
Citation: Guo, W.; Weng, Z.; Zhou, C.;

Han, M.; Shi, N.; Xie, Q.; Peng, D.-L.

Li-Rich Mn-Based Cathode Materials

for Li-Ion Batteries: Progress and

Perspective. Inorganics 2024, 12, 8.

https://doi.org/10.3390/

inorganics12010008

Academic Editor: Torben R. Jensen

Received: 25 October 2023

Revised: 17 December 2023

Accepted: 20 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Review

Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries:
Progress and Perspective
Weibin Guo 1,2, Zhangzhao Weng 1, Chongyang Zhou 1, Min Han 1,* , Naien Shi 1, Qingshui Xie 2,*
and Dong-Liang Peng 2,*

1 Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait
Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China; ifewbguo@sina.cn (W.G.);
ifezzw@fjnu.edu.cn (Z.W.); cyzhou@fjnu.edu.cn (C.Z.); ifeneshi@fjnu.edu.cn (N.S.)

2 State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface
Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China

* Correspondence: ifemhan@fjnu.edu.cn (M.H.); xieqsh@xmu.edu.cn (Q.X.); dlpeng@xmu.edu.cn (D.-L.P.)

Abstract: The development of cathode materials with high specific capacity is the key to obtaining
high-performance lithium-ion batteries, which are crucial for the efficient utilization of clean energy
and the realization of carbon neutralization goals. Li-rich Mn-based cathode materials (LRM) exhibit
high specific capacity because of both cationic and anionic redox activity and are expected to be
developed and applied as cathode materials for a new generation of high-energy density lithium-
ion batteries. Nevertheless, the difficulty of regulating anionic redox reactions poses significant
challenges to LRM, such as low initial Coulombic efficiency, poor rate capability, and fast cycling
capacity and voltage decay. To address the existing challenges of LRM, this review introduces their
basic physicochemical characteristics in detail, analyzes the original causes of these challenges, focuses
on the recent progress of the modification strategies, and then especially discusses the development
prospects of LRM from different aspects.

Keywords: Li-rich Mn-based cathode materials; anionic redox activity; modification strategy;
lithium-ion batteries

1. Introduction

The realization of the goal of carbon neutralization is inseparable from the large-
scale application of clean energy, which is mostly converted into electricity for use, and
it is urgent to develop advanced energy storage devices to efficiently store and utilize
clean energy [1–3]. Lithium-ion batteries are efficient energy storage devices that have
been widely used in large-scale energy industry, transportation, and consumer electronic
devices [4]. However, due to the limited progress in the research of cathode materials,
the electrochemical performance of lithium-ion batteries is enhanced slowly [5]. Cur-
rently, the main commercialized cathode materials for lithium-ion batteries are olivine-
type phosphate systems, spinel-type oxide systems, and layered oxide systems; exam-
ples include LiFePO4 [6–11], LiMn2O4 [12–19], LiCoO2 [20–27], LiMnO2 [28–36], and
LiNi0.8Co0.1Mn0.1O2 [37,38]. These cathode materials possess unique advantages, but
they also have a common disadvantage; that is, relying on cationic redox reactions to
contribute to a specific capacity means that the overall specific capacity is not high enough.
Thus, there is a pressing need to develop high-specific capacity cathode materials for
advanced lithium-ion batteries [39].

Li-rich Mn-based cathode materials (LRM, xLi2MnO3·(1−x)LiMO2, 0 < x < 1, M = Mn,
Co, Ni, etc.), which exhibit high specific capacity due to additional anionic redox activity
and have been extensively studied, are regarded as promising commercialized cathode
materials [40–43]. However, the anionic redox reaction activated by high charging voltage
can lead to excessive lattice oxygen oxidation and irreversible release, followed by the
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promotion of the migration and dissolution of transition metals, and finally, resulting in
the decay of the phase structure [44–46]. Meanwhile, released oxygen can undergo violent
interfacial side reactions with the electrolyte, consuming active lithium ions and further
hindering lithium-ion diffusion while activating low-voltage redox couples [47–52]. These
behaviors contribute to reduced initial Coulombic efficiency, weakened rate performance,
and accelerated decay of cycling capacity and voltage [53–55]. To address these challenges
and chart future advancements in LRM, it is essential to thoroughly understand their
physical and chemical properties and identify potential solutions.

In this review, the history of development, the contradiction of crystal structure, and
the diversity of reaction mechanisms of LRM are first introduced comprehensively. Then,
the original causes of existing challenges of LRM are analyzed in detail, and the principle
and recent progress of modification strategies developed to address these existing chal-
lenges are emphatically described. After that, the future development of LRM is prospected
from the material level, modification strategy level, and full lifecycle level. This work helps
to deepen the understanding of LRM and promote their large-scale commercial application.

2. Development History of LRM

The development of LRM can be traced back to the study of lithium manganese
oxide by Johnston and Heikes in 1956. They synthesized the LixMn1−xO system and
studied its composition, structure, and magnetic properties [56]. After that, lithium man-
ganese oxide was used as a cathode material for lithium-ion batteries due to its advan-
tages, such as reversible lithium-ion extraction and insertion, environmental friendliness,
and low cost [57–59]. However, spinel-structured lithium manganese oxides (such as
LiMn2O4) do not possess a specific capacity advantage over commercial LiCoO2 cathode
materials [57,60,61]. Although layered lithium manganese oxides (such as LiMnO2 [28,62]
and Li2MnO3 [59,63]) have potential specific capacity advantages, their electrochemical
stability is poor due to factors such as Mn migration and phase transition [64]. To enhance
the electrochemical stability of layered lithium manganese oxides, researchers attempted
to introduce other elements to replace part of Mn ions, forming stable layered LiMO2
compounds. These substitution methods include single-element substitution (such as
Al [65], Cr [66], Co [67,68], and Ni [69]) and multi-element substitution (such as Co and
Ni [70]). Furthermore, the layered Li2MnO3 compound was integrated with the LiMO2
compound [70]. As a result, the prepared LRM showed enhanced electrochemical sta-
bility and ultra-high specific capacity output over a wide range of charge and discharge
voltages [71].

3. Crystal Structure of LRM

The crystal structure of LRM is challenging to identify due to the similarity and com-
plexity of the crystal structures of LiMO2 (space group R-3m) and Li2MnO3 (space group
C2/m) [72–75]. As shown in Figure 1, researchers have established single-phase solid
solution and multi-phase composite models, respectively, for the existence of LiMO2 and
Li2MnO3 phases in the form of layered single-phase solid solution [76–79] or multi-phase
composite [61,80]. The main dispute between these models concerns the distribution of M
atoms in the transition metal layer. Some researchers believe that M atoms are uniformly
mixed in the transition metal site; the chemical formula can be written as Li1+xM1−xO2
(0 < x < 1). They base this on the linear relationship between the lattice constant of LRM
and the proportion of LiMO2 and Li2MnO3 components, which follows Vegard’s law of
solid solutions [81]. This is supported by transmission electron microscopy and electron
diffraction results revealing single-phase solid solution type LRM with either C2/m [82] or
R-3m space group [83,84]. Additionally, some researchers believe that there are separation
and local clusters of M atoms in the transition metal layer, and the chemical formula can be
written as xLi2MnO3·(1−x)LiMO2 (0 < x < 1), as evidenced by transmission electron mi-
croscopy and electron diffraction results that reveal the existence of multi phases and their
heterointerfaces in LRM [85–87]. Although both models are supported by experimental
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evidence, the controversy persists because X-ray diffraction and electron diffraction results
can be affected by stacking fault [88,89], preventing accurate determination of fine crystal
structure information [82,90]. Moreover, transmission electron microscopy results are usu-
ally obtained only from the local lattice region. Therefore, to determine the crystal structure
of LRM, further advanced characterization methods paired with computational simulations
are still needed to comprehensively highlight the advantages of various methods and verify
the reliability of evidence from all perspectives [74].
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Figure 1. Crystal structure models of LRM. Reproduced with permission from Ref. [75]. Copyright
2021 American Chemical Society.

4. Reaction Mechanism of LRM

The reaction mechanism of LRM involves changes in charge and discharge curves, the
origin of high specific capacity, and crystal structure evolution. The change in charge and
discharge curves is mainly reflected in the difference between the charge and discharge
curves at the initial and second cycles, as shown in Figure 2a,b [80,91]. During the initial
charging from point 1 to point 2, lithium ions are removed from the LiMO2 phase. With the
increase in the charging voltage, there is a voltage plateau in the voltage range from point
2 to point 3, owing to lithium-ion extraction and oxygen release in the Li2MnO3 phase.
During the initial discharging process, lithium ions continue to embed into the LRM over
the voltage range from point 3 to point 4. Compared to the initial cycles, although the
voltage plateau in the charge curve of the second cycle is no longer present, the voltage
hysteresis between the charge and discharge curves reduces.

LRM exhibits a significantly higher specific capacity compared to what is contributed
by cationic redox reactions. The additional specific capacity is typically attributed to
anionic redox reactions. Partial lattice oxygen can contribute to specific capacity through
the reversible conversion of O2− and O2

2− states during the charging and discharging
process of LRM [92]. Regarding the source of partial lattice oxygen activity, compared with
conventional Li-M oxides, lithium-rich Li-M oxides feature an oxygen atomic coordination
structure consisting of two Li-O-M and one Li-O-Li configuration [93]. In the Li-O-M
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configuration, O 2p orbitals form hybridized molecular orbitals with the transition metal.
However, due to the large energy difference between O 2p and Li 2s orbitals in the Li-O-Li
configuration, hybridized molecular orbitals between O 2p and Li 2s orbitals cannot form.
The energy level of such a Li-O-Li state is intermediate between the hybridized O bonding
states and the anti-bonding transition metal states. When the charging voltage is raised to
the high voltage segment, O 2p orbitals in the Li-O-Li configuration preferentially release
electrons, stimulating oxygen redox reactions for charge compensation [74,93].
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2021 Wiley.

The crystal structure evolution process in LRM involves the gradual loss of lithium ions
from the transition metal layer of the Li2MnO3 phase due to repeated lithium-ion removal
and insertion during cycling. This leads to an irreversible transformation of the Li2MnO3
phase into a LiMO2 phase [94]. Moreover, nickel ions migrate from the bulk lattice to the
surface lattice during cycling, thus forming a nickel-deficient bulk region and a nickel-rich
surface reconstruction layer [95]. Furthermore, along with internal phase transformation
and transition metal ion migration, lattice breakdown, vacancy condensation, micro-cracks,
and pore accumulation will gradually occur in the bulk phase. These changes cause lattice
distortion and amorphous conversion of internal grains in the bulk, gradually leading to
the formation of spinel phases with different orientations [94,96].

5. Key Challenges of LRM

LRM exhibits high specific capacity due to the additional anionic redox activity. How-
ever, anionic redox reactions activated at high charging voltage can cause a series of
problems (Figure 3), including irreversible oxygen release, surface/interface structural
phase transitions, transition metal dissolution, and interfacial side reactions. These issues
will destroy the crystal structure, block the lithium-ion diffusion pathway, and hinder
charge transfer, thereby reducing the initial Coulombic efficiency (ICE), deteriorating the
rate performance, and exacerbating the fading of capacity and voltage, which greatly limits
the large-scale commercial viability of LRM [97–99].
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A low ICE is numerically represented by an initial charging-specific capacity that is
significantly higher than the initial discharging capacity. The reason is that the voltage
plateau at a charging voltage exceeding 4.4 V in the LRM’s charging curve contributes
significantly to the initial specific charging capacity, but this voltage plateau is irreversible
during the initial discharge cycle [100,101]. The disappearance of the voltage plateau in
the initial discharge curve means that a large number of lithium-ions removed from the
LRM during the initial charging process are not embedded back into the LRM during
the subsequent discharging process. Lithium-ion failure to reinsert into the LRM may
result from lattice oxygen release, crystal structure phase transitions, transition metal
ion migrations, and blockages or collapses of lithium-ion return paths to their original
points [102–104].

The rate performance of LRM is primarily limited by lithium-ion diffusion rates
within the material and charge transfer rates at the electrode/electrolyte interface [105,106].
Among them, several factors contribute to limiting lithium-ion diffusion in LRM, which
can be divided into three main categories. Firstly, during the charging process, lithium-
ion in the transition layer of the Li2MnO3 phase must migrate to the lithium layer via
stabilized tetrahedral sites, and the overall migration path is longer and the repulsion
effect is relatively larger during the migration process compared to that of lithium-ion in
the LiMO2 phase [107]. Meanwhile, the Li2MnO3 phase and its active MnO2 components
exhibit poor kinetics, and the dynamic barrier of lithium-ion diffusion at the interface
between the Li2MnO3 component and electrolytes is higher [105]. Secondly, the diffusion
path of lithium-ion can only be along the direction parallel to the lithium layer, and the
crystal face perpendicular to the lithium layer has no electrochemical activity for the
transport of lithium-ion, preventing them from providing a suitable path for lithium-ion
transport [108–110]. Thirdly, due to the poor electrical conductivity of the Li2MnO3 phase,
LRM exhibits low electrical conductivity [105,106,111].

Serious voltage and capacity decay during cycling is mainly due to the release of lattice
oxygen, which triggers the conversion of redox couples, defect formation, phase structure
transformations, and interfacial side reactions [52,112–116]. During the initial cycle, the
capacity is primarily provided by redox couples, such as Ni2+/Ni3+, Ni3+/Ni4+, and
O2−/O−, but the release of lattice oxygen will activate lower voltage redox couples, such as
Mn3+/Mn4+ and Co2+/Co3+, resulting in a continuous decrease in the average valence state
of transition metal ions and then accelerate the voltage decay [52]. Meanwhile, a decrease
in the Mn element’s valence state stimulates the Jahn–Teller effect, which intensifies Mn
element dissolution [113,114,117]. Moreover, triggering anionic redox reactions reduces
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the formation energy and diffusion barriers of oxygen vacancies, leading to nanohole
formation and crystal structure transformations [115,118]. Over time, the layered LRM
structure gradually transforms into a spinel and disordered rock-salt phase [113]. In
addition, the released lattice oxygen will aggravate the interfacial side reaction and further
deteriorate the cycling performance [114].

6. Modification Strategies of LRM

Considering the significant challenges faced by LRM, current modification strategies
primarily center on morphology design, phase composition and structure regulation,
surface coating, bulk doping, defective structure construction, and binder research.

6.1. Morphology Design

Morphology design primarily involves controlling the initial precursor morphology
by adjusting preparation methods and process parameters during the precursor’s produc-
tion. This ultimately leads to obtaining the desired final morphology through subsequent
high-temperature sintering [119–123]. LRM exhibits a wide variety of morphologies, such
as fusiform porous micro-nano structure [119], double-layer hollow microspheres [120],
nanowires [121], irregular particles [122], and three-dimensional cube-maze-like struc-
tures [123]. To prepare double-layer LRM hollow microspheres, Ma et al. [120] employed
the co-precipitation method to synthesize spherical transition metal hydroxide precur-
sors. They then pre-calcined the precursors to form corresponding transition metal oxides,
achieving a hollow structure in the spherical transition metal oxides by controlling the
pre-calcination temperature. Mixing the transition metal oxide with lithium hydroxide
and calcining at high temperatures resulted in the target morphology (Figure 4a). The
synthesized double-layer LRM hollow microspheres enhanced structural stability and
optimized lithium-ion diffusion paths and charge transport characteristics, leading to sig-
nificant rate performance improvement (Figure 4b). Additionally, Liu et al. [123] used the
hydrothermal method to prepare a three-dimensional cube-maze-like carbonate precursor
by controlling the proportion of solvent components. They combined this approach with
solid phase sintering to produce a three-dimensional cube-maze-like LRM with exposed
{010} active planes (Figure 4c). The three-dimensional cube-maze-like architecture increases
specific surface area and shortens lithium-ion diffusion paths, ultimately enhancing the
rate capability and cycling stability of LRM (Figure 4d).

Inorganics 2024, 12, x FOR PEER REVIEW 6 of 19 
 

 

lence state of transition metal ions and then accelerate the voltage decay [52]. Mean-
while, a decrease in the Mn element’s valence state stimulates the Jahn–Teller effect, 
which intensifies Mn element dissolution [113,114,117]. Moreover, triggering anionic 
redox reactions reduces the formation energy and diffusion barriers of oxygen vacancies, 
leading to nanohole formation and crystal structure transformations [115,118]. Over 
time, the layered LRM structure gradually transforms into a spinel and disordered 
rock-salt phase [113]. In addition, the released lattice oxygen will aggravate the interfa-
cial side reaction and further deteriorate the cycling performance [114]. 

6. Modification Strategies of LRM 
Considering the significant challenges faced by LRM, current modification strate-

gies primarily center on morphology design, phase composition and structure regula-
tion, surface coating, bulk doping, defective structure construction, and binder research. 

6.1. Morphology Design 
Morphology design primarily involves controlling the initial precursor morphology 

by adjusting preparation methods and process parameters during the precursor’s produc-
tion. This ultimately leads to obtaining the desired final morphology through subsequent 
high-temperature sintering [119–123]. LRM exhibits a wide variety of morphologies, such 
as fusiform porous micro-nano structure [119], double-layer hollow microspheres [120], 
nanowires [121], irregular particles [122], and three-dimensional cube-maze-like structures 
[123]. To prepare double-layer LRM hollow microspheres, Ma et al. [120] employed the 
co-precipitation method to synthesize spherical transition metal hydroxide precursors. 
They then pre-calcined the precursors to form corresponding transition metal oxides, 
achieving a hollow structure in the spherical transition metal oxides by controlling the 
pre-calcination temperature. Mixing the transition metal oxide with lithium hydroxide and 
calcining at high temperatures resulted in the target morphology (Figure 4a). The synthe-
sized double-layer LRM hollow microspheres enhanced structural stability and optimized 
lithium-ion diffusion paths and charge transport characteristics, leading to significant rate 
performance improvement (Figure 4b). Additionally, Liu et al. [123] used the hydrother-
mal method to prepare a three-dimensional cube-maze-like carbonate precursor by con-
trolling the proportion of solvent components. They combined this approach with solid 
phase sintering to produce a three-dimensional cube-maze-like LRM with exposed {010} 
active planes (Figure 4c). The three-dimensional cube-maze-like architecture increases 
specific surface area and shortens lithium-ion diffusion paths, ultimately enhancing the 
rate capability and cycling stability of LRM (Figure 4d). 

 
Figure 4. (a) Schematic diagram of the synthesis process of double-layer LRM hollow micro-
spheres. (b) The corresponding rate capability. Reproduced with permission from Ref. [120]. Cop-

Figure 4. (a) Schematic diagram of the synthesis process of double-layer LRM hollow microspheres.
(b) The corresponding rate capability. Reproduced with permission from Ref. [120]. Copyright 2019
Elsevier. (c) Schematic diagram of the preparation process of three-dimensional cube-maze-like LRM.
(d) The corresponding cycling performance. Reproduced with permission from Ref. [123]. Copyright
2019 Wiley.
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6.2. Phase Composition and Structure Regulation

Phase composition and structure regulation primarily involve adjusting the com-
ponent distribution and structural frameworks during both precursor and final LRM
production [124–132]. Firstly, for phase component regulation, Wu et al. [124] synthesized
agglomerated-sphere LRM with a concentration gradient in the phase component using
the co-precipitation method. Figure 5a illustrates that Mn element concentration decreases
linearly from the particle center to the surface, while Ni and Co element concentrations in-
crease linearly. By combining high-capacity particle center and cycle-stable surface phases,
voltage fading is effectively suppressed, and cycling stability is improved (Figure 5b, c).
Secondly, for phase structure regulation, transition metal ions can migrate into lithium sites
within the lithium layer relatively easily through tetrahedral sites between the transition
metal layer and the lithium layer in conventional O3-type LRMs. This irreversible migra-
tion leads to structural rearrangement and voltage attenuation [125–128]. Eum et al. [128]
used the ion exchange method to prepare O2-type LRM to inhibit this phenomenon. In
the O2-type phase structure, face-shared transition metal ions generate strong electrostatic
repulsion, preventing their transfer to lithium sites. Additionally, these face-shared sites
promote reversible transition metal ion transfer back to the original sites in the transition
metal layer during discharge. Finally, co-regulation of phase composition and structure can
also be employed. For example, constructing the spinel/layered heterostructure [129–132]
with good structural compatibility creates three-dimensional lithium-ion diffusion chan-
nels, enhances lattice oxygen stability, and restrains phase transitions and interfacial side
reactions. This approach improves the rate and cyclic performance of LRM.
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6.3. Surface Coating

Surface coating primarily serves to protect LRM from direct electrolyte erosion,
stabilize surface lattice oxygen, inhibit phase transitions, and reduce interfacial side
reactions [133–146]. Surface coating materials can be broadly divided into three cate-
gories. The first category is active materials containing lithium, such as Li2MnO3 [133],
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Li4V2Mn(PO4)4 [134], and LiFePO4 [135]. Kim et al. [133] used dip-dry combined with high-
temperature calcination to coat Li2MnO3 with the same crystal framework as the bulk phase
on the surface of LRM, achieving a seamless interface connection that effectively reduces
transition metal ion mixing and inhibits phase transitions. The second category consists
of non-active materials without lithium, including oxides [136,137], phosphates [138,139],
and fluorides [140,141]. Zhang et al. [136] applied atomic layer deposition technology to
construct Al2O3 and TiO2 coatings on the surface of LRM. Since the TiO2 coating appeared
as particles on the surface of LRM, while the Al2O3 coating showed good uniformity and
consistency, materials with the Al2O3 coating layer exhibited better cycling stability. The
third category comprises functional materials, such as fast ionic conductors [142–144],
piezoelectric materials [145], and dielectric materials [136]. Xu et al. [144] used potassium
Prussian blue with good ion conduction properties as the coating material for LRM (Fig-
ure 6a). The three-dimensional open frame structure of the potassium Prussian blue coating
layer provides sufficient interstitial sites and transmission channels for lithium-ion trans-
port, protecting LRM from electrolyte corrosion and inhibiting interfacial side reactions.
As a result, the coated sample displays remarkably enhanced rate capability and cycling
stability (Figure 6b,c).
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6.4. Bulk Doping

Bulk doping involves introducing dopants during the precursor’s production to en-
hance lithium-ion transport by expanding diffusion channels, suppressing transition metal
ion migration, and stabilizing lattice oxygen through a pinning effect [48,147–166]. Doping
can be carried out in single-ion or multi-ion forms, with single-ion doping involving either
a single cation or anion. Commonly used single cations include Na+ [147–149], K+ [150],
Mg2+ [151], Al3+ [48], Sb3+ [152], Nb5+ [153] and W6+ [154,155]. He et al. [148] introduced
Na+ ions into the co-precipitation process for carbonate precursor synthesis, achieving a
uniform distribution of Na+ in the LRM. The uniform distributed Na+ effectively inhibited
detrimental solid–liquid interface corrosion and transition metal ion migration, enhanc-
ing structural and cyclic stability. Single anions commonly employed are F− [156,157],
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S2− [158], and polyanion [159]. Li et al. [159] directly incorporated boracic polyanion to
regulate the electronic structure during LRM preparation via the sol-gel method. The
lowered M–O bond covalence and decreased top of the O 2p band mitigated changes in the
electronic structure of the O 2p band during charging and discharging, improving thermal
and cycling stability (Figure 7a–c). In addition, various multi-ions can be used, such as (Na+

and Si4+) [160], (Al3+ and Ti4+) [161], (Ni2+ and SO4
2−) [162], (Fe3+ and Cl−) [163], (Nb5+

and F−) [164] and (Na+ and F−) [165,166]. Among these, Zheng et al. [166] introduced
both Na+ and F− ions in the solvothermal preparation process of the precursor (Figure 7d).
The additional formation of Na–O and TM–F bonds regulated the local atomic structure
and reduced the energy of the TM 3d-O 2p and non-bonding O 2p bands. This led to a
reduction in lithium-ion diffusion activation energy and an increase in oxygen vacancy
formation energy, simultaneously improving lattice oxygen stability, rate performance, and
cycling stability (Figure 7e,f).
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6.5. Defective Structure Construction

The construction of the defective structure is achieved by regulating reaction condi-
tions during the addition of a lithium source and subsequent calcination process or surface
modification for the final LRM product. The benefits include reducing lithium-ion diffu-
sion energy barriers and improving surface lattice oxygen stability [167–173]. Common
defects include cationic vacancies [167,168], anionic vacancies [169–171], and other types
of defects [170,172,173]. Cationic vacancies, such as lithium vacancies, were constructed
by Liu et al. [167] by controlling the amount of the added lithium source in the calcination
process (Figure 8a). This effectively lowered the diffusion energy barrier of lithium ions
and improved the utilization rate. Meanwhile, the in situ formation of lithium vacancies
induced the development of surface spinel coating and Ni-doping in the lithium layer. The
combined strategies resulted in enhanced initial Coulombic efficiency, rate performance,
and cycling stability of LRM (Figure 8b–e). For anionic vacancies, such as oxygen vacancy,
Qiu et al. [169] used the decomposition of ammonium bicarbonate to perform a gas–solid
interface reaction with LRM, creating oxygen vacancies. The presence of oxygen vacan-
cies increased lithium-ion mobility, limited surface gas emissions, and reduced interface
impedance, thereby enhancing rate performance. Regarding other types of defects, such
as stacking faults, Liu et al. [172] prepared LRM with varying degrees of stacking faults
by controlling the type of molten salt and reaction temperature in the molten-salt method.
They found that samples with more stacking faults showed higher reversible capacity.
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6.6. Binder Research

The primary purpose of binder research is to inhibit transition metal ion transfer
and improve adhesion to LRM. In addition to commonly used polyvinylidene fluoride,
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other binders include polyacrylic acid and polyacrylonitrile [174,175]. For example, Yang
et al. [174] employed polyacrylic acid as the binder (Figure 9a). This effectively isolated and
mitigated electrolyte erosion on LRM. The hydrogen ions in polyacrylic acid can exchange
with the lithium ions on the LRM surface, forming a proton-doped surface layer that
hinders transition metal ion transfer. This process reduces voltage decay and enhances
cycling stability (Figure 9b, c). Additionally, Xu et al. [175] used polyacrylonitrile as a binder
(Figure 9d). The carbon–nitrogen triple-bond in polyacrylonitrile can form coordination
bonds with unstable transition metal ions on the LRM surface. These bonds increase the
migration energy barrier for irreversible transition metal ions transfer. Meanwhile, the
coordination bond enhances the adhesion between polyacrylonitrile and LRM, reducing
electrolyte erosion and improving adhesion to the aluminum foil current collector. This
results in enhanced voltage and cycling stability (Figure 9e, f).

Inorganics 2024, 12, x FOR PEER REVIEW 11 of 19 
 

 

6.6. Binder Research 
The primary purpose of binder research is to inhibit transition metal ion transfer 

and improve adhesion to LRM. In addition to commonly used polyvinylidene fluoride, 
other binders include polyacrylic acid and polyacrylonitrile [174,175]. For example, Yang 
et al. [174] employed polyacrylic acid as the binder (Figure 9a). This effectively isolated 
and mitigated electrolyte erosion on LRM. The hydrogen ions in polyacrylic acid can 
exchange with the lithium ions on the LRM surface, forming a proton-doped surface 
layer that hinders transition metal ion transfer. This process reduces voltage decay and 
enhances cycling stability (Figure 9b, c). Additionally, Xu et al. [175] used polyacryloni-
trile as a binder (Figure 9d). The carbon–nitrogen triple-bond in polyacrylonitrile can 
form coordination bonds with unstable transition metal ions on the LRM surface. These 
bonds increase the migration energy barrier for irreversible transition metal ions trans-
fer. Meanwhile, the coordination bond enhances the adhesion between polyacrylonitrile 
and LRM, reducing electrolyte erosion and improving adhesion to the aluminum foil 
current collector. This results in enhanced voltage and cycling stability (Figure 9e, f). 

 
Figure 9. (a) Schematic diagram of the mechanism of polyacrylic acid as the binder. (b,c) The cor-
responding voltage (b) and capacity (c) cyclic performance. Reproduced with permission from 
Ref. [174]. Copyright 2020 Wiley. (d) Schematic diagram of the mechanism of polyacrylonitrile as 
the binder. (e,f) The corresponding cyclic voltage performance. Reproduced with permission from 
Ref. [175]. Copyright 2022 Wiley. 

  

Figure 9. (a) Schematic diagram of the mechanism of polyacrylic acid as the binder. (b,c) The
corresponding voltage (b) and capacity (c) cyclic performance. Reproduced with permission from
Ref. [174]. Copyright 2020 Wiley. (d) Schematic diagram of the mechanism of polyacrylonitrile as
the binder. (e,f) The corresponding cyclic voltage performance. Reproduced with permission from
Ref. [175]. Copyright 2022 Wiley.

7. Summary and Prospects

In this review, the development history, synthesis methods, crystal structure, and reac-
tion mechanism of LRM are introduced, and the current key challenges are analyzed. Then,
the recent progress of modification strategies to overcome these challenges is described
in detail. While these strategies have mitigated problems such as low initial Coulombic
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efficiency, poor rate performance, fast cycling capacity and voltage fading to a certain
extent, there remain numerous challenges at different levels that need to be considered and
solved in future research work for the commercial viability of LRM.

The first challenge is at the material level. Voltage decay and hysteresis are still critical
electrochemical performance issues that need to be solved. To solve these problems, it is
urgent to deepen the comprehension of the crystal structure and reaction mechanism of
LRM. In the future, advanced characterization techniques and computational simulation
methods could be used to identify the unresolved crystal structure and clarify the unre-
solved reaction mechanism at the atomic and energy levels. This would establish a clear
structure–activity relationship and further improve the comprehensive electrochemical
performance of LRM. Additionally, LRM exhibits physicochemical property issues, such
as poor electrical conductivity, slow ion diffusion, and low tap density. In the future, the
electrical conductivity, ion diffusion rate, and structural stability of LRM could be improved
by constructing a strong network structure of full-surface conductive coating connected
with primary particles. Meanwhile, the tap density can be enhanced by filling the internal
pores of secondary particles or preparing quasi-monocrystalline LRM.

At the second level, modification strategies have been proposed to address current
issues in LRM. However, a single strategy typically addresses part of the problems, and
their improvement effects need further enhancement. Therefore, there is an urgent need to
refine and integrate existing modification strategies to improve the comprehensive perfor-
mance of LRM. To enhance the modification strategy, firstly, it is necessary to systematically
summarize the process design principles by combining experimental results and theoretical
calculation methods. This includes understanding the principle for selecting dopant ele-
ments and coating material, as well as lattice matching between coating material and LRM.
The second is to improve the accuracy of the modification strategy. This can be achieved
through advanced characterization technologies that enable observation and optimization
of process conditions, ensuring fixed-point and quantitative doping, coating, and surface
interface structure control. Regarding the integration of modification strategies, the modi-
fication process can be deeply integrated into the necessary preparation process of LRM,
and the integration and comprehensive application of multiple modification strategies
can be realized without adding additional process steps and costs. For example, during
precursor preparation, morphology and phase composition ratios could be regulated, and
dopants could be added. Alternatively, dopants can be introduced during the mixed
lithium source stage, followed by simultaneous construction of defects, doping, coating
layer, and heterointerface structure during the surface/interface structure optimization
process for LRM.

The final level concerns the full lifecycle of LRM, which includes several critical
stages that require attention: mass production, packaging and storage, material matching,
battery manufacturing, non-destructive testing, failure analysis, cascade utilization, repair
activation and recycling. Each key node presents its own set of challenges. Although
LRM application in automotive power batteries still requires extensive research, it is
possible to select scenarios that prioritize high specific capacity but have lower performance
requirements for other aspects. Existing LRM can be applied to manufacturing batteries
that are tested and optimized to overcome the critical issues at each node in the full lifecycle
of LRM, facilitating their application in more suitable fields. To cater to a broader range
of application scenarios, it is essential to continue developing new types of LRM, such
as cobalt-free, manganese-rich, high-voltage, solid-state, and wide-temperature-range
variants. This ongoing development will help ensure the successful commercialization
of LRM.
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