Supplementary Materials: Naphthyl-Containing Organophosphonate Derivatives of Keggin-Type Polyoxotungstates

Nerea Andino, Beñat Artetxe, Santiago Reinoso, Pablo Vitoria, Leire San Felices, Jose I. Martínez, Fernando López Arbeloa and Juan M. Gutiérrez-Zorrilla

Figure S1. TGA curves for TBA-1 and TBA-2.

Atom	P–C	Р-Ором1	Р-Ором2	Р-От	<p-c-c></p-c-c>
		TBA	-1		
P1	1.80(2)	1.514(16)	1.520(13)	1.533(17)	114.1(16)
P2	1.88(2)	1.498(15)	1.535(18)	1.51(2)	109(3)
P21	1.83(3)	1.522(17)	1.528(14)	1.530(18)	109.4(19)
P22	1.88(3)	1.562(17)	1.570(19)	1.499(18)	108(2)
		ТВА	-2		
P1	1.81(5)	1.56(2)	1.585(16)	1.504(18)	109(3)
P2	1.75(4)	1.548(16)	1.532(14)	1.479(17)	109(2)
P21	1.77(3)	1.547(19)	1.526(14)	1.507(16)	107(2)
P22	1.76(4)	1.56(2)	1.535(16)	1.485(17)	111(3)

Table S1. Bond lengths (Å) and angles (°) for the P atoms in **TBA-1** and **TBA-2**.

D-H…A	H···A	D····A	<d-h…a></d-h…a>
	TBA	1	
C8-H8-O223	2.57	3.30(3)	133
C8-H8-O229	2.52	3.39(3)	152
C9-H9-O207	2.55	3.48(4)	169
C29-H29-O209 i	2.42	2.42 2.966(17)	
C208–H208…O14 ⁱⁱ	2.66	2.66 3.30(3)	
C208–H208…O15 ⁱⁱ	2.60	3.37(4)	138
C208–H208…O20 ⁱⁱ	2.97	3.58(3)	123
C209–H209…O3 ⁱⁱ	2.57	3.50(4)	167
C209-H209-O14 ⁱⁱ	2.98	3.50(3)	116
C229–H229…O11 ⁱⁱⁱ	2.54	3.02(5)	112
	TBA	-2	
C9–H9…O211 ^{iv}	2.35	2.98(4)	124
C28-H28···O214	2.70	3.388(16)	129
C28-H28····O215	2.79	3.553(16)	138
C28-H28····O220	2.96	3.599(15)	125
C29-H29···O203	2.44	3.38(3)	167
C208–H208…O14 ⁱⁱ	2.66	3.364(15)	131
C208–H208…O15 ⁱⁱ	2.91	3.569(15)	127
C208–H208…O20 ⁱⁱ	2.78	3.529(16)	137
C209–H209…O1 ⁱⁱ	2.46	3.387(16)	165
C229-H229-O10 v	2.23	2.87(4)	124

Table S2. Geometrical parameters (Å, °) for the intermolecular C–H…O hydrogen bonds involving 1-naphthylmethylphosphonate groups and OPOM atoms in **TBA-1** and **TBA-2**.

Symmetry codes: (i) -*x*, 3 - *y*, 1 - *z*; (ii) *x*, -1 + *y*, *z*; (iii) 1 - *x*, 3 - *y*, 1 - *z*; (iv) 2 - *x*, -*y*, 1 - *z*; (v) 1 - *x*, -*y*, 1 - *z*.

Figure S2. UV–Vis spectra of acetonitrile solutions of TBA-1 with different concentrations.

Figure S3. Fluorescence emission spectra of solid samples of **TBA-1**, **TBA-2** and 1-naphthylmethylphosphonic acid in the 300–450 nm region ($\lambda_{\text{exc}} = 283$ nm).

Figure S4. ¹H-NMR spectra of **TBA-1** and **TBA-2** in acetone-*d*₆ compared with that of the commercial 1-naphthylmethylphosphonic acid. The signals labeled as * correspond to the non-deuterated acetone.

Figure S5. ¹³C-NMR spectra of **TBA-1** and **TBA-2** in acetone-*d*⁶ compared with that of the commercial 1-naphthylmethylphosphonic acid. The signals labeled as * correspond to the solvent.

Figure S6. Negative ESI mass spectrum of a CH₃CN solution of **TBA-2** ($U_c = 15$ V) and comparison of the signals corresponding to the species $\{2\}^{3-} = [H(C_{11}H_9PO)_2(SiW_{11}O_{39})]^{3-}$ and $\{2 + TBA\}^{2-} = \{(C_{16}H_{36}N)[H(C_{11}H_9PO)_2(SiW_{11}O_{39})]\}^{2-}$ with the simulated isotopic patterns.