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Abstract: Viruses rely on host cells to replicate their genomes and assemble new viral particles. Thus,
they have evolved intricate mechanisms to exploit host factors. Host cells, in turn, have developed
strategies to inhibit viruses, resulting in a nuanced interplay of co-evolution between virus and
host. This dynamic often involves competition for resources crucial for both host cell survival and
virus replication. Iron and iron-containing cofactors, including iron–sulfur clusters, are known to
be a heavily fought for resource during bacterial infections, where control over iron can tug the
war in favor of the pathogen or the host. It is logical to assume that viruses also engage in this
competition. Surprisingly, our knowledge about how viruses utilize iron (Fe) and iron–sulfur (FeS)
clusters remains limited. The handful of reviews on this topic primarily emphasize the significance of
iron in supporting the host immune response against viral infections. The aim of this review, however,
is to organize our current understanding of how viral proteins utilize FeS clusters, to give perspectives
on what questions to ask next and to propose important avenues for future investigations.

Keywords: iron–sulfur cluster biogenesis; HSC20 (aka HSCB); HSPA9; cytoplasmic iron–sulfur
cluster assembly; CIAO1; MMS19; FAM96B; COVID-19; viral proteins; viral replication

1. Iron–Sulfur Clusters as Essential Cofactors in Cells from Bacteria to Humans

Virtually every cell on Earth ingeniously harnesses FeS clusters as crucial cofactors in
a multitude of biological processes [1,2]. FeS enzymes are integral to mitochondrial respira-
tion [3], the TCA cycle [4], nitrogen fixation [5], DNA replication and repair [6–9], protein
translation [10], heme and cofactor biosynthesis [11–13], and sensing and regulation of iron
levels [4,14,15], among others. FeS clusters play both structural and functional roles by
acting in electron transfer processes, oxidoreductive reactions, and protein conformational
changes—an ability not inherently shared by other metal ions [2,16,17]. It is likely that
iron–sulfur clusters are utilized to a greater extent than our current observation suggests.
These cofactors are prone to oxidative destabilization in oxygen-rich environments, such
as those encountered during purification processes [1,16,18]. While atmospheric oxygen
levels hover at approximately 21 percent, the interior of a mammalian cell typically ranges
between 0.5 and 5 percent [19,20].

As a result, handling of FeS proteins following lysis of the cell requires special tools
and protocols. Additionally, the characterization of FeS proteins necessitates the use
of sophisticated techniques. In conjunction with modeling studies and, more recently,
bioinformatics approaches, these methods contribute to a holistic understanding of this class
of inorganic cofactors, representing a fundamental aspect of bioinorganic chemistry. UV–vis
absorption, Mössbauer and electron paramagnetic resonance (EPR) spectroscopies remain
the most commonly used and robust methods for unraveling optical properties, electronic
configurations, oxidation states and coordination environments of FeS clusters [21].

Nuclear magnetic resonance (NMR), electron-nuclear double resonance (ENDOR) and
Raman spectroscopies have also found application in the study of FeS proteins [22]. More
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recently, native mass spectrometry (MS) and time-resolved native MS have emerged as
powerful tools, providing detailed and unambiguous information about the type of cluster
coordinated by a protein and the coordinating amino acid residues [23].

While our manuscript primarily focuses on viral genomes that encode FeS proteins,
we acknowledge the essential contributions of spectroscopic, modeling, and bioinformatics
approaches to the characterization of the structure and function of FeS proteins. These
multifaceted methodologies have played a crucial role in advancing our understanding of
the complex nature of FeS clusters, establishing them as indispensable tools in the field of
bioinorganic chemistry.

FeS proteins are not only ubiquitous, but the roles performed by FeS clusters have
remained remarkably conserved throughout evolution (Figure 1C) [24]. Depending on the
organism, the bacterial NADH dehydrogenase complex contains seven to ten FeS clusters
conserved in the eukaryotic mitochondrial respiratory complex I which typically ligates
eight clusters [3,25]. Electron transfer between FeS clusters in complex I is coupled to
proton pumping across the mitochondrial inner membrane, accounting for approximately
40% of the total protons pumped throughout the respiratory chain [3,25]. DNA replication
proteins, including DNA polymerase-α, DNA polymerase-δ, DNA polymerase-ε, DNA
primase, and DNA repair nucleases—NTHL1 and MUTYH—rely on iron–sulfur clusters
for their imperative function in supporting genome maintenance and cell proliferation
(Figure 1C) [6–9,26].

Cells have evolved intricate biosynthetic pathways to assemble FeS clusters and
incorporate them into a vast array of proteins. De novo biogenesis of FeS clusters is
a complex multistep process highly conserved from bacteria to humans [24,27,28]. In
mammalian cells, the basic building block of all FeS clusters, the rhombic [2Fe-2S] cluster, is
initially assembled on a main scaffold protein, ISCU [24,27,29–34]. ISCU binds to a dimeric
configuration of the cysteine desulfurase, NFS1, which enzymatically converts cysteine
to alanine, while mobilizing inorganic sulfur for FeS cluster assembly [24,27,29,30,35].
Specifically, in the catalytic reaction carried out by NFS1, sulfur from the thiol group of
the substrate cysteine is mobilized to generate a persulfide intermediate on cysteine 138 of
ISCU [31]. NFS1 is stabilized by its essential binding partner ISD11 [36–38]. The identity of
the iron donor for FeS cluster assembly in mitochondria remains controversial in the field.
In the cytosol, PCBP1 and its binding partner, BOLA2, have been found to provide iron
for [2Fe-2S] cluster assembly [39]. PCBP1 can coordinate up to three ferrous iron ions and
has been shown to function as a chaperone that delivers iron to the storage protein ferritin
as well as to other cytosolic iron proteins [40–43]. Additionally, two electrons are needed
for [2Fe-2S] cluster assembly. In yeast and mitochondria, these reducing equivalents are
provided by the ferredoxin/ferredoxin reductase complex [44,45]. The [2Fe-2S] cluster can
then be utilized to generate much more complex FeS cofactors with different stoichiometries
of iron and sulfur, including the most common cubane [4Fe-4S] clusters (Figure 1A) [1,46].
FeS clusters of more complex structures can be assembled on secondary carriers which
in turn deliver the cofactors to subsets of recipient FeS proteins [24]. Cubane [4Fe-4S]
clusters can be generated by the reductive coupling of two [2Fe-2S] clusters [46]. and
are commonly found in DNA and RNA enzymes where changes in the oxidation state of
[4Fe-4S] clusters have been proposed to modulate affinity of binding to the DNA or RNA
polyanion [6–9,47]. Cubane clusters function in complex electron relay systems where they
allow facile electron transfer that is not coupled to changes in the conformation of the
cluster due to the delocalization of electrons between iron atoms [1,21].

Transfer of newly assembled FeS clusters to recipient apo-proteins is assisted and
enhanced by an evolutionarily conserved chaperone/co-chaperone system [48–51]. In
humans, the ATP-dependent Hsp70 chaperone, HSPA9, and its cognate J-domain protein,
HSC20 (or HSCB), facilitate transfer of FeS clusters to recipient proteins (Figure 1B) [30,50,52].
The selection process for specifically allocating FeS clusters to only FeS apoproteins among
the entire proteome has represented a long-standing question in the field. One mechanism
has emerged in recent years that focuses on the specificity driven by the co-chaperone,
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HSC20, given that the multifunctional chaperone HSPA9 has promiscuous substrate-
binding activity [51,53,54]. HSC20 was found to recognize Leucine-Tyrosine-Arginine
(LYR)-like motifs present in recipient FeS apo-proteins for direct binding and delivery
of a FeS cluster [30,50,52]. The C-terminal domain of HSC20 interacts directly with the
FeS-bound ISCU, which is released from the initial pre-complex with NFS1, and a histidine–
proline–aspartate (HPD) tripeptide in the N-terminal J-domain of HSC20 activates the
ATP hydrolysis by HSPA9, thereby accelerating cluster transfer [30,50,52,55–57]. Once
transferred to the appropriate recipients, the current understanding is that the protein
folds around the FeS cluster [58]. A subset of nucleocytoplasmic FeS proteins, such as
those involved in DNA replication and repair, purine and pyrimidine metabolism and
tRNA modifications, require the specialized Cytoplasmic Iron–sulfur Assembly (CIA)
complex to acquire their cofactors (Figure 1B) [59–62]. The CIA complex is composed of
MMS19, CIAO1, and FAM96B [59–61]. MMS19 is essential for genome stability and DNA
metabolism [59,60] and possesses four HEAT repeat motifs that have been proposed to
mimic the DNA double helix, which could provide an appropriate docking site for DNA or
RNA binding proteins [63]. Binding of HSC20 to the LYR motif of CIAO1 likely bridges the
CIA machinery to the de novo FeS complex [61]. A model has been proposed, whereby a
dimer of HSC20 engages simultaneously the LYR motif of CIAO1 that is bound to MMS19
and FAM96B, and the LYR sequence of an unfolded FeS-recipient apoprotein, thereby
mediating the interaction of the FeS client with the CIA complex and facilitating cluster
acquisition [24,61]. Overall, the relevance of the FeS biogenesis pathway for human health
and disease has become particularly apparent during the past twenty years with the identi-
fication of several ultra-rare disorders caused by loss of function in the genes that encode
the highly conserved FeS biogenesis proteins [24,27,64]. Interestingly, the physiological
consequences of loss of function in any of the CIA machinery components have remained
unknown until recently, when biallelic pathogenic variants in CIAO1 were reported to result
in a novel disorder characterized by predominantly neuromuscular manifestations [65].
CIAO1 deficiency also caused a multisystemic involvement that included neurobehavioral
comorbidities and iron deposition in deep brain nuclei, underscoring the involvement
of CIAO1, and by extension of the CIA machinery, in multiple metabolic pathways and
physiological systems [65]. Exome sequencing has effectively contributed to uncover novel
ultra-rare human conditions through the identification of genetic variants that have enabled
a better understanding of disease mechanisms and the identification of potential targets
for therapeutic interventions. It is likely that in the years to come, many more human
conditions will emerge due to loss of function in components of the FeS biogenesis pathway,
which have yet to be associated with any known human diseases.
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process that requires two basic steps: (I) de novo FeS cluster formation on the main scaffold ISCU 
[24,27,29,30] by the activity of a cysteine desulfurase, NFS1, which converts cysteine to alanine and 
generates a persulfide intermediate on ISCU in the process [24,27,29,30]. Donation of iron and re-
ducing equivalents completes [2Fe-2S] cluster assembly on the main scaffold ISCU [39]. (II) The 
newly assembled FeS cluster is delivered to the appropriate recipient proteins by the activity of an 
HSP70 chaperone and cognate J-domain HSP40 cochaperone system [30,50,52]. In mammalian cells, 
the chaperone is HSPA9 and the cochaperone HSC20 (aka HSCB). HSC20 recognizes LYR-like motifs 
present in subsets of FeS recipient proteins [30,50,52]. In the cytosol of mammalian cells, following 
cluster incorporation, a subset of proteins, such as NARFL and CIAPIN1, complete their maturation 
and become active [30,50,52]. (III) Nucleic acid processing enzymes require a highly specialized cy-
toplasmic iron–sulfur assembly (CIA) complex to acquire their cofactors [30,61]. The CIA complex 

Figure 1. Iron–sulfur clusters and their assembly. (A) Biologically relevant FeS cluster geometries
and possible interconversions [16]. (B) Iron sulfur cluster biogenesis is a complex highly regu-
lated process that requires two basic steps: (I) de novo FeS cluster formation on the main scaffold
ISCU [24,27,29,30] by the activity of a cysteine desulfurase, NFS1, which converts cysteine to alanine
and generates a persulfide intermediate on ISCU in the process [24,27,29,30]. Donation of iron and
reducing equivalents completes [2Fe-2S] cluster assembly on the main scaffold ISCU [39]. (II) The
newly assembled FeS cluster is delivered to the appropriate recipient proteins by the activity of an
HSP70 chaperone and cognate J-domain HSP40 cochaperone system [30,50,52]. In mammalian cells,
the chaperone is HSPA9 and the cochaperone HSC20 (aka HSCB). HSC20 recognizes LYR-like motifs
present in subsets of FeS recipient proteins [30,50,52]. In the cytosol of mammalian cells, following
cluster incorporation, a subset of proteins, such as NARFL and CIAPIN1, complete their maturation
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and become active [30,50,52]. (III) Nucleic acid processing enzymes require a highly specialized
cytoplasmic iron–sulfur assembly (CIA) complex to acquire their cofactors [30,61]. The CIA complex
consists of CIAO1, MMS19, and FAM96B. CIAO1 was found to harbor a highly conserved LYR-motif
that engages the cochaperone HSC20, thereby acting as a bridge between CIA and the de novo
FeS assembly machinery [30,61]. A subset of FeS proteins that acquire their cofactors from the CIA
complex, (e.g., DPYD and ABCE1) may function in the cytosol, while others are translocated to the
nucleus (POLD1, PRIM2, FANCJ) [7]. (C) Representative FeS proteins with their roles discussed.
Examples of well-known FeS proteins are listed. In each case, their distinctive roles are highlighted.
The diverse functions range from electron transfer to catalytic processes, showcasing the versatility of
FeS clusters in various essential biological contexts. Panel (B) created with the help of BioRender.com.

2. Viral Genome Evolution: Harnessing the Host Machinery and FeS Clusters

Unlike bacterial pathogens, many viruses evolved as genetic minimalists to evade
host targeting strategies raised against their viral genomes [66,67]. Capsids and nucleo-
capsids also limit genome lengths and require the genome to squeeze into small protein
capids [66,68]. To overcome these feats, many viruses have evolved complicated genomes
with intricate replication and transcription mechanisms. Even the larger DNA viruses,
which can be larger than the genomes of the smallest bacterium, do not encode all the
necessary components for the production of progeny [69,70]. Instead of incorporating all of
the necessary components into their minimalist genomes, viruses smartly use the host cell
machinery. This extends to their utilization of the host cell FeS cluster assembly machinery.
Why invest time, energy, and genome space into something already encoded by every
potential host? This review showcases five diverse virus families that have been reported
to encode FeS proteins.

3. FeS Clusters in Virally Encoded Proteins of Five Distinct Virus Families
3.1. The Rotavirus Non-Structural Protein 5, NSP5

The initial discovery of a virally encoded FeS protein, the rotavirus NSP5, was likely
serendipitous, recognized by the appearance of an unexpected brown color during the
purification process, indicating its potential coordination of a FeS cluster [71]. The rotavirus
non-structural protein 5, NSP5, has been reported to ligate a [2Fe-2S] cluster based on dis-
tinctive features observed on EPR spectroscopy [71]. Rotaviruses mainly infect enterocytes
of the small intestine villi and can cause severe diarrhea, which can be deadly in infants
and immunocompromised patients [72]. No specific treatments are available for rotavirus
infections [72].

Rotaviruses contain eleven double-stranded RNA (dsRNA) segments inside three-
layered proteinaceous virions or virus particles [73]. The total genome size is approximately
18 kilobases (kb), and each dsRNA segment is between 600 base pairs (bp) and 3300 bp [73].
Rotavirus NSP5 and NSP2 are responsible for forming liquid-like protein-RNA conden-
sates that provide an appropriate environment for RNA replication, known as viroplasms
(Figure 2) [73–75]. Never exposed to the cytoplasm, the dsRNA genome is transcribed
and capped by VP1, the RNA-dependent RNA polymerase (RdRp), inside virions that
have lost their outermost protein layer in the lysosomal lumen [73]. Transcription of the
dsRNA segments by the RdRp generates positive (+) sense single-stranded RNAs (ssRNA)
which are extruded from the virions to be either translated by the host cell ribosomes or to
serve as templates for replication [73]. In the latter case, NSP2 binds the (+)ssRNAs in a
sequence-specific manner and acts as an RNA chaperone by facilitating the folding of RNA
into inter-segmented intermediates (Figure 2) [73]. Eleven single-stranded inter-segmented
RNAs, NSP2 and NSP5, VP2 and VP1 form the inner core of a virion inside the viroplasms.
Replication of (+)ssRNA templates occurs within these virion cores generating the dsRNA
segments of the rotavirus genome [73]. NSP5 has been proposed to act as a scaffold linking
replication and transcription of the (+)ssRNA by binding to VP1 and the core structure
formed by VP2 [71,73,74]. The virion core is encased in the triple-protein outer layer [73].
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There remain several unknowns in the current model of rotavirus replication, leaving much
yet to be uncovered.
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Figure 2. The rotavirus infection cycle and its NSP5. Upon entering the cell, the rotavirus undergoes
a process whereby its outer layer of triple-protein encasement is shed, allowing the virion to be
released from the vesicle [73]. Subsequently, within the cytosol, the double-stranded RNA (dsRNA)
genome is transcribed by the polymerase VP1 while remaining confined within the virion, thereby
preventing direct contact with the immune-ready cytosol [73]. Positive-sense single-stranded RNAs
((+)ssRNAs) are extruded from the virion and are either translated or serve as templates for the
synthesis of new virion dsRNA [73]. This process involves NSP5 and NSP2. RNA transcripts forming
RNA-protein condensates, known as viroplasms, serve as the location for the assembly of new
virions [73]. Within viroplasms, the inner core of the virion is assembled, comprising eleven distinct
strands of (+)ssRNA that act as templates for the dsRNA genome of the newly forming virion [73].
Replication of these templates occurs within the core, which is subsequently encapsulated with the
triple-protein layer, completing the formation of new virions [73]. Figure created with the help of
BioRender.com.

A recombinant rotavirus lacking NSP5 produced by reverse genetics was unable to
form viroplasms and replicate viral RNA, while infection of a cell-line expressing wild-
type NSP5 was able to rescue replication of the viral RNA [76]. NSP5 has an N-terminal
intrinsically disordered region, two oligomerization domains, and an amphipathic alpha-
helical C-terminus [74]. Additionally, NSP5 has been found to harbor ATPase activity [74],
and phosphorylation of multiple serine residues has been reported to modulate NSP5
function [74,76].

Interestingly, aerobic purification of NSP5 resulted in a brown-colored solution exhibit-
ing a broad absorption peak at 422 nm. The color, defining the NSP5 preparation, gradually
diminished upon exposure to ambient air, implying the presence of an oxygen-sensitive
cofactor [71]. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) indi-
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cated the presence of iron, although at a lower-than-expected stoichiometry, suggesting that
the protein solution obtained during aerobic purification consisted of a combination of apo-
and holo-protein [71]. This outcome aligns with expectations for a FeS protein, given the
well-known susceptibility of these cofactors to degradation when exposed to oxygen [18].
Further confirmation came from electron paramagnetic resonance (EPR) spectroscopy,
which verified the existence of a [2Fe-2S] cluster coordinated by NSP5 and positioned at the
interface between NSP5 dimers within the 169–179 region. Mutational analysis pinpointed
two cysteine residues (Cys171 and Cys174) in NSP5 as ligands for the cluster [71]. The
FeS-ligating residues demonstrated conservation across group A, C, and D rotaviruses,
suggesting a shared capability among rotavirus NSP5 proteins to ligate a rhombic cluster.

Martin et al. showed that mutagenesis of the two cysteine residues responsible for FeS
ligation did not hinder viroplasm formation [71]. However, the NSP5 protein devoid of
the iron–sulfur cluster had different binding patterns to ssRNA [71]. The wild-type NSP5
exhibited two ssRNA-binding sites, as detected by microscale thermophoresis, whereas
both the NSP5 with mutated cysteines (into alanines) and an “oxidized-NSP5” had only
one ssRNA-binding site [71]. The FeS cluster in NSP5 appears to be involved in the binding
of ssRNA and might help in orchestrating the complex replication of the eleven genomic
segments [71]. Despite this discovery being reported in 2013, there has been limited
subsequent exploration into the role of the FeS cluster in rotavirus NSP5 and the potential
advantages it confers.

Additionally, to gain insights into the role of the cluster in the rotavirus NSP5 and
understand how its ligation influences protein conformation and dimerization, it would
be important to solve the structure of NSP5 with its FeS cluster in the form that binds to
RNA. This structural information would provide valuable details about the coordination of
the cluster, its environment, the interaction of NSP5 with RNA in the presence of the FeS
cofactor, and the resultant impact on the conformation and dimeric/oligomeric state of the
protein. Further investigation into the utilization of FeS clusters in rotavirus replication
could expand our understanding of the mechanisms underlying rotavirus replication.

3.2. The Merkel Cell Polyomavirus Small T Antigen (sT)

The discovery of the Merkel cell polyomavirus small T antigen as a FeS protein was a
fortuitous finding as well, highlighted by the brown color of the purified protein indicative
of the presence of iron [77]. Merkel cell polyomavirus (MCPyV) is a small, circular double-
stranded DNA (dsDNA) virus belonging to the Polyomaviridae family (Figure 3A) [78,79].
The MCPyV viral genome can clonally integrate into the host genome which is a significant
event in the development of Merkel cell carcinoma (MCC), a rare but aggressive skin
cancer [80,81]. Upon infection, MCPyV relies heavily on the host cell DNA replication
machinery within the cell nucleus [79]. The viral DNA is released directly into the host cell’s
nucleus, following entry [79]. Subsequently, the cellular apparatus initiates the transcription
of early genes from the MCPyV genome [79]. Among the early genes are the regulatory
proteins large T antigen (LT) and small T antigen (sT) that play a crucial role in genome
replication and MCPyV-related carcinogenesis [78].

Both LT and sT have an HSP40 chaperone J-like domain at their N terminus
(Figure 3B) [78,82]. LT has a large helicase domain and a DNA origin binding domain
(OBD) [78]. LT initiates genome replication by binding to seven sequence-specific sites
along 71 bp of the circular genome, allowing the cellular replication enzymes to reach
the DNA template and initiate replication (Figure 3C,D) [79]. sT was initially thought
to enhance replication solely by increasing LT stability through the inhibition of the E3
ubiquitin ligase FBXW7 [77,83]. sT, a 22 kDa protein with a T-antigen-like domain on its
C-terminal half (Figure 3E), was found to ligate two FeS clusters, a [2Fe-2S] and [4Fe-4S],
within two metal binding pockets composed of cysteine residues, as assessed by EPR spec-
troscopy [77]. Tsang et al. showed that mutating the FeS-ligating residues of sT rendered
the protein ineffective in stimulating LT-mediated viral DNA replication, highlighting the
essential roles of these residues for sT function [77]. Moreover, these studies proposed
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that sT can stabilize LT without altering its protein levels. sT was shown to localize to
active replication sites at the viral origin where LT is known to act, indicating a more direct
role of sT in viral genome replication [77]. A recent paper showed by knockout studies
that while sT was not essential for initiating viral DNA replication, it played a crucial role
in maintaining genome integrity and activating the transcription of early and late genes,
specifically LT and VP1—the primary capsid protein [82]. Investigating the role of the FeS
clusters for sT function could significantly advance our understanding of the function of sT
in carcinogenesis.
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Figure 3. Merkel-cell polyomavirus, sT. (A) The circular double-stranded DNA (dsDNA) genome of
Merkel cell polyomavirus undergoes replication within the cell nucleus through the involvement of
cellular replication proteins [78]. (B) The early genes large T antigen (LT) and small-T antigen (sT)
share N-terminal regions. LT comprises a C-terminal origin binding domain (OBD) and a helicase
domain, while sT contains an LT stabilizing domain (LSD) and protein phosphatase 2A (PP2A)
binding domains [78]. (C) Structure of LT OBD in complex with dsDNA at the replication origin (PDB:
4FB3). (D) The LT-helicase domain assembles as a heptamer. Zinc-ligating residues are highlighted
(PDB: 5J40). (E) The structure of sT from a closely related virus SV40 exhibits similar metal-binding
sites as sT of Merkel cell polyomavirus, which are highlighted (PDB: 2PF4). The figure was created
with the assistance of BioRender.com.
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3.3. The SARS-CoV-2 nsp12 and nsp13

The virus responsible for the COVID-19 pandemic, Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), has been found to encode two FeS proteins that
are at the core of the replication and transcription complex (RTC) (Figure 4A,B) [84,85].
This discovery came into focus amid the pandemic’s heightened interest. The presence
of LYR-like motifs and metal-binding sites in the viral proteins enabled the prediction of
FeS-cluster-binding sites, subsequently experimentally confirmed, a finding that suggests
the existence of FeS proteins hiding in plain sight.
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polymerase (RdRp) consisting of nsp12, a dimer of nsp8 and nsp7, along with a dimer of the helicase
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nsp13 and double-stranded primer-template RNA (PDB: 7CYQ). (B) Domain organization of nsp12
and nsp13 with nidovirus specific domains highlighted [86–89]. (C) Organization of the (+)ss-
RNA genome of SARS-CoV-2 and (+) subgenomic RNAs that encode structural and accessory pro-
teins [89,90]. (D) Schematic representation of continuous and discontinuous modes of SARS-CoV-2
replication. The continuous synthesis involves the replication of the (+)ssRNA genome into (-)ssRNA,
forming double-stranded RNA as the product, with nsp13 unwinding the double-stranded RNA in
the 5′–3′ direction. The (+)ssRNA strand is then synthesized using the (-)ssRNA as a template. On
the other hand, discontinuous synthesis occurs at the 3′ end of the genome, where stalling during
replication leads to template switching, allowing the 5′ leader sequence to serve as a template for
the remaining (-) subgenomic RNA through base-pairing with the internal Transcription Regula-
tory Sequences (TRSs). This process results in the synthesis of the (+) subgenomic RNA using the
(-) subgenomic RNA as a template [90,91]. The arrows indicate the directionality of replication.
(E) Metal-binding sites within the catalytic domain of the SARS-CoV-2 RdRp and at the interface
between the NiRAN and the catalytic domain. The coordination details of the zinc-binding residues
are depicted in stick representation. The sites where FeS clusters have been experimentally confirmed
to be ligated [84] are represented by modeling them in place of zinc, with their coordinate details
shown in stick representation. (F) Depiction of the structure of the N-terminal Zinc Binding Domain
(ZBD) of nsp13, illustrating the amino acid residues involved in zinc coordination, as observed in the
available crystal structure (PDB ID: 6ZSL) [92].

SARS-CoV-2 is a coronavirus of the order Nidovirales [91,93,94]. Nidovirus genomes are
known for their remarkable length, typically encompassing ~30,000 bases of single-stranded
RNA (Figure 4C) [91,93,94]. The genomes of most RNA viruses are comparatively shorter,
consisting of approximately 9000 bases [95], a difference that can be attributed to factors
such as the use of low-fidelity polymerases and the inherent instability of RNA [89,94,96].
Coronaviruses stand out by encoding an exoribonuclease, an uncommon feature among
RNA viruses, to counteract mutations as they arise during replication [91,94,96,97]. Upon
entering a host cell and releasing its genome into the cytosol, coronaviruses utilize host ribo-
somes to translate two polypeptides directly from the positive sense-single-stranded RNA
genome from two juxtaposed open reading frames defined through a ribosome frameshift-
ing site [94,98]. The single polypeptides are cleaved by two viral proteases, namely nsp3
and nsp5, into sixteen non-structural proteins (nsps) [89,94,99]. A significant number of
nsps assemble into the multisubunit RTC, responsible for replicating the RNA genome and
transcribing structural and accessory genes [94]. The viral genome includes transcriptional
regulatory sequences (TRS) located between the structural and accessory genes that are
complementary to a 5′ leader sequence, enabling a template switching mechanism that
skips large portions of the genome during transcription (Figure 4D) [89,91,94]. This com-
plex mechanism ensures that each transcription product or subgenomic RNA (sgRNA)
acquires a polyA tail and a 5′cap allowing for evasion of host defenses [86,89,91,94,100].
Moreover, this mechanism potentially accommodates the diverse copy number needs for
structural and accessory proteins [94,100].

The heart of the replication and transcription complex of SARS-CoV-2 is nsp12, the
catalytic subunit of the RNA-dependent RNA polymerase (RdRp), which adopts a right-
hand conformation characterized by a unique N-terminal nidovirus-specific nucleotidyl
transferase (NiRAN) domain [86]. Nsp12 was found to ligate two [4Fe-4S]2+ clusters [84]
in the same sites that had been modeled as zinc centers in the cryo-EM structures of the
aerobically purified complex (Figure 4E) [101]. One FeS cluster is at the interface between
the NiRAN and the catalytic domain and the second in the fingers subdomain within
the polymerase domain (Figure 4B,E) [84]. Using an in vitro primer extension assay with
the minimal requirements of nsp12 and the two accessory factors, nsp7 and nsp8, Maio
and colleagues showed that the iron–sulfur cluster in the catalytic domain is essential
for replication [84]. Substitution of the FeS-ligating residues in the polymerase domain
abolished the activity of the RdRp [84]. The aerobically purified form of nsp12 containing
zinc had significantly reduced polymerization efficiency and reduced affinity of binding to
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the RNA template [84]. The template tested in this experiment was 1000 times smaller than
the SARS-CoV-2 RNA genome and had minimal secondary structure [84]. Under these
conditions, Zn was shown to be partially able to support function by potentially serving
a structural role that preserved the integrity and tridimensional structure of the catalytic
domain [84].

Mutagenesis of the FeS-ligating residues in the interface domain of nsp12 diminished
its interaction with the SARS-CoV-2 helicase nsp13 without profoundly impairing the RNA
polymerase activity [84]. Nsp13 is a member of the 1B superfamily of helicases (SF1B) with
an ATP-dependent unwinding activity that proceeds in the 5′ to 3′ direction [102]. Notably,
the directionality of nsp13 opposes that of nsp12, which extends the nascent RNA template
in the 3′ to 5′ direction. Available cryo-EM structures of the SARS-CoV-2 RTC show two
nsp13 protomers per copy of the RdRp (Figure 4A) [87,88]. While the significance of this
arrangement is still under debate, it has been proposed that one of the two nsp13 protomers
may allow backtracking of the RdRp and template switching, while the other would enable
the unwinding of downstream RNA secondary structures [88]. Nsp13 is organized into
five distinctive domains: an N-terminal Zinc Binding Domain (ZBD), a 1B beta barrel
domain, a helical stalk and two RecA-like domains 1A and 2A, required for binding and
hydrolysis of ATP (Figure 4B) [102,103]. Interestingly, nsp13 was also found to ligate a
[4Fe-4S]2+ cluster and two Zn2+ ions within its ZBD (Figure 4F) [85]. Aerobically purified
nsp13 ligates three zinc ions in its ZBD and has been shown to exhibit a significantly
higher activity on DNA in in vitro enzymatic assays, despite its physiological substrate
being RNA [104–106]. To investigate the effect of the FeS cluster on nsp13 binding to RNA
versus DNA, Maio and colleagues performed electrophoretic mobility shift assays (EMSAs)
using either anoxically purified nsp13 ligating a FeS in its ZBD (Zn2-[4Fe-4S]) or nsp13
purified aerobically and fully reconstituted with zinc (Zn3) [85]. Nsp13-Zn2-[4Fe-4S] had
approximately 100-fold greater affinity for RNA than nsp13-Zn3 [85]. Additionally, nsp13-
Zn3 exhibited higher affinity of binding for DNA than for RNA which is in agreement
with results previously published for the aerobically purified enzyme [106]. These findings
demonstrate that the [4Fe-4S] cluster significantly enhances the binding selectivity of nsp13
for its physiological substrate, RNA. In line with the increased affinity of nsp13-Zn2-[4Fe-
4S] for RNA when compared to nsp13-Zn3, functional assays demonstrated that the helicase
anoxically purified with the cluster exhibited superior unwinding activity compared to
the aerobically purified enzyme containing three zinc ions per protomer [85]. Loss of the
FeS cluster negatively affected the unwinding activity of the helicase, presumably due to a
reduced binding of the variant to the substrate.

The coexistence of a diverse metal composition, encompassing both zinc and a [4Fe-4S]
cluster in nsp13, has been reported only once previously, in the cleavage and polyadenyla-
tion specificity factor 30 [107]. Nsp13 acquires its [4Fe-4S] cluster through the interaction of
its LYK motif with the FeS biogenesis machinery, as revealed in recent studies [85]. The
mechanism governing zinc delivery to the protein is likely dependent on ZNG1, known
for recognizing a unique Cys6His2 zinc finger domain in zinc-dependent metalloproteins.
ZNG1 functions as a GTPase metallochaperone, directing Zn allocation to specific recipient
proteins [108]. The ZBD of nsp13 features a Cys6His2 domain organized into a RING-like
module, ligating two zinc ions [85]. The presence of the LYK motif and the Cys6His2
zinc finger domain in nsp13 across all seven human coronaviruses suggests that similar
pathways may be employed by other coronaviruses to incorporate two zinc ions and a
[4Fe-4S] cluster into their ZBDs.

While the evolutionary conservation of FeS-ligating centers in the SARS-CoV-2 pro-
teins underscores their importance in potentially providing advantages that enhance viral
fitness, the known vulnerability of FeS cofactors to oxidative damage presents an ex-
ploitable property for targeting infections. This strategic approach has been employed in
coronavirus replication, both in cell culture models and in vivo using the Golden Syrian
hamster model of COVID-19 [84,109].
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A stable nitroxide small molecule, TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-
1-oxyl), has demonstrated effectiveness in two different animal models of human disor-
ders [110,111]. TEMPOL oxidizes and disassembles the FeS cluster of cytosolic aconitase
(IRP1), converting it into the apo-form that regulates cellular iron homeostasis [110,111].
In in vitro testing on the SARS-CoV-2 RdRp and helicase, TEMPOL induced the oxida-
tive degradation of the FeS clusters in both enzymes, impairing their activities [84,85].
Treatment of SARS-CoV-2-infected cells with TEMPOL robustly inhibited viral replication
at concentrations exceeding 0.2 mM [84]. Notably, TEMPOL treatment did not induce
cytotoxicity at doses up to 5 mM, likely due to its limited access to the mitochondrial matrix
where many FeS proteins are localized. Furthermore, TEMPOL exhibited reduced reactivity
towards most host FeS proteins, characterized by a redox potential exceeding −600 mV.
The increased reactivity of TEMPOL towards the FeS clusters in the SARS-CoV-2 RdRp and
helicase is attributed to the unusually negative reduction potentials of these clusters (lower
than −600 mV) [84], making them susceptible to oxidation and transition to the inherently
unstable [4Fe-4S]3+ state, which quickly degrades [18]. This process results in the inacti-
vation of the core components of the SARS-CoV-2 RTC that rely on FeS clusters for their
activity. Subsequent in vivo studies demonstrated the efficacy of TEMPOL in inhibiting
viral replication in the Golden Syrian hamster model of COVID-19 [109]. The inhibitory
effect was observed when the drug was administered 2 h before infection, leading to a
significant decrease in viral lung loads and pathology, without affecting shedding from the
upper respiratory tract [109]. These studies lay the foundation for further exploration of
drugs with a similar mode of action as TEMPOL as potential SARS-CoV-2 therapies during
active viral infection.

3.4. The Hepatitis B HBx Protein

Hepatitis B virus (HBV) poses a global health burden and contributes to liver-related
disease and mortality [112]. The World Health Organization estimates that one third of
HBV infected patients develop no symptoms, another third non-icteric hepatitis, and the
remaining third jaundice-related hepatitis with nausea, fatigue, and hepatomegaly [112,113].
Fulminant hepatitis develops in less than one percent of HBV-infected individuals which
can lead to severe liver damage and death [112]. In addition to acute hepatitis, there are
also chronic cases which are predominant if HBV infection occurred at a young age [112].
In chronic HBV infection, pathogenesis typically starts with liver inflammation, followed
by fibrosis, cirrhosis and ultimately formation of hepatocellular carcinoma [112–114].

HBV is an enveloped virus with a partially circular dsDNA genome of 3.2 kb that
primarily infects primates with a specific tropism for hepatocytes [113,115]. Upon infection,
the viral DNA enters the cell nucleus [116] where it is converted into an episomal circular
DNA molecule by cellular DNA repair mechanisms [113,117,118]. The closed circular DNA
serves as a template for transcription of the pre-genomic RNA, which is the precursor of the
viral genomic dsDNA, and of four subgenomic viral RNAs which are translocated to the
cytosol where they are translated [117]. Capsid core structures consist of the pre-genomic
RNA, the viral polymerase (P), and the HBV core capsid protein, (HBcAg) [117]. In these
formations, the P enzyme carries out reverse transcription of pre-genomic RNA, converting
it into a partially circular dsDNA genome [117]. Normally, the reverse transcription
process takes place inside capsids that envelop at the endoplasmic reticulum [113,117,119].
Nevertheless, reverse transcription can also happen within capsid structures located in
intracellular regions that are shuttled to the nucleus [113,117].

HBx, also known as the HBV X protein, plays several crucial roles in inducing changes
within the cell, ultimately leading to hepatocellular pathogenesis and the development of
hepatocellular carcinoma [113]. While the complete structure of HBx remains elusive, an
in silico 3D-modeling study (Figure 5A) revealed significant structural similarity between
HBx and a DNA glycosylase [120]. The 16.5 kDa X protein consists of an N-terminal trans-
activator domain involved in signal transduction and a C-terminal domain required for
nuclear transcriptional activation of both virally encoded and host genes (Figure 5B) [113].
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Within the C-terminal domain there are several mitochondrial localization sequences
(Figure 5B) [113]. Moreover, different isoforms of HBx arise from two in-frame translation
initiation codons, resulting in distinct N-termini [113]. These isoforms may have differential
localization and function within the cell. Nuclear HBx primarily activates transcription
of viral encoded proteins, whereas cytoplasmic HBx targets signaling cascades and mito-
chondria [113]. In mitochondria, studies have linked HBx to generation of reactive oxygen
species (ROS) and a decrease in mitochondrial membrane potential [113]. The generation
of ROS is suggested to inhibit PTEN, a tumor suppressor, and is implicated in overall
hepatocarcinogenesis [113].
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Figure 5. Hepatitis B Virus, HBx. (A) Computational model of HBx from van Hemert and colleagues,
highlighting conserved histidines and cysteines marked in blue and yellow, respectively [120]. (B) De-
piction of HBx domain architecture indicating the role of the N terminus in signal transduction and
of the C terminus as a nuclear transcriptional activator [113]. (C) Diagram of cluster interconversion
observed in HBx, as monitored by Mossbauer spectroscopy [121].

HBx has been associated with alterations in cellular iron homeostasis elicited by viral
infection [122]. When expressed in Huh7 cells, HBx led to a reduction in both protein and
mRNA levels of transferrin receptor 1 (TFR1) while increasing the protein and mRNA
levels of ferritin [122]. Both TFR1 and ferritin mRNA levels are under the control of the iron
regulatory proteins (IRP1 and IRP2) that bind specific RNA secondary structures called
iron-responsive elements (IRE) [123–125]. Notably, upon HBx expression in Huh7 cells, a
significant decrease in the protein levels of IRP1 was observed, leading to the proposal that
HBx may influence cellular iron homeostasis by affecting IRP1 levels [122].

The biochemical and structural characterization of HBx has posed challenges, yet
recent advancements have shed light on its properties. Notably, it has been discovered
that HBx binds to a FeS cluster [121]. When solubility-tagged full-length HBx was purified,
it was found to bind either a [2Fe-2S] or a [4Fe-4S] cluster, as confirmed by Mössbauer
spectroscopy following growth in 57Fe-enriched media [121]. The HBx-[2Fe-2S] was found
to be stable upon exposure to atmospheric oxygen and could be converted to HBx-[4Fe-
4S] upon addition of a strong reducing agent [121]. This interconversion was found to
be partially reversible, allowing HBx-[4Fe-4S] to revert to HBx-[2Fe-2S] when exposed
to oxygen (Figure 5C), albeit with some cluster degradation resulting in the release of
mononuclear Fe3+ [121]. The FeS cluster in HBx appears to persist even after multiple
rounds of oxidation and reduction, despite the accumulation of iron released upon cluster
degradation (Figure 5C) [121]. The release of mononuclear iron is likely acting as a source
of ROS potentially outside mitochondria or even in the nucleus [121]. The build-up of ROS
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resulting from iron release during HBx-cluster redox events may contribute to the severity
of liver disease and the development of carcinogenesis [121].

The reduction potential of the transition of the [4Fe-4S] cluster from the oxidized
2+ to the reduced 1+ state in HBx was determined to be ~−520 mV [121], close to the
value measured for IscU (~−570 mV) [46]. This observation raises questions about the
physiological relevance of this transition, given the necessity for a potent reductant to
achieve cluster reduction. However, the binding of a partner protein or a small molecule
could potentially enhance the reduction potential of the cluster.

A small amount of [2Fe-2S] cluster was detected in intact E. coli cells. The occur-
rence of the [2Fe-2S] cluster appeared to result from oxidative processes that converted
the [4Fe-4S] cluster into a rhombic [2Fe-2S], yet its persistence in whole cells suggests a
suboptimal ability of the E. coli biosynthetic apparatus to incorporate FeS clusters in precise
stoichiometric amounts, particularly under conditions when proteins are overexpressed.
This compromised insertion of FeS clusters might be mitigated by overexpressing HBx in
mammalian or insect cells. Nonetheless, challenges persist due to the low solubility of
HBx when isolated from insect cells and the variable overexpression of HBx in diverse
mammalian cell lines, hampering these investigations, which remain crucial and should be
pursued in the future.

The ability of HBx to coordinate both [2Fe-2S] and [4Fe-4S] clusters emerges as a
common feature among sequences from the five examined HBV genotypes (A2, B, C, D,
F1) [121]. With seven strictly conserved cysteines in its structure, HBx likely utilizes these
residues as ligands of the cluster. Several of these conserved cysteine residues, such as
C61, C69, and C137, play essential roles in HBx transactivation function [121]. Single-point
substitutions of cysteine to alanine preserved FeS cluster incorporation, with complete
loss occurring only in a variant lacking all cysteines [121]. These results indicate that,
while cysteines are crucial for cofactor binding, HBx may adapt by utilizing alternative
available cysteines to accommodate the FeS cluster. Among the conserved residues in HBx,
cysteine residues 61, 69, and 137, and histidine 139 form a CCCH motif previously reported
to coordinate Zn [126]. Interestingly, the expression of soluble HBx in a Zn-rich culture
media competed with FeS cluster insertion [121], suggesting potential competitive ligation
between these cofactors that share the same binding site. Historically, misclassification of
many FeS cluster proteins as Zn proteins has occurred due to similar ligand requirements
of the cofactors [127]. However, it is likely that in vivo, proper cofactor allocation is strictly
regulated to prevent incorrect metal incorporation into a specific protein, which would
potentially compromise its function.

The intriguing conversion of the FeS cluster in HBx from [2Fe-2S] to [4Fe-4S] under
reducing conditions is reminiscent of conversions observed in FeS scaffold proteins [46,128].
However, the reductive coupling for HBx requires a strong reducing agent [121]. com-
pared to A-type scaffolds and glutaredoxins. The precise physiological reductant for HBx
remains unknown.

In summary, the HBV HBx protein has been found to coordinate either a [2Fe-2S]2+

or a [4Fe-4S]2+ as likely cofactors. The identification of an FeS cluster in HBx adds to
the growing list of viral proteins characterized as FeS proteins and may provide new
perspectives to uncover mechanisms underlying carcinogenesis in chronic HBV infection.

3.5. The Mimivirus GciS Protein

Mimiviruses are among the largest viruses found to date at roughly 750 nm in diameter
with a linear dsDNA genome of approximately 12,000 kb [70]. Their denotation originates
from “Mimicking Microbes”, which was coined due to their ability to mimic bacteria in
both size and appearance [70]. Mimiviruses are nucleocytoplasmic large DNA viruses
(NCLDV), which also include Poxviridae and Asfarviridae, known to infect mammals [70,129].
Mimiviruses, however, infect Acanthamoeba, a unicellular amoeba [70]. Their genomes
consist of an impressive 1262 open reading frames that encode unusual proteins, including
tRNA synthetases, translation peptide release factors, 6 tRNAs, DNA repair glycosylases,
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a UV-damage endonuclease, and type I and type II topoisomerases [70]. It is likely not a
coincidence that many of these pathways rely on FeS clusters within cells.

GciS is a mimivirus glycine and cysteine-rich protein of approximately 6 kDa that
was recently found to ligate FeS clusters of both the [2Fe-2S]2+ and the linear [3Fe-4S]1+

geometry as assessed by Mossbauer spectroscopy on the Fe57-enriched purified protein
(Figure 6A,B) [130]. The linear [3Fe-4S]1+ cluster represents a rare arrangement in biological
systems [131]. It may be an aerobically stabilized geometry in which loss of one Fe3+

atom would yield a [2Fe-2S] cluster or it may be a step in the process of formation of a
[4Fe-4S] [131].
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While GciS lacks a predicted structure, it has demonstrated the ability to oligomer-
ize [130]. GciS was found to ligate 0.23 [2Fe-2S]2+ clusters and 0.06 [3Fe-4S]1+ clusters per
monomer as estimated from Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
analysis, which corresponds to approximately 0.65 Fe atoms per monomer. This sug-
gests that cysteines from multiple monomers are required to bind even a single [2Fe-2S]
cluster [130]. In the case of glutaredoxins which have been shown to have similar FeS
features, it is common for the FeS cluster to be bound by two cysteines from separate
protein monomers along with two glutathione ligands [131]. Villalta and colleagues give
a glance into a potentially widespread FeS proteome in Mimiviruses [130]. Further, they
show that GciS-like proteins from clades A, B, C, and D of the Megavirinae family have
UV–vis and EPR features suggestive of the presence of FeS clusters [130].

Future studies into the GciS proteins are warranted to gain insights into their physiolog-
ical role. Such investigations may potentially uncover novel functions for viral FeS proteins.

4. Conclusions and Perspectives
4.1. Drawing Similarities

Table 1 outlines the five viruses that encode FeS proteins, all of which are discussed in
this review. A prevailing theme emerges, indicating that many of these viral FeS proteins
are involved in genome replication. Viruses have very diverse and complex genomic
organizations, collectively encoding an assorted array of polymerases to replicate their
genomes [132]. Viruses can be categorized in the Baltimore Classification according to their
genome organization, as follows:

Group I: Double-stranded DNA viruses (MCPyV, Mimivirus);
Group II: Single-stranded DNA viruses;
Group III: Double-stranded RNA viruses (Rotavirus);
Group IV: Positive-sense single-stranded RNA viruses (SARS-CoV-2);
Group V: Negative-sense single-stranded RNA viruses;
Group VI: Single-stranded RNA viruses with a DNA intermediate;
Group VII: Double-stranded DNA viruses with an RNA intermediate (HBV).
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Table 1. List of viruses thus far identified that encode FeS proteins.

Virus Genome Family Host and Tropism FeS Protein(s)
Stoichiometry
and Oxidation
States

Role of Protein(s) Proposed Role of FeS
Cluster Reference Date

Rotavirus Segmented
dsRNA Reoviridae

Human, mature
enterocytes of the
villi of the small
intestine

NSP5 [2Fe-2S]

Viral RNA
Replication and
Packaging,
Viroplasm Formation

Either packaging and/or
replication of viral genome
by modulating RNA
interaction

[71] 2013

Merkel Cell
Polyomavirus dsDNA Polyomaviridae Human, Merkel

Cells sT [2Fe-2S],
[4Fe-4S]

Promotes
LT-mediated viral
DNA replication by
the host cell
polymerases

FeS coordination is important
for sT promotion of viral
replication

[77] 2015

SARS-CoV-2 (+)ssRNA Coronaviridae
Human, ACE2 and
TMPRSS2
expressing cells

nsp12 [4Fe-4S]2+,
[4Fe-4S]2+

Polymerase,
Viral RNA replication
and transcription

Allows coordination between
replication proteins in the
complex. Enhances
processivity of polymerase.

[84] 2021

nsp13 [4Fe-4S]2+,
Zn2+, Zn2+

dsRNA Helicase
(5’ -> 3’)

Enhances binding specificity
for RNA substrate and
increases unwinding ability

[85] 2023

Hepatitis B Partially
dsDNA Hepadnaviridae Human,

Hepatocytes HbX [2Fe-2S]2+ ->
[4Fe-4S]2+

Viral replication,
Plays role in
carcinogenesis

Potential Scaffold-like
protein for directing cellular
FeS cluster production.
Regulation of Fe homeostasis
proteins. Cluster conversion
leads to accumulation of ROS

[121] 2022

Mimivirus dsDNA Mimivirinae

Acanthamoeba,
Eukaryotic
Unicellular
Organism

GciS [2Fe-2S]2+,
[3Fe-4S]1+ Unknown Iron-sulfur Cluster

Intermediate Scaffold [130] 2023
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Viruses must either encode genome replication proteins or manipulate cellular proteins
not originally within their codebook to replicate their genomes. Incidentally, viruses
encode some of the rarest polymerases and enzymes involved in nucleic acid processing.
Further, within the same virus family, replication enzymes are the most well conserved
and viral polymerases also serve as a means to categorize viruses in terms of evolutionary
characteristics [133,134]. The presence of FeS clusters within viral polymerases or other
highly conserved proteins offers valuable insights to understand viral evolution and the
changes they undergo over time [133,134]. Questions arise about the depth of conservation
of viral FeS proteins and when they first emerged. Notably, all the virally encoded FeS
proteins discussed in this review originate from viruses infecting eukaryotes. GciS stands
out as the sole virally encoded FeS protein found in a virus infecting a non-mammalian
organism. While little has been reported on FeS cluster utilization by viruses infecting other
branches of the tree of life, it is likely that they exist.

Merkel cell polyomavirus and hepatitis B viruses belong to distinct evolutionary fami-
lies as evidenced by differences in their genome sequence homology: polyomavirus falls
under Polyomaviridae, while hepatitis B virus is classified under Hepadnaviridae. However,
they are related by the fact that they are non-retroviruses that are known to integrate
into host genomes. HBV encodes a reverse transcriptase and integrates similarly to retro-
viruses [135]. Merkel cell polyomaviruses LT may be responsible for clonal integration
into host genomes during cellular mitosis [81]. Additionally, virally encoded FeS proteins
found in both viruses might contribute significantly to carcinogenesis. Both HBx and GciS
demonstrate characteristics of FeS cluster scaffolds with the capability to enable cluster
interconversion. Overall, these observations shed light on how viral proteins enable viruses
to manipulate FeS cluster utilization by co-opting the cellular machinery responsible for
their assembly.

4.2. So Why Do Viruses Utilize FeS Clusters?

FeS clusters offer benefits to viruses similar to those they provide to host cells, which
possess intricate pathways for their assembly, for proper delivery to recipient proteins, and
for repair of partially oxidized clusters. Given that virtually all cells depend on iron–sulfur
clusters, it stands to reason that viruses infecting host cells would, either indirectly or as
discussed in this review, directly rely on FeS clusters. However, it is worth noting that it is
unclear whether all viruses encode FeS proteins. The question then arises: why have certain
viruses evolved to directly utilize these cofactors while others might have not? Could the
utilization of FeS clusters by viral proteins offer insights into the timing of their evolution
and, consequently, the evolution of the viruses that encode them?

FeS clusters have been postulated to represent relics of early life on Earth, preceding a
significant increase in atmospheric oxygen brought about by the emergence of photosyn-
thetic organisms that took place approximately 2.1 to 2.4 billion years ago [136]. Following
the “great oxygen event”, there was likely a widespread extinction event followed by evo-
lutionary adaptations aimed towards utilizing oxidized Fe3+ while devising mechanisms
to prevent the reactivity of free iron in cells. This reactivity could lead to the generation
of harmful reactive oxygen species via Fenton chemistry [2,18]. This occurrence creates a
paradox regarding the perceived benefits of FeS clusters in DNA replication proteins, as
their presence could potentially heighten the risk of DNA damage due to reactive oxygen
species. Despite this, numerous DNA and RNA binding proteins in bacteria, archaea, eu-
karyotes, and now viruses rely on FeS clusters, indicating an indispensable function of this
cofactor for genome replication and maintenance [6–9]. Viruses are important contributors
to ecological gene pools, not only by integrating directly into host genomes and sometimes
acquiring host genes, but also by influencing the natural selection of host genes that offer
an immune advantage against viruses. Consequently, viruses adapt to counteract these
evolving immune strategies.

It is conceivable that viral proteins utilizing FeS clusters are remnants of ancient
polymerases, ssRNA binding proteins, and helicases that employed FeS clusters in an era
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predating the “great oxygen event”. These proteins have persisted throughout evolution
due to the advantages they confer through natural selection.

The role of FeS clusters in viral proteins remains largely uncharacterized. In the case
of SARS-CoV-2 nsp12 and nsp13, FeS cofactors were discovered to significantly enhance
the affinity of binding to the physiological substrate RNA, thereby facilitating replication
processivity and unwinding activities, respectively. Both nsp12 and nsp13 were initially
mischaracterized as zinc proteins. Additional putative zinc-ligating proteins assemble
into the RTC of SARS-CoV-2, including the exoribonuclease, nsp14, and the small nsp10
required for the activity of both nsp14 and the methyltransferase nsp16. This situation raises
the possibility of multiple components within the replication and transcription machinery
of SARS-CoV-2 potentially emerging as FeS proteins.

So, why does the viral replication machinery require numerous FeS cofactors? A
plausible explanation lies in the very high energetic cost of building a virus and the inability
of viruses to produce the energy required for their replication [137,138]. We postulate that
FeS clusters in viral proteins may help the utilization of the stored reducing equivalents of
the host cell to provide energy for viral replication. This mechanism is likely analogous
to the coupling of electron transfer to proton pumping across the inner mitochondrial
membrane observed in mitochondrial respiratory complex I, ultimately contributing to
energy production [139].

We also direct the reader to Table 1 of this article, which lists viruses identified thus
far that encode FeS proteins and provides a possible role for the cofactors in each instance.

4.3. A Note on Importance

Studying viral FeS proteins can offer valuable insights into mechanisms that are re-
sponsible for the fitness and adaptability of viruses. Additionally, exploring viral FeS
proteins may broaden our knowledge about FeS clusters, their coordination geometries,
redox chemistries, and more. For instance, biophysical studies on the mimivirus GciS pro-
tein have unveiled the presence in biological systems of the rare linear [3Fe-4S] geometries
seldomly observed in vivo.

The identification of two FeS clusters in the SARS-CoV-2 RdRp highlighted the impor-
tance of FeS proteins in viral replication. This discovery is especially noteworthy because
the RdRp, being a highly conserved protein in rapidly mutating coronaviruses, represents
an ideal target for antiviral therapeutics, much needed during the global pandemic [109].
The use of a FeS cluster-targeting technology was pioneered as an antiviral therapeutic
strategy against SARS-CoV-2 infections [84,109], marking a groundbreaking development
likely to be followed by further advancements.

Presently, we stand at the cusp of an exponential discovery phase of novel FeS proteins.
Many of the viral FeS proteins discussed in this review were stumbled upon accidentally.
Now, armed with knowledge, we have a clearer understanding of where and how to search
for candidate FeS proteins aided by the identification of evolutionarily conserved LYR-like
motifs and potential metal-binding sites in the structures of the proteins, when available,
that can provide FeS cluster ligation sites.
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