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Abstract: The reaction of the lithium tris(2-pyridyl)stannate [LiSn(2-py6OtBu)3] (py6OtBu = C5H3N-6-OtBu),
1, with the element(II) amides E{N(SiMe3)2}2 (E = Sn, Pb) afforded complexes [LiE{Sn(2-py6OtBu)3}3]
for E = Sn (2) and E = Pb (3), which reveal three Sn–E bonds each. Compounds 2 and 3 have
been characterized by solution NMR spectroscopy and X-ray crystallographic studies. Large
1J(119Sn–119/117Sn) as well as 1J(207Pb–119/117Sn) coupling constants confirm their structural integrity
in solution. However, contrary to 2, complex 3 slowly disintegrates in solution to give elemental lead
and the hexaheteroarylditin [Sn(2-py6OtBu)3]2 (4).
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1. Introduction

The synthesis and characterization of catenated heavier group 14 element compounds have
attracted attention in recent years [1–5]. However, contrary to silicon and germanium, there are
limitations for tin and lead associated with the significant decrease in element–element bond energy.
Hence, homonuclear as well as heteronuclear molecules with E–E bonds become less stable when E
represents tin and or lead. Moreover, within this class of compounds, discrete branched oligomers
with more than one E–E bond are rare compared with their linear analogs [6–10]. It has been shown
that reactions of lead(II) halides with Grignard reagents involved disproportionation processes leading
to plumbates of type [MgBr(THF)5][Pb(PbPh3)3] [11] and [Mg(THF)3(µ-Cl)3Mg(THF)3][Pb(PbBp3)3]
(Bp = 4-Biphenyl) [12]. The formation of closely related anions [Sn(SnR3)3]´ (R = Me or Ph) was
found as part of decomposition of corresponding stannyl anions in the presence of distannanes [13–16].
Further rare investigations included the reduction reaction of SnPh4 with elemental lithium in liquid
ammonia to give [Li(NH3)4][Sn(SnPh3)3] [17] or reactions of the organotin chlorides SnPh2Cl2 as
well as SnMe3Cl with lanthanoid metals, yielding complexes [Yb(DME)3Cl]2[Sn(SnPh3)3]2 [18] and
[Ln(THF)4{Sn(SnMe3)3}2] (Ln = Sm, Yb) [19]. Complete structural characterizations, however, are
missing due to the very low solubility and sensitivity of all compounds reported.

Recently, conventional salt metathesis reactions have been employed for synthesis of
neutral distannylstannylene species Sn(SnAr3)2 (Ar = C6H3-2,6-(OiPr)2) [20] and Sn(SnPh2Ar*)2

(Ar* = C6H3-2,6-(Trip)2, Trip = C6H2-2,4,6-iPr3) [21], bearing a divalent tin atom bonded to two
triarylstannyl groups. In both cases, the catenation was implemented by a stannyl lithium derivative
LiSnAr3 or LiSnPh2Ar*, respectively. Our studies on related triheteroaryltin(II) compounds revealed a
diverse reactivity. Thereby, it was found that compounds [Li(THF)Sn(2-pyR)3] (pyR = C5H3N-5-Me or
C5H3N-3-Me), in which the lithium cation is well embedded within the tris(pyridyl)stannate core, can
either act as a two-electron donor leading to a tin–element bond formation [22,23] or may be used for
salt metathesis reactions with the lone pair of electrons at the tin(II) atom remaining available [24].
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Continuing these studies, it is now shown that the reaction between the lithium
tris(2-pyridyl)stannate [LiSn(2-py6OtBu)3] (py6OtBu = C5H3N-6-OtBu), 1, with group 14 element(II)
amides E{N(SiMe3)2}2 (E = Sn or Pb) lead to the straight formation of the lithium salts
[LiSn{Sn(2-py6OtBu)3}3] (2) and [LiPb{Sn(2-py6OtBu)3}3] (3) each with the lithium cation intramolecularly
coordinated by the novel tris(stannyl)metallate enabled through the unique donor functionality of the
complex anion [Sn{Sn(2-py6OtBu)3}3]´ as well as [Pb{Sn(2-py6OtBu)3}3]´ itself.

2. Results

Compounds 2 and 3 have been prepared in reactions of the lithium stannate 1 upon addition of
tin(II) or lead(II) amide E{N(SiMe3)2}2 (E = Sn, Pb) in a 3:1 stoichiometry (Scheme 1). The initial yellow
THF solution of 1 gradually changed to a reddish-brownish solution of 2 and a green solution of 3.
The complexes were obtained as the only products in good isolated yields as colorless (2) as well as
yellow (3) crystalline material upon work up and re-crystallization from toluene or benzene. It is likely
that neutral E{Sn(2-py6OtBu)3}2 was initially generated. However, this molecule, which could neither
be isolated nor detected, may have then reacted further with another equiv of 1 to give the lithium
complexes 2 or 3, respectively, by virtue of a donor–acceptor interaction between two low valent group
14 element species. This may be explained with the less steric requirement of the pyridyl ligand as well
as the pronounced two-electron donor ability of 1 comparable to other tris(2-pyridyl)stannates [22–24].
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Scheme 1. Illustration of the possible reaction pathway to give compounds 2 and 3; with
pyR = py6OtBu = C5H3N-6-OtBu.

Indeed, the molecular structures of complexes 2 and 3 (Figure 1, Table 1) imply the donation of
a lithium stannate fragment to the central element(II) atom of a E{Sn(2-py6OtBu)3}2 molecule due to
the intramolecular N-coordination of the lithium cation by only one tris(2-pyridyl)stannyl unit in 2
and 3 as found for previously reported tris(2-pyridyl)stannate complexes [22–25]. Thus, compounds 2
and 3 can be described as zwitter-ionic complexes with a Li¨ ¨ ¨ Sn separation of 3.339(14) Å in 2 as well
as 3.321(10) Å in 3.

In complex 2, the central Sn atom adopts a trigonal pyramidal geometry with Sn–Sn(1)–Sn
angles of 92.52(2), 93.22(2), and 96.13(2)˝. The Sn–Sn bond lengths range from 2.8127(7) to
2.8217(6) Å and lie well within the previously known range (2.811–2.836 Å) for complexes of the
[Sn(SnPh3)3]– anion [16–19] but are considerably shorter than those found for the distannylstannylenes
Sn(SnAr3)2 (Ar = C6H3-2,6-(OiPr)2) (2.86 Å) [20] as well as Sn(SnPh2Ar*)2 (Ar* = C6H3-2,6-(Trip)2,
Trip = C6H2-2,4,6-iPr3) (2.96 Å) [21]). The geometry at Sn(2), whose interligand angles vary from
93.8(2)˝ to 132.5(2)˝, is strikingly distorted from idealized tetrahedral geometry. This can be attributed
to the binding of the lithium cation by the three pyridyl groups of this stannyl unit contrary to atoms
Sn(3) and Sn(4).

Compound 3 crystallized as two structurally similar, but crystallographically independent
molecules. Therefore, only one of the crystallographically independent molecules is shown in Figure 1.
The molecular structure of 3 has many similarities to that of 2. In 3, the lead atom may also be described
as trigonal pyramidal with the lone pair of electrons located at the apex. Accordingly, the Sn–Pb–Sn
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angles are relatively small with values ranging from 90.85(1)˝ to 94.49(1)˝. Similar structural features
can be found in the previously reported tris(plumbyl)plumbate anions, where angles around the
central lead atom average to 93.0˝ [11] and 94.1˝ [12]. The Pb–Sn bond lengths amount to 2.8743(3)
and 2.8919(4) Å, and may be compared with 2.7844(4) Å in Pb(Ar)SnAr3 (Ar = C6H3-2,6-(OiPr)2)
and 2.9283(4) Å in Pb(SnAr3)2 [26].
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probability ellipsoids. Hydrogen atoms and methyl groups are omitted for clarity.

Table 1. Selected bond lengths (Å) and bond angles (˝) of compounds 2 and 3.

2 3

Sn(1)–Sn(2) 2.8127(7) Pb(1)–Sn(1) 2.8743(4)
Sn(1)–Sn(3) 2.8181(6) Pb(1)–Sn(2) 2.8919(4)
Sn(1)–Sn(4) 2.8217(6) Pb(1)–Sn(3) 2.8818(4)

Sn(2)¨ ¨ ¨ Li(1) 3.339(14) Sn(2)¨ ¨ ¨ Li(1) 3.321(10)
Sn(2)–Cipso 2.168(7), 2.179(7), 2.184(8) Sn(1)–Cipso 2.154(5), 2.167(6), 2.182(5)
Sn(3)–Cipso 2.161(6), 2.165(7), 2.183(6) Sn(2)–Cipso 2.172(6), 2.183(6), 2.191(6)
Sn(4)–Cipso 2.163(6), 2.167(6), 2.172(7) Sn(3)–Cipso 2.167(6), 2.169(5), 2.177(5)

Li(1)–N 2.024(13)–2.038(15) Li(1)–N 1.996(11)–2.030(11)

Sn(2)–Sn(1)–Sn(3) 92.52(2) Sn(1)–Pb(1)–Sn(2) 90.90(1)
Sn(2)–Sn(1)–Sn(4) 93.22(2) Sn(1)–Pb(1)–Sn(3) 94.49(1)
Sn(3)–Sn(1)–Sn(4) 96.13(2) Sn(2)–Pb(1)–Sn(3) 90.85(1)
Cipso–Sn(2)–Cipso 93.8(2), 98.9(3), 99.8(3) Cipso–Sn(1)–Cipso 101.2(2), 103.2(2), 104.8(2)
Cipso–Sn(3)–Cipso 100.8(2), 102.8(2), 104.7(2) Cipso–Sn(2)–Cipso 92.4(2), 98.6(2), 100.0(2)
Cipso–Sn(4)–Cipso 100.4(2), 101.2(3), 103.6(2) Cipso–Sn(3)–Cipso 101.8(2), 103.3(2), 104.3(2)
Cipso–Sn(2)–Sn(1) 112.1(2), 114.0(2), 132.5(2) Cipso–Sn(1)–Pb(1) 109.2(1), 112.5(1), 123.8(1)
Cipso–Sn(3)–Sn(1) 109.2(2),112.6(2), 124.5(1) Cipso–Sn(2)–Pb(1) 111.8(2), 113.7(2), 134.1(2)
Cipso–Sn(4)–Sn(1) 106.0(2), 113.0(2), 129.7(2) Cipso–Sn(3)–Pb(1) 104.6(1), 107.9(1), 132.0(1)

Solution NMR spectra of both complexes in d8-THF reveal a symmetric arrangement within
the [Sn{Sn(2-py6OtBu)3}3]´ or [Pb{Sn(2-py6OtBu)3}3]´ skeleton, indicated by three chemical equivalent
stannyl moieties with 119Sn NMR room temperature resonances at ´151 ppm (2) and ´180 ppm (3).
The 119Sn–119/117Sn coupling constant in compound 2 is 7050 Hz, and may be compared with scalar
coupling constants found for stannylstannylene species (6240–9400 Hz) [20,27–31]. The chemical
shift of the bridging tin atom in 2 appears at ´1064 ppm. This value is consistent with reported
data for LiSn(SnMe3)3 (δ = ´1062 ppm) [14,32], but reveals a significant upfield shift by ca. 870 ppm
compared to the three-coordinate tin(II) atom in 1 (δ = ´191 ppm). The 207Pb NMR spectrum of 3
is characterized by one signal at ´1643 ppm and a 1J(207Pb–119/117Sn) coupling of 14900 Hz, which
is smaller than observed for the hitherto isolated stannylplumbylenes (19971–22560 Hz) [26], but
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larger than determined for stannylplumbanes, e.g., Ph3SnPbPh3 (3469 Hz) [33,34]. The chemical shift
value of the three-coordinate lead atom in 3, however, is strikingly deviating from low field 207Pb
resonances usually observed for triaryl plumbates, e.g., at +1063 ppm for LiPbPh3 [35] or +1020 ppm
for the related [LiPb(2-py6OtBu)3] [36]. Thus, in 3, the central lead atom is significantly more shielded
according to a smaller contribution to the paramagnetic contribution term. In addition, fast fluctuation
of the lithium counterion in 2 or 3 can be attributed to a upfield shifting of the 7Li NMR resonances
to +0.68 ppm (2) and +1.08 ppm (3) in comparison to the parent lithium stannate 1 (δ = +2.12 ppm).

Compound 3 decomposes when stored over time in solution, yielding elemental lead, the
lithiumstannate 1 and the hexaorganoditin [Sn(2-py6OtBu)3]2 (4). The decomposition, which was
monitored by NMR spectroscopy, proceeds smoothly with the generation of less soluble crystalline 4.
Single crystals, suitable for X-ray diffraction analysis (see Supplementary Material) were isolated from
the NMR tube. Compound 4 ranks into the group of hitherto known hexaorganoditin compounds
as a result of an apparently inexorable cleavage of the comparably weak Sn–Pb bond. Similar to
[Sn(2-py6Me)3]2 [37], 4 provides further functionalities with prospective coordination characteristics
due to the N-heteroaromatic ligand system.

Finally, the results obtained suggest the formation of the tris(stannyl)metallate complexes
[LiSn{E(2-py6OtBu)3}3] 2 and 3 to be favored over neutral bis(stannyl) derivatives. This may be
rationalized with the following: (i) the less steric requirement of the organic substituent used, allowing
further attack on E; (ii) the rapid reaction of electron rich 1; and (iii) a stabilization of the anionic
oligomers by the intramolecular coordination of the counterions. Thus, a straight route in synthesis
of heavier group 14 element catenates containing more than one homonuclear or heteronuclear
element–element bonds has been presented. Solution studies on 3, however, underline the weakness
of the Pb–Sn bonds in this molecule.

3. Experimental

All manipulations were carried out using standard Schlenk techniques under an atmosphere of
dry nitrogen. THF and benzene have been distilled over sodium and stored over potassium mirror.
Deuterated THF was stored over activated 4 Å molecular sieves. Sn{N(SiMe3)2}2 and Pb{N(SiMe3)2}2

were prepared according to published procedures [38].
NMR spectra have been recorded on a Bruker Avance DRX 400 spectrometer (Bruker BioSpin

GmbH, Rheinstetten, Germany). The chemical shifts (δ) are quoted in ppm and are relative to
tetramethylsilane (TMS). CHN analyses were carried out on a Vario EL III CHNS instrument (Elementar
Analysensysteme GmbH, Hanau, Germany).

3.1. Syntheses

[LiSn(2-py6OtBu)3] (1): SnCl2 (0.76 g, 4 mmol) was added to a solution of Li(2-py6OtBu) (1.88 g, 12 mmol)
(generated from LiPh and 2-Br-C5H3N-6-OtBu) in 30 mL of diethyl ether at 0 ˝C. The reaction mixture
was stirred overnight at room temperature. After filtration, the residue was dissolved in toluene.
Further filtration from LiCl, the removal of toluene, and the re-crystallization from THF gave yellow
1 in a total of 1.75 g (76%). Characterization: Elemental analysis (%) calcd. for C27H36N3O3SnLi,
C4H8O: C, 57.43; H, 6.84; N, 6.48. Found: C, 57.31; H, 6.87; N, 6.32. 1H NMR (400.1 MHz, 298
K, d8-THF): δ = 1.43 (s, 9H, CMe3), 6.51 (d, 8 Hz, py), 7.29 (t, 8 Hz, py), 7.40 ppm (d, 8 Hz, py);
13C{1H} NMR (100.6 MHz, 298 K, d8-THF): δ = 28.5 (CMe3), 78.3 (CMe3), 109.9 (py), 130.0
(2J(13C–119/117Sn) = 109 Hz, py), 135.0 (3J(13C–119/117Sn) = 19 Hz, py), 161.7 (py), 194.5 ppm
(1J(13C–119/117Sn) = 345 Hz, Cipso); 7Li NMR (155.5 MHz, 298 K, d8-THF) δ = 2.12 ppm; 119Sn{1H}
NMR (149.2 MHz, 298 K, d8-THF): δ = ´191 ppm. 1H NMR (400.1 MHz, 298 K, C6D6): δ = 1.30 (s, 9H,
CMe3), 6.32 (d, 8 Hz, py), 7.01 (t, 8 Hz, py), 8.15 (d, 8 Hz, py); 13C{1H} NMR (100.6 MHz, 298 K, C6D6):
δ = 27.9 (CMe3), 77.8 (CMe3), 111.2 (py), 131.1 (2J(13C–119/117Sn) = 134.8 Hz, py), 134.8 (3J(13C–119/117Sn)
= 25 Hz, py), 160.4 (py), 191.9 ppm (1J(13C–119/117Sn) = 360 Hz, Cipso); 7Li NMR (155.5 MHz, 298 K,
C6D6): δ = 3.78 ppm; 119Sn{1H} NMR (149.2 MHz, 298 K, C6D6): δ = ´201 ppm.
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[LiSn{Sn(2-py6OtBu)3}3] (2): To a solution of 1 (1.10 g, 19 mmol) in 10 mL of THF, Sn{N(SiMe3)2}2

(0.28 g, 6.3 mmol) was added at room temperature. The greenish solution was stirred for 1 h, and
the solvent was then completely removed in vacuo. Crystallization from the concentrated toluene
solution afforded colorless crystals of 2. Yield: 0.73 g (63%). Characterization: Elemental analysis
(%) calcd. for C81H108N9O9Sn4Li: C, 53.06; H, 5.94; N, 6.88. Found: C, 52.67; H, 6.02; N, 6.85.
1H NMR (400.1 MHz, 298 K, d8-THF): δ = 1.20 (s, 9H, CMe3), 6.15 (d, 8 Hz, py), 6.78–6.84 ppm
(m, py); 13C{1H} NMR (100.6 MHz, 298 K, d8-THF): δ = 23.7 (CMe3), 76.0 (CMe3), 107.3 (py), 125.7
(2J(13C–119/117Sn) = 96 Hz, py), 133.5 (3J(13C–119/117Sn) = 36 Hz, py), 160.9 (3J(13C–119/117Sn) = 46 Hz,
py), 174.8 ppm (1J(13C–119Sn) = 285 Hz, 1J(13C–117Sn) = 271 Hz, 2J(13C–119/117Sn) = 20 Hz, Cipso);
7Li NMR (155.5 MHz, 298 K, d8-THF): δ = 0.68 ppm; 119Sn{1H} NMR (149.2 MHz, 298 K, d8-THF):
δ = ´151 (1J(119Sn–119/117Sn) = 7050 Hz, 2J(119Sn–119/117Sn) = 890 Hz, Sn(py)3), ´1064 ppm (SnSn3).

[LiPb{Sn(2-py6OtBu)3}3] (3): Crystalline 3 was prepared from 1 and Pb{N(SiMe3)2}2 in a 3:1
stoichiometry as described above for the synthesis of 2. Concentration of the benzene solution
and storage at 8 ˝C overnight gave yellow 3 in 84% yield. Characterization: Elemental
analysis (%) calcd. for C81H108N9O9Sn3PbLi: C, 50.62; H, 5.66; N, 6.56. Found: C, 49.77; H,
5.62; N, 6.34. 1H NMR (400.1 MHz, 298 K, d8-THF): δ = 1.27 (s, 9H, CMe3), 6.20 (d, 8 Hz, py),
6.86–6.91 ppm (m, py); 13C{1H} NMR (100.6 MHz, 298 K, d8-THF): δ = 29.3 (CMe3), 78.7 (CMe3), 110.1
(py), 128.4 (2J(13C–119/117Sn) = 95 Hz, py), 136.1 (py), 163.8 (3J(13C–119/117Sn) = 41 Hz, py), 180.0 ppm
(1J(13C–119/117Sn) = 214 Hz, 2J(13C–207Pb) = 78 Hz, Cipso); 7Li NMR (155.5 MHz, 298 K, d8-THF)
δ = 1.08 ppm. 119Sn{1H} NMR (149.2 MHz, 298 K, d8-THF): δ = ´180 ppm (1J(119Sn–207Pb) = 14700 Hz);
207Pb{1H} NMR (83.6 MHz, 298K, d8-THF): δ = ´1643 ppm (1J(207Pb–119/117Sn) = 14,900 Hz). 1H NMR
(400.1 MHz, 298 K, C6D6): δ = 1.41 (s, 9H, CMe3), 6.42 (d, 8Hz, py), 7.00 (t, 8 Hz, py), 7.35 ppm (d,
8Hz, py); 13C{1H} NMR (100.6 MHz, 298 K, C6D6): δ = 28.7 (CMe3), 78.6 (CMe3), 111.0 (py), 136.1
(py), 162.9 (py), 178.4 ppm (Cipso); 7Li NMR (155.5 MHz, 298 K, C6D6): δ = 1.20 ppm. 119Sn{1H} NMR
(149.2 MHz, 298K, C6D6): δ = ´161 ppm; 207Pb{1H} NMR (83.6 MHz, 298K, C6D6): δ = ´1738 ppm
(1J(207Pb–119/117Sn) = 14,620 Hz).

[Sn(2-py6OtBu)3]2 (4): A NMR solution of 3 in C6D6 was set aside at room temperature. The color of the
solution gradually changed from green to pale yellow. The formation of elemental lead was observed.
After several days, the colorless crystals of 4 were grown from solution. In the 119Sn{1H} NMR spectrum
finally only one signal at ´201 ppm was detected, according to free lithium stannate 1. Isolated crystals
of 4 were dissolved in d8-THF for characterization by NMR spectroscopy. Characterization: Elemental
analysis (%) calcd. for C54H72N6O6Sn2: C, 56.96; H, 6.37; N, 7.38. Found: C, 56.92; H, 6.32; N, 7.28.
1H NMR (400.1 MHz, 298 K, d8-THF): δ = 1.20 (s, 9H, CMe3), 6.37 (d, 8Hz, py), 7.03 (t, 8 Hz, py),
7.27 ppm (d, 8Hz, py); 119Sn{1H} NMR (149.2 MHz, 298K, d8-THF): δ = ´223 ppm. No 119Sn–117Sn
coupling could be detected.

3.2. X-ray Crystallography

Crystals of 2, 3, and 4 were removed from a Schlenk tube under a nitrogen atmosphere and
covered with a layer of hydrocarbon oil. A suitable crystal was attached to a glass fiber and quickly
placed in a low-temperature N2 stream.

The crystallographic data were collected on a Xcalibur-S diffractometer (Rigaku Oxford Diffraction,
Kent, UK) with MoKα radiation (λ = 0.71073 Å), solved by direct methods and refined by full-matrix
least squares on F2 (SHELX97) [39,40] using all data. All non-hydrogen atoms are anisotropic, with
H-atoms included in calculated positions (riding model). CCDC1467318 (2), CCDC1467319 (3),
and CCDC1467320 (4) contain the supplementary crystallographic data that can be obtained free
of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. The
crystallographic data for compound 2 and 3 are given in Table 2.

www.ccdc.cam.ac.uk/structures
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Table 2. Crystallographic data for compounds 2 and 3.

2 3

Formula C81H108LiN9O9Sn4 C81H108LiN9O9PbSn3
Mr (g¨ mol´1) 1833.46 1921.96
Cryst system triclinic triclinic
Space group P1 P1

a (Å) 16.2901(9) 17.2766(4)
b (Å) 17.2775(8) 19.4489(6)
c (Å) 19.5167(8) 28.6285(7)
α (˝) 103.329(4) 88.874(2)
β (˝) 101.969(4) 85.776(2)
γ (˝) 118.018(5) 65.256(3)

V (Å3) 4388.4(4) 8711.9(4)
Z 2 4

F(000) 1864 3856
T (K) ´180(2) ´130(2)

ρcalcd (g cm3) 1.388 1.465
µ (mm´1) 1.181 2.833

Reflns collected 31672 74704
Reflns unique 16052 41501

Rint 0.0620 0.0391
Final R1 (I > 2σ(I)) 0.0574 0.0531

Final wR2 (F2) (all data) 0.1172 0.1050

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/4/2/19/s1.
Figure S1: Molecular structure of compound 4. Table S1: Crystallographic data for compound 4. Figures S2–S7
contain the graphical representations of recorded NMR spectra.
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