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3.3. Epoxy Composites  

We employed commercially available SpeciFix-20 (Struers, Ballerup, Denmark) as the epoxy resin, 
which consists of a resin and a hardening agent (26:5 ratio). Unlike some epoxies that require heating 
or pressure, this epoxy is designed to cure under atmospheric conditions. Further, it has a working 
period of 60 min, allowing time for the sample to be handled and nanocomposite added and mixed 
prior to the onset of curing. A loading of 1% nanoparticles to 99% epoxy by weight was selected for 
testing. The composition of the filler materials, the hybrids and individual phases described in previous 
sections, is included in Table 1 below. The filler components were added to the uncured resin using 
sonication and the composite was left for a period of at least 24 hours to cure into a hard puck.  
After the nanoparticles were successfully embedded into the epoxy matrix, the surface of the pucks 
was mechanically polished to remove scratches and imperfections and then transferred to  
the nanoindentor. 

Table 1. Filler compositions used for epoxy composites (first column). 

Sample ID (IF-WS
2
 nominal 

composition – filler only) 
ICP value 
CNF 

ICP value 
Ni 

ICP value 
IF-WS2 

CNF 96.8% 3.2%  
CNF/IF-WS2 (3%) 94% 3% 3% 

CNF/IF-WS2 (1.5%) 94.6% 3.2% 1.6%  

CNF/IF-WS2 (0.5%) 96.4% 2.9% 0.7% 

IF-WS2 (100%)   100% 

Sample ID (IFWS
2
 nominal 

composition-filler only) 
Graphene  IF-WS2 

Graphene 100%   
G/IF-WS2 0.5% 99.5%  0.5% 

Physical Mix G/IF-WS2 1% 99%  1% 

 

3.4. Characterization Methods  

In order to examine the microstructure of the hybrid specimens the samples were analyzed using a 
Zeiss Neon 40 High Resolution Scanning Electron Microscope (SEM). Images were acquired at 
diverse magnifications while the microscope was operated at 10 or 20 kV. Energy Dispersive 
Spectroscopy (EDS) experiments were conducted in conjunction with the SEM using the EDAX 
equipment with an Apollo 10 silicon drift detector (SDD). Data was collected and analyzed using 
Genesis Spectrum software.  
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A Netzsch STA 449 FE Jupiter, operated in a Temperature Programmed Oxidation (TPO) mode, 
was used to study the thermal stability of the samples. The samples were exposed to an Ar/O2, 
80%/20% atmosphere, with a total flow of 120 mL minute−1, from RT to 1000 °C at a heating rate of 
10 °C minute−1.  

The XRD utilized was a Philips 1830 PAnalytical X-ray Diffractometer. The X-ray tube contained a 
copper source and the X-rays utilized had a primary wavelength, or K-Alpha, of 1.54 Å. The samples 
were placed into a silicon low background sample holder and the diffraction patterns recorded between 
5–70° (2 theta) with 0.020 degrees step size and one second per step. 

A JEOL 2010F FASTEM field emission gun scanning transmission electron microscope 
(STEM/TEM) equipped with Gatan GIF image filtering system was employed. Samples were prepared 
by dispersing the powders in a few ml of ethanol and a drop of the dispersion was placed in a copper 
holey-carbon TEM grid where the ethanol was allowed to evaporate. 

A Perkin Elmer ICP 5300 DV-AES Inductive Coupled Plasma Emission Spectrometer, was used to 
determine the elemental composition of the carbon nanofiber base filler materials before their addition 
to the epoxy matrix (hybrids CNF/IF-WS2). 

Brunauer Emmet Teller (BET) surface area analysis was performed employing a Quantachrome 
Nova 4200. A 300 °C degas step was conducted prior to the analysis; samples were then allowed to 
cool down to room temperature and then transferred to the analysis station. The measurements were 
done using nitrogen atmosphere. 

Nanoindentation was used to measure the composite mechanical properties (elastic modulus and 
hardness) of epoxy composites filled with mixtures of CNFs and IF-WS2 particles. The samples were 
prepared by mixing the specified amounts of nanophase material with Struers Speci-Fix 20 two-part 
epoxy in a 28 mm diameter mold and then allowing the mixture to cure for 24 h. After curing,  
the surface of the epoxy composite was polished using standard metallographic techniques, including 
diamond suspension polishing using suspended aluminum oxide particles of 1 μm and 0.05 μm 
diameters. The indentations were performed using an Agilent G200 nanoindenter. We performed two 
types of experiments with this instrument. 

The first experiment was a quasi-static indentation to a set depth, 2 μm for all samples.  
Other indentation parameters can be found in Table 2. This experiment used a diamond, Berkovich 
indenter tip with a nominal tip radius of 150 nm, calibrated using a fused silica standard. A grid of  
20 indentation points spaced by 50 μm was measured for each epoxy nanocomposite. The Young’s 
modulus and hardness were calculated using the approach of Oliver and Pharr [69,70].  

Table 2. Parameters used for quasi-static indentation measurements. 

Depth limit 2000 nm 
Strain rate during loading 0.08/s 

Maximum allowable drift rate 0.05 nm/s 
Peak hold time 10 s 

Assumed Poisson’s ratio 0.40 
% to unload 90 

% Unload in stiffness calculation 50 
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The second experiment was dynamic mechanical analysis using a 50 μm diameter flat punch.  
This experiment allowed the measurement of both the storage and loss moduli of the epoxy 
composites. These measurements were performed for five frequency values between 1 Hz and 45 Hz 
on the neat epoxy, CNF and IF-WS2 samples. Other parameters for the measurement can be found in 
Table 3. A grid of 20 measurements with a 100 μm separation between indentations was used for each 
specimen. The storage modulus, loss modulus, and tan δ properties for each specimen were calculated 
using the measurement parameters in Table 3 and the methods of Hay and Herbert [71]. 

Table 3. Parameters used for dynamic mechanical analysis. 

Flat punch diameter 50 µm 
Assumed Poisson’s ratio 0.40 
Pre-compression depth 2 µm 
Oscillation amplitude 50 nm 

4. Conclusions 

Novel hybrid CNF/IF-WS2 with diverse IF loadings were generated using an in situ protocol that 
allowed the integration of the two phases into a tridimensional architecture, producing homogeneous 
dispersions at the nanoscale in the absence of a polymeric matrix. CNF 3D structures loaded with  
IF-WS2 could only be fabricated using a two stage process that involved: (a) the carbon nanofiber 
growth from a mixture of metal catalyst with tungsten oxide nanoparticles, using ethylene as carbon 
source and moderate temperatures to render CNF/WO3, followed by (b) the sulfurization of the sample 
to convert the tungsten precursor into IF-WS2.  

In contrast, Graphene/IF-WS2 hybrids were easily obtained either by mixing graphene and tungsten 
oxide followed by a sulfurization step or by direct dispersion of the layered graphene structure with 
existing IF particles using solvents.  

The thermal stability of the CNF/IF-WS2 hybrid samples is much higher than those observed for  
IF-WS2 by itself or mixed with polymeric components.  

Epoxy composites with 1% weight loadings of hybrid CNF/IF-WS2 showed drastic improvements 
in the Young’s modulus and hardness values, with approximately 100 and 250% increase respectively, 
over the bare epoxy values. The CNF/IF-WS2 inclusions seem to have a much greater impact in the 
mechanical properties of the composite than the Graphene/IF-WS2 based counterparts. 
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