signal/Noise Ratio

The sensor noise was calculated using the variation in the relative sensor response in the baseline using the root-mean-square deviation (RMSD) [7]. 60 points obtained from Figure 3a before exposure to NO₂ were averaged and a standard deviation (V_{χ^2}) was gathered as 0.121 (1.21 × 10⁻¹).

$$RMS_{noise} = \sqrt{\frac{V_{\chi^2}}{N}} = \sqrt{\frac{0.121}{60}} = 0.0449$$
(1)

where *N* is the number of data points. The *RMS*_{noise} was calculated to be 4.49×10^{-2} . According to the International Union of Pure and Applied Chemistry (IUPAC) definition, the signal (S) to noise (N) ratio (S/N) is 3, and the slope is 0.55 from Figure 3b, so that:

$$LOD = 3 \frac{RMS_{noise}}{Slope} = 3 \times 0.0449 \div 0.105 = 1.28 \text{ ppb}$$
 (2)

Thus, the theoretical NO_2 limit of detection was calculated to be approximately 1.28 ppb in our work.