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Abstract: Nuclear Magnetic Resonance (NMR) spectroscopy is the ideal tool to address the structure,
reactivity and dynamics of both inorganic and biological substances. The knowledge of nuclear
spin interaction and spin dynamics is increasingly consolidated, and this allows for tailoring pulse
sequences. When dealing with paramagnetic systems, several decades of research have led to the
development of rule-of-the-thumb criteria for optimizing the experiments, allowing for the detection
of nuclei that are in very close proximity to the metal center. In turn, the observation of these
systems, coupled with the development of robust and accessible quantum chemical methods, is
promising to provide a link between the spectra and the structural features through the interpretation
of the electronic structure. In this review, we list the challenges encountered and propose solutions
for dealing with paramagnetic systems with the greatest satisfaction. In our intentions, this is a
practical toolkit for optimizing acquisition and processing parameters for routine experiments aimed
at detecting signals influenced by the hyperfine interaction. The implications of paramagnetic shift
and line broadening are examined. With this endeavor, we wish to encourage non-expert users to
consider the application of paramagnetic NMR to their systems.

Keywords: PCS; hyperfine coupling; electronic structure calculations; HSQC; INEPT; antiphase
detection; 13C direct detection; PRE; 3D NMR

1. Who

Inorganic chemistry, more specifically, coordination chemistry of transition metal ions,
played an important role in the early days of NMR. When spectral resolution in NMR
appeared as an insurmountable barrier preventing the study of complex molecules, small
inorganic complexes showed high spectral dispersion, bringing many inorganic chemists to
approach NMR [1–5]. A couple of decades before biochemists discovered the potentialities
of high-field NMR to study macromolecular structure, dynamics and interactions [6], it
was clear that the interaction between electron and nuclear spins was able to provide room
temperature information on the spin state on the electronic correlation time and on the
coordination geometry of molecules containing unpaired electron(s) [7,8].

2. What

In principle, each NMR experiment needs a setup procedure that takes into account
relaxation properties, molecular size, number of active spins, sample concentration, ag-
gregation conditions, temperature, sample stability, and solvent. However, real life in
contemporary NMR laboratories often offers a different perspective in which, for each
experiment, parameter sets optimized according to standard molecules are available to
be used as a black box. Of course, no matter what has been taken as a standard, any real
system will never be exactly like a test case. Therefore, this approach is, “in principle”,
wrong. However, it has many positive, relevant aspects, such as saving both NMR time and
personal time, giving access to the spectrometer and to non-experts, and, at the same time,
protecting the fragile NMR hardware from excesses of creativity in front of the spectrometer.
In an effort to provide a simple tool for the setup of basic experiments in “paramagnetic
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NMR”, we hereby summarize, for the more basic experiments, how starting values for
acquisition parameters should be selected and on which basis to optimize them. The
following cases will be discussed:

(a) One-dimensional experiments: fast relaxation and large spectral widths
(b) Two-dimensional homonuclear 1H-1H experiments
(c) Two-dimensional heteronuclear 1H-15N/1H-13C experiments
(d) Relaxation rate measurements
(e) 13C direct detected experiments
(f) Multidimensional triple-resonance experiments

3. When/Where
3.1. One-Dimensional Experiments: Fast Relaxation and Large Spectral Widths

As mentioned above, the presence of paramagnetic centers can produce significant
shifts and broadening of the signals as a direct consequence of the hyperfine interaction
between nuclear magnetic moments and the magnetic moments of unpaired electrons.
Shifts and relaxation are the leading determinants in the choice of the acquisition parameters
in a magnetic resonance experiment: if the lines are very broad (large transverse relaxation
rate, R2), the acquisition time can be reduced if the longitudinal relaxation is quick (large
longitudinal relaxation rate, R1), the interscan (see Figure 1) delay can be reduced, if the
peaks are substantially dispersed (large shifts), short pulses with large windows and small
flip angles can be used an so on (vide infra).
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Figure 1. Scheme of a simple one-dimensional pulse-acquisition NMR experiment, composed of the
interscan delay, a pulse, the delay between pulse and acquisition (vide infra) and the signal acquisition.

Of course, one does not know a priori what relaxation rates and resonance frequencies
will be (which would justify not taking the spectrum and saving time for more rewarding
activities). However, the ballpark for the values of these parameters, within—say—a couple
of orders of magnitude for relaxation rates and a factor 2–3 for the shifts, can be guessed
from the conventional wisdom about electronic structure [8]. For the vast majority of
cases, we can suggest the following rule of thumb: if the electronic ground state is non-
degenerate, electron relaxation is slow, nuclear relaxation is fast, and shifts tend to be small;
if the electronic ground state is degenerate, electron relaxation is much faster and nuclear
relaxation is slower, and shifts will probably be rather large. A concise guide is found in
Figure 2 [9].
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ppm (blue) are also shown for a protein with the reorientation time of 10 ns at 700 MHz (HS = high 
spin, LS = low spin). Reproduced with permission from [9]. 
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be useful to avoid acoustic ringing from the probe, which may be a serious problem at 
low Larmor frequencies. As shown in Figure 3A, the occurrence of a delay between the 
end of the observation pulse and the first point digitized determines a loss of signal inten-
sity that can be dramatic when the DE is not irrelevant compared to the transverse relax-
ation time (T2) (vide infra). 

Figure 2. Typical values of electron relaxation time (τe), magnetic susceptibility (χ, spin-only values,
equal to [µ0µB

2ge
2S(S+1)]/3KT and effective values, reported in parenthesis), and its axial anisotropy

(∆χax) of transition metal ions. The typical radii of blind spheres (black) and spheres with 1H
PREs larger than 0.1 s−1 (green) and the maximum distances of nuclei in axial position with PCSs
of 0.05 ppm (blue) are also shown for a protein with the reorientation time of 10 ns at 700 MHz
(HS = high spin, LS = low spin). Reproduced with permission from [9].

3.1.1. When Relaxation Is Fast

Dealing with paramagnetic systems quite often means dealing with short relaxation
times. Sometimes, the effect is so severe as to delete some peaks: wider signals result
in reduced peak heights and thus reduced signal-to-noise ratio and reduced resolution.
Admittedly, this makes the expression “high resolution NMR” no longer appropriate, even
at high magnetic fields. Even if all the peaks are seen, their intensities might be significantly
altered. An ideal experiment would require no dead time between the end of the pulse and
the start of the acquisition, but, in practice, any physical receiver requires a finite time (up to
tens of microseconds, us) to reach linear response conditions after it is turned on. Therefore,
if the receiver is turned on immediately after the end of the pulse, and if the dwell time
(the time between two consecutive FID points during acquisition, DW) is short because of
large spectral width (e.g., 2.5 us), the first several data points may have an altered intensity,
which will be translated, after the Fourier Transformation (FT), into a baseline distortion.
To reduce this problem, a dead time (the time between the end of the pulse and the first
acquired point, DE) of the order of the time required by the receiver to achieve linearity
is introduced before starting the acquisition. The DE may also be useful to avoid acoustic
ringing from the probe, which may be a serious problem at low Larmor frequencies. As
shown in Figure 3A, the occurrence of a delay between the end of the observation pulse
and the first point digitized determines a loss of signal intensity that can be dramatic when
the DE is not irrelevant compared to the transverse relaxation time (T2) (vide infra).
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Figure 3. Simulation of 1D 1H NMR spectra for signals of different T2 (2 s−1, 5 s−1, 10 s−1) processed
for different DE values (A) and at different TDEFF (B). A DW = 3 us and TD = 65 k data points were
used, corresponding to effective acquisition times for the three spectra in (B) of 0.200 s, 0.0614 s, and
0.0154 s.

Given that the information encoded in the FID decays with the T2 of the signal of
interest, acquisition times considerably longer than the longest T2 are not recommended
unless sharp or poorly resolved signals are also looked for in the spectrum. Actually,
spectra containing signals with significantly different T2 values can be processed with a
varying number of points (effective number of data points used in the processing of an
NMR spectrum, TDEFF) to optimize the effective acquisition times according to given T2
values and to discriminate among different signals as shown in Figure 3B.

Every cloud has a silver lining. That of fast transverse relaxation is that it usually comes
with a fast longitudinal relaxation. A fast longitudinal relaxation means that the interscan
delay can be reduced with respect to an experiment performed on a diamagnetic sample.
Besides this trivial—but relevant—advantage, we need to consider that the longitudinal
relaxation rates in a paramagnetic NMR signal usually have a dynamic range that is much
wider than that of a diamagnetic sample. This implies that the different longitudinal
relaxation times T1s can be used to select specific signals by tuning the interscan delay. A
slightly more sophisticated approach is the WEFT (water-eliminated Fourier Transform)
approach [10]: it consists of a 180-τ-90 acquisition scheme, in which the interscan and
the τ delays are selected to suppress a given signal A—often the solvent, as the name of
the sequence suggests. The WEFT experiment is performed by setting τ = T1A*ln2 and a
recycling time longer than 5T1A. The signal A will be kept at zero intensity for the entire
duration of the experiment (Figure 4, upper panels). A variant of this acquisition scheme,
called SuperWEFT [11], consists in selecting a recycling time that is short with respect to
the T1 of the signal to be suppressed and long with respect to the paramagnetic ones. In
this case, an optimization of the delay between the inversion pulse and the acquisition
pulse will zero the intensities of the signals with long T1. The outcome of the WEFT and
SuperWEFT sequences is shown in Figure 4.

Other examples are the ModEFT pulse sequence [12], where slowly relaxing signals
are brought to equilibrium upon application of the acquisition pulse, and broadband
(BB) saturation sequences, where the power of the BB saturation pulse is adjusted either
to completely saturate some signals and leave others virtually unaffected or to saturate
all signals and acquire the fast relaxing only by a proper choice of the pre-acquisition
pulse delay [13,14]. While the WEFT, SuperWEFT and ModEFT sequences are based on
differences in T1, BB saturation techniques are based on the difference in saturability of the
signals, which in turn depends on (T1T2)1/2 [15]. Therefore, in cases where T2 << T1 for
the paramagnetically affected signals (as can be the case in the presence of strong Curie
relaxation), BB techniques may actually give better discrimination.
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Figure 4. On the left, the normalized signal intensity curves for WEFT and SuperWEFT pulse
sequences for 3 different relaxing signals: the solvent (T1 = 2 s, I = 1, 4.75 ppm), a slow-relaxing signal
(T1 = 200 ms, I = 0.02, 50 ppm) and a fast-relaxing signal (T1 = 20 ms, I = 0.02, −40 ppm). The curves’
equation is reported above, and the optimal recycle delay (the time interval between two scans, also
known as duty-cycle, rd) values are pointed out by the symbol ▲. On the right, the superposition of
two spectra: in black, the full intensity spectra (rd = 10 s, τ = 10 s), and in blue, the reduced intensity
spectra at different rd and optimal τ. rd is the delay that precedes the 180◦ pulse. τ is the delay
between the 180◦ pulse and the acquisition pulse.

It is worth mentioning that the choice of the magnetic field also plays a crucial role
in the experimental outcome when it comes to paramagnetic species. Among the possi-
ble relaxation mechanisms that can take place when we deal with paramagnetic species,
i.e., dipolar [16], contact [17] and Curie relaxation [18,19], the first two contributions de-
crease with increasing magnetic field, whereas the latter increases with increasing magnetic
field. This leads to the conclusion that the magnetic field strength can also be used as a tool
to optimize signal detection. Here again, the importance of having an idea of the charac-
teristics of the paramagnetic center under consideration comes to the fore. In situations
where Curie’s contribution is dominant, i.e., for systems with τr (rotational correlation time)
much larger than τe (electronic relaxation correlation time), the linewidth of the signal
will increase with the square of the field. Furthermore, the importance of Curie relaxation
increases with the electron spin quantum number S (or J for lanthanoids) because dipolar
and contact relaxation mechanisms depend on S(S + 1) [or J(J + 1)] [20], whereas Curie
relaxation depends on the square of these quantities (Figure 5).
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dinal (a) and transverse (b) paramagnetic relaxation (solid black lines) as a function of the electron
relaxation time for samarium(III) (J = 5/2), gadolinium(III) (J = 7/2) and dysprosium(III) (J = 15/2). A
non-exchangeable 1H nucleus was considered at a distance r = 10 Å from the paramagnetic metal
in a molecule with a reorientation time τr = 10 ns in a magnetic field of 900 MHz proton Larmor
frequency. Reproduced with permission from [21].

When addressing relaxation in paramagnetic systems, it is essential to reference the
phenomenon at the base of one of the most important techniques for the identification of
dipolar connectivity: the Nuclear Overhauser Effect (NOE). The NOE, in particular the
steady-state NOE (ηI(J)), represents the fractional variation in the integrated NMR signal
intensity of a nuclear spin I when another spin J is saturated for enough time to allow
the system to reach a new steady state equilibrium. This effect is directly proportional to
the cross-relaxation rate (σI(J)), which tells us to what extent the variation in J population
affects the equilibrium of the I states (hence, it represents the efficiency of the dipolar
coupling), and inversely proportional to the total probability for the nucleus I to change
its spin component along z in the coupled two spin system (ρI(J)) [22]. This description
holds only hypothetically because in real systems, nucleus I is never solely coupled to
another nucleus but is affected by coupling with other nuclei and, especially in the case of
paramagnetic systems, also with unpaired electrons. When the paramagnetic contribution
to nuclear relaxation becomes dominant, the NOE is expressed as the ratio between the
cross-relaxation rate and the paramagnetic contribution to the longitudinal relaxation rate
for the spin I (RI

1M): σI(J)/RI
1M [23] This ratio tells us that the smaller the effect is, the bigger

the RI
1M is. It is possible to extract structural information thanks to the cross-relaxation rate

dependence on the inverse of the sixth power of the distance between the two dipolarly
coupled nuclei I and S. In general, the NOE is larger at larger magnetic fields and/or when
rotation is slowed down.

The most commonly used experimental method is the difference spectrum method. In
principle, two experiments are performed: in one, the target signal (I) is saturated using a
low-power, on-resonance pulse applied for a sufficient time to reduce the signal intensity.
In the other, the same pulse is applied to a blank area of the spectrum (off-resonance) [24].
The difference between the two provides a spectrum in which only the signals that change
in intensity due to spin I irradiation appear, so the ones that are dipolarly coupled to it.
However, steady-state NOEs in paramagnetic small complexes under conditions of fast ro-
tation are usually small and sometimes undetectable, while macromolecules are well-suited
for this type of experiment since they fall into the slow-motion regime. Furthermore, since
applying selective pulses to rapidly relaxing signals is not easy, it is good practice to use
two difference spectra where off-resonance pulses are applied symmetrically with respect
to the signal to be saturated. Historically, NOE experiments on paramagnetic systems have
represented the first methodological improvement successfully developed for paramag-
netic systems [25–27], and indeed, NOE-based assignments quickly replaced qualitative
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assignments based on chemical shifts and relaxation rates. The experimental method for
measuring the steady-state NOE is identical to that for detecting the presence of chemical
exchange mechanisms. In fact, these two effects are experimentally indistinguishable in the
slow rotation regime [28]. Figure 6 shows the difference between NOE and exchange peaks
for the Ni-SAL-HDPT complex [29].
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magnetization transfer through NOE. In the bottom trace, the response of the signal at −1.9 ppm
is positive, indicating saturation transfer through chemical exchange. Reproduced with permission
from [29].

The presence of dipolar coupling (and, consequently, cross-relaxation) is also the
reason for the deviation from exponential behavior. When the cross-relaxation rate is fast,
compared to the spin-lattice relaxation rate, magnetization can be transferred between
coupled spins before a significant amount of magnetic energy is transferred to the lattice.
Consequently, the time dependence of the longitudinal magnetization of each spin is no
longer independent of the relaxation of the other spins in the system, leading to signifi-
cant deviations in the individual recovery rates from the intrinsic spin-lattice relaxation
rates. This phenomenon is observed for both diamagnetic and paramagnetic non-selective
relaxation recovery (where a 180◦ pulse inverts the magnetization of the target nuclear
spin and its coupled spins in an experiment similar to the ones mentioned above, leading
to mutual influence during their return to equilibrium). However, in the latter case, the
recovery behavior is closer to exponential. This can be intuitively understood because
cross-relaxation in a non-selective experiment contributes less to signal recovery, especially
at the beginning of the experiment, and the latter is dominated by paramagnetic effects
(RI

1M) [30].
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3.1.2. When the Shifts Are Large

In addition to a reduction in relaxation times, the hyperfine contribution to param-
agnetic shifts is also a determining factor in the choice of experimental parameters. In
these cases, the spectral window can reach tens of thousands of hertz in high-field instru-
ments (hundreds or even thousands of parts per million). This has an impact on several
aspects: such spectral windows require extremely short pulses (ca. 1 microsecond or less)
and high-power values to be excited. As previously mentioned, to make the most out of
short relaxation times, it is useful to employ 90◦ pulses and to recycle fast. However, this
implies the use of suitable power supplies and purpose-built probes because standard
probes withstand 90◦ pulses in the range of 10 microseconds. Obviously, pulses of less than
90◦ can always be used, but this limits the sensitivity of the experiment. For example, it
has been reported a spectrum of a complex spanning more than 2500 ppm at 400 MHz,
which was acquired with a 200 ns pulse, corresponding to a 4◦ flip angle, and required
the acquisition of more than 4 million scans [31]. Wide spectral widths also require ADCs
capable of acquiring dwell times shorter than 1 µs while also providing a fairly wide
dynamic range (thus enabling the acquisition of signals with widely varying intensities).
This situation becomes common in the presence of intense solvent signals, as in the case
of protein samples, although such problems can be further contained by solvent signal
suppression techniques like those described above.

Another important consequence of large spectral ranges is baseline distortion. As we
have seen above, we need to introduce a DE to achieve receiver linearity and remove the
probe ringdown artifacts. Besides the problem of signal loss due to relaxation during the
DE, another problem comes from the fact that during this delay, the signal is processing,
so actually, one is losing data points in the FID. This causes a first-order dephasing: the
phase distortion of each peak increases with increasing its frequency offset from the carrier.
This comes from the fact that the time-shift of the FID is translated by the FT operation in a
multiplication by an exponential function. The correction of such dephasing produces a
baseline distortion that can be so severe as to make the identification of very wide signals
virtually impossible (Figure 7). This problem can be mitigated using processing techniques
aimed at reconstructing the signal lost to DE by linear prediction.
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Figure 7. Simulation of 1D 1H NMR spectra for signals of different T2 (2 s−1, 5 s−1, 10 s−1) with
pulse-induced phase distortion (red) and DE-induced phase distortion (green). The pulse-induced
phase distortion is calculated using the equations in [32].

A further source of phase distortion comes from the fact that an ideal experiment
would require a pulse of infinitely short length, which, of course, is not possible. The
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hard pulse assumption implies, in fact, that the interaction with the RF magnetic field is
dominant with respect to all other terms of the Hamiltonian, i.e., that there is no evolution
during the application of the pulse [33]. This assumption loses validity when considering
peaks with resonant frequencies significantly far from the carrier frequency. The result is
again an almost linear phase distortion with respect to the offset (= resonance frequency
− carrier frequency), which is solved with a first-order phase correction. It is possible
to calculate the deviation from linearity of this phase distortion, whose maximum value
depends on the flip angle of the pulse (Figure 7) [32,34].

3.2. Two-Dimensional Homonuclear 1H-1H Experiments

Bidimensional nuclear magnetic resonance spectroscopy, often referred to as 2D NMR,
is perhaps the single most impactful methodological advancement in structural biology
and chemistry, at least as far as NMR is concerned [35]. The award of the Nobel Prize in
Chemistry to Richard Ernst and Kurt Wutrich quite clearly reflects this perception [36]. 1D
NMR spectra rapidly become overcrowded when the size of the molecule increases, and
therefore, it provides limited information, if any, about the structure of larger molecules [37].
2D NMR extends the resolution and, by correlating two distinct nuclei, reduces spectral
overlap. Increasing the resolution capabilities is not the sole reason for resorting to 2D
NMR: in between the two acquisition dimensions, a suitable combination of pulses and
delays (also called mixing period) permits a magnetization transfer from one nucleus to
another in order to obtain experimental evidence and quantification of scalar and dipolar
couplings [38].

However, beauty comes at a cost. In fact, in order to get enough information at the
end of the sequence, the evolved coherences need to survive the N-1 evolution periods
(for an N-dimensional experiment), and the mixing must be sufficiently efficient. This
implies that all the delays that are part of the sequence have to be small compared to the
nuclear relaxation times. Considering the case of a bidimensional experiment, the signal
will decay during the evolution (t1) and acquisition times (t2) with a time constant (T2)
(which will be very fast for paramagnetic systems), similar to what was described above for
a one-dimensional experiment. The first 2D experiment acquired on a system with T1 in the
range between 50 and 100 ms was an EXSY experiment [28]. The 2D exchange spectroscopy
is an extension of the saturation transfer experiment described in the previous section. This
type of experiment can be obtained most simply using a NOESY sequence consisting of
three 90◦ pulses separated by t1 (the first interval) and tm (the second interval) [39]. During
the preparation phase, magnetization is brought to the plane by the first pulse, then evolves
and differentiates during t1 (which must be short compared to the signal’s T2) according to
the chemical shift. The second pulse then brings signal coherences along the z-axis. During
mixing, magnetization transfer occurs to an extent depending on t1, which relates to how
out of phase the two vectors were just before the second 90◦ pulse. Finally, the last 90◦

pulse allows for the acquisition of the FID. In the presence of magnetization transfer, the
intensity of signals during t2 is modulated by both their characteristic frequencies and the
frequency of other signals, generating cross-peaks. The mixing time should be chosen to
be shorter than the T1 of the signals but longer than the exchange correlation time. Since
the most informative data is in the first t1 and t2 points, a suitable weighting function
(like cos- or cos2-type) is applied to the FID during processing to give more weight to
these points. These experiments can estimate the exchange rate constant by integrating the
cross-peaks, which increase with higher exchange rates and decrease with the relaxation
rates of the exchanging signals. This type of experiment also exhibits cross-peaks between
different species.

As mentioned in the previous section, the NOE effect and, consequently, NOESY
(Nuclear Overhauser Effect Spectroscopy) are based on cross-relaxation and are used
to reveal dipolar interactions between nuclei. Given its origin and the relatively weak
NOE effect in paramagnetic systems, NOESY spectra are primarily used to detect dipolar
interactions between protons (as dipolar terms involve the square of gyromagnetic ratios)
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or for strong heteronuclear interactions. A positive NOE corresponds to negative NOESY
cross-peaks, and vice versa. This relationship can seem obvious, considering that a negative
NOE has the same sign as the irradiated peak in a different spectrum. The opposite situation
arises for long reorientation correlation times, for which the cross-peaks appear positive
and generally more intense. This explains why NOESY experiments are best performed
on macromolecules unless very large concentrations can be reached. Alternatively, when
dealing with small paramagnetic molecules, one can acquire the spectra at lower fields
or increase the rotational correlation time τr by increasing solvent viscosity and using the
highest possible field. Another alternative to be considered in these cases is to measure the
coherence transfer due to cross-relaxation between pairs of spins when they are subjected
to spin-lock (rotating frame NOE, ROE). Despite presenting experimental challenges, this
approach does not have the issue of zero-crossing [40,41].

A problem that arises when dealing with macromolecules, which is negligible for
small molecules, is spin diffusion. However, this can be addressed by acquiring NOESY
spectra at different mixing times [42]: cross-peaks in NOESY spectra are observed between
signals with short T1 when using mixing times of the order of a few milliseconds, whereas
cross-peaks between signals with longer T1 values are observed with longer mixing times.

Another widely used experiment, also in cases of strongly paramagnetic signals, is
the COSY (COrrelated SpectroscopY) experiment [35]. The pulse sequence is the simplest
possible for a two-dimensional experiment, consisting of two 90◦ pulses separated by the t1
and followed by t2 for acquisition. With this sequence, cross-peaks appear in the presence
of scalar interaction between the two spins (I and J). After the first pulse, the antiphase
coherence of the scalar-coupled spins builds up (2IyJz) [43,44]. When the second 90◦ pulse
is applied, the antiphase magnetization of the I and J spins is interchanged, and during t2,
the new antiphase coherence, −2JyIz, is allowed to evolve, and the Jy that originates from
the shift and the scalar coupling is detected. The intensity of the cross-peak builds up and
decays according to the following relationship:

I2ysin(Ω2t1)sin(π Jt1)sin(Ω1t2)sin(π Jt2) (1)

where J indicates the scalar coupling constant for the spin couple I and J. From this equation,
we can recognize the dependence on the build-up of the antiphase coherence during t1 and
the build-up of the single quantum coherence during t2. Both terms are damped by the
decay due to the transverse relaxations of I and J [45]:

I2ysin(Ω1 t1)sin(π Jt1)exp(−R2,1t1)sin(Ω2t2)sin(π Jt2)exp(−R2,2t2) (2)

From the time-dependent behavior of the cross-peaks intensity, it becomes clear why,
in this type of experiment, a weighting function of the sin- or sin2-type is preferable. To
determine the optimal values of t1 and t2, one can simply differentiate the equation of I(t)
with respect to t1 or t2, yielding 1/J if the transverse relaxation times are much longer than
1/2J. Otherwise, the optimal values for t1 and t2 are equal to 2T2 of the evolving spin.

The interesting aspect is that coherence transfer phenomena occurring during the
evolution time, t1, can give rise to cross-peaks not associated with scalar coupling between
the two nuclei. Typically, the probabilities of longitudinal and transverse spin I transition
(during relaxation) are assumed to be independent of the spin state of spin J. Additionally,
in the case of relaxation due to dipolar coupling, the two transition probabilities are
degenerate. This practically means that the signal emerging from a nucleus dipolarly
coupled with another nucleus is the sum of two components with the same chemical shift,
T1 and T2. In paramagnetic systems, the coupling between homonuclear dipolar relaxation
(1H-1H) and Curie relaxation leads the two components of each signal to have markedly
different line widths. Under these conditions, the COSY spectrum shows cross-peaks in the
presence of dipole–dipole-coupled signals but not scalar-coupled ones [45–47].

The theoretical evolution of COSY is the TOCSY (Total Correlation Spectroscopy),
which is used to observe scalar couplings occurring over a broad range of values, especially
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small ones (around 1 Hz). The acquisition sequence is achieved by replacing the second
90◦ pulse of the COSY with a spin-lock (practically obtained using a train of relatively
high-power pulses), aiming to continuously refocus the evolution of the chemical shift
of various signals. This has two advantages: first, it reveals all couplings with all nuclei
within the spin system (unlike COSY, which only shows couplings with neighboring nuclei);
second, during the spin-lock, magnetization relaxes according to T1ρ, which is longer than
the actual T2. In paramagnetic compounds, this experiment easily allows observing cross-
peaks with line widths exceeding 100 Hz, thus very broad [48]. The main issue with TOCSY
is technical: since the applied spin-lock needs to be powerful, there is a risk of overheating
the sample or, in extreme cases, damaging the probe. The most common solution to this
problem is to use shaped pulse trains as a spin-lock, maintaining a broad excitation profile
covering the entire spectral window but reducing the required power.

3.3. Two-Dimensional Heteronuclear 1H-15N/1H-13C Experiments

Isotope labeling techniques paved the way for the routine use of heteronuclear two-
dimensional and multidimensional experiments. In biomolecular NMR, the possibility of
correlating 1H nuclei to 15N and 13C nuclei opened the way to deep atomic-level charac-
terization of the structure and dynamics of macromolecules [49]. However, when systems
characterized by fast nuclear relaxation are under investigation, heteronuclear 2D NMR
spectroscopy starts to meet some obstacles, most of the time resulting in loss of information.
This is the case of high molecular weight macromolecules (MM > 100 KDa) or systems
containing paramagnetic centers. Experimental approaches aimed at circumventing the
loss of information and at studying large-sized proteins and macromolecular complexes
have conceptual similarities to the approaches used to study paramagnetic systems, as
in both cases, the main aim is to reduce delays; however, these are outside of the scope
of this review. Heteronuclear 2D NMR spectroscopy has seen remarkable advancements
throughout its history, with one of the major breakthroughs being the development of the
Insensitive Nuclei Enhancement by Polarization Transfer (INEPT) building block [50]. The
INEPT and the experiments that have been derived from it paved the way for modern
biomolecular NMR. One notable example is the Heteronuclear Single Quantum Coherence
(HSQC) experiment [51], which is perhaps the most widely used NMR tool for protein
fingerprinting. Neglecting relaxation, the INEPT building block provides a 100% efficient
coherence transfer from a sensitive nucleus, usually hydrogen, to an insensitive nucleus,
yielding an antiphase single quantum coherence. In small diamagnetic systems, the effects
of relaxation can be neglected because the H/X coupling, amounting to roughly 100 Hz, al-
lows for coherence transfer within evolution periods (of the order of 5 ms), which are short
compared to transverse relaxation times. However, this is not the case when dealing with
smaller scalar couplings, large molecules, or paramagnetic systems [52]. The effect of 1H
R2 relaxation on the efficiency of coherence transfer is shown in Figure 8. When neglecting
relaxation effects, the magnetization transfer efficiency is modulated by the duration of the
scalar coupling evolution period and, for T = 1/2JHX, maximizes the magnetization transfer
from the sensitive 1H nucleus to the insensitive ones. Being the proton the most sensitive
probe for biomolecular NMR (highest gyromagnetic ratio within the NMR active nuclei)
also implies a strong susceptibility to additional fluctuating magnetic fields, such as the
ones due to unpaired electrons in the spin system, which enhance nuclear spin relaxation
rates. Therefore, when the R2 relaxation rate of the in-plane 1H coherence increases, the
magnetization transfer efficiency decays exponentially with the increase of the transverse
relaxation rate. The build-up of the INEPT competes with the relaxation of the 2HxXz single
quantum coherence, which is dominated by the 1Hx R2 value. Therefore, only a fraction of
the initial magnetization is transferred to the heteronuclear spin, as it comes from transfer
functions shown in Figure 8B. When the efficiency of the polarization transfer decreases,
the maximum of the transfer function occurs for INEPT delays that are smaller than 1/2JHX.
Relaxation times below 0.1 ms (R2 > 1000 s−1) reduce the maximum of the transfer function
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efficiency below 10%, as shown in Figure 8C: under these conditions, direct excitation of
the insensitive nucleus should provide better results than INEPT.
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flip angle pulses, respectively. X refers to nuclei such as 13C or 15N. T delay is defined as 1/4JHX. The
phase of the pulses is x when not indicated. (B), efficiency of the transfer function in the absence
(R2 = 0 s−1) and in the presence of relaxation (R2 = 50, 130, 250, 500 and 1000 s−1). A dotted line,
positioned at 0.005 s, is included to emphasize the maximum of the polarization transfer function
in the negligible relaxation scenario. (C) The panel displays the Signal Intensity Ratio weighted
by escalating transverse relaxation rates. Dotted lines are placed to highlight specific SIR values
corresponding to each transverse relaxation rate utilized in panel B.

Tuning the INEPT delay according to the relaxation properties of the spin system is
one of the major aspects, but it does not come alone: further improvements in acquisition
parameters and/or pulse sequence modification are possible. Like the 1H-1H experiments,
the acquisition time of the direct and indirect dimensions have to be adjusted according to
the expected transverse relaxation rates, which, of course, are not known a priori. Generally,
the frequency labeling of the heteronuclear spin in the indirect dimension does not need
very high resolution and can be recorded using relatively short acquisition times without
losing a large amount of magnetization. More critical is the choice of acquisition time t2
that needs to be shortened in order to increase the S/N of fast relaxing signals, and it is
ideally adjusted according to the T2 values of the weakest observable signals.

3.3.1. Fast Relaxing Signals Require Faster Experiments

In an NMR experiment, it is crucial to reach thermal equilibrium before applying a
radio frequency (RF) excitation pulse. This state of thermal equilibrium implies that the
nuclear spins have achieved the Boltzmann distribution of energy levels at the specific
temperature. The attainment of the state of thermal equilibrium between two transients
is mandatory for the obtainment of accurate and quantitative NMR spectra. The time
interval that separates two scans is called recycle delay, also known as the duty-cycle. The
value of the duty-cycle for standard 15N- and 13C-HSQC experiments ranges from 1 s
to several seconds, depending on the longitudinal relaxation time (T1) of the excited 1H
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spins. When the excited spins efficiently exchange energy with the lattice, shorter T1 values
are achieved. In the presence of a paramagnet, the dipolar interaction between electrons
and nuclei acts as a very efficient relaxation source for the excited spins, thus enhancing
the longitudinal relaxation rate (R1) of the 1H spins. As a consequence, the duty-cycle
of the NMR experiment can be shortened. Typically, in paramagnetism-tailored 15N/13C
HSQC experiments, the duty-cycle can be lowered to 1/10 of the routine recycle delay,
shortening the duration of a single scan acquisition accordingly. The short duty-cycle can
be compensated with an increased number of transients per experimental run, resulting
in a significant increase in the signal-to-noise ratio of the experiment. Additionally, the
fast cycling of the pulse sequence has the advantage that diamagnetic signals, together
with spurious, unwanted resonances, i.e., the water magnetization, are partially saturated,
strengthening the capability of a tailored HSQC to modulate signal intensities according to
their relaxation properties.

3.3.2. Antiphase Detection: Saving Time to Preserve Signals

In modern heteronuclear NMR experiments, after the 13C (and or 15N) spin chemical
shift evolution, the magnetization is transferred back to the 1H spin and then acquired. This
is commonly accomplished with the reverse INEPT building block, with a duration equal to
the initial INEPT, shown in Figure 9A. The refocusing of the -Hy component from the 2HxXz
antiphase magnetization, followed by heteronuclear decoupling during the acquisition,
gives rise to an in-phase singlet HN peak. The overall sensitivity of the experiment can be
enhanced with the implementation of an additional spin echo building block, following the
refocusing of the -Hy operator (Figure 9B). The sensitivity improvement scheme consists of
a reverse refocused INEPT, which converts the 2HxNx double quantum coherence, which is
unobservable with the reverse INEPT, into an additional and observable Hy single quantum
coherence. As it appears immediately from the comparison of the two building blocks,
the reverse refocused INEPT is a factor two longer than the reverse INEPT, resulting in
severe magnetization loss for signals with large R2 values. Indeed, the sensitivity improve-
ment schemes are only used when working with systems characterized by T2 relaxation
rates longer than 4T (Figure 9). In paramagnetic systems, we are interested in modifying
the HSQC experiment in order to make the back transfer from 15N to 1H spin as short
as possible. This can be accomplished by starting the acquisition immediately after the
two 90◦ pulses. The antiphase (AP) detected version of the 15N-HSQC experiment, called
15N-HSQC-AP, demonstrated that signals that are broadened beyond detection in standard
experiments can be recovered in the AP version experiment. The 15N-HSQC-AP experi-
ment acquires in t2 the antiphase component 2HxNz of the magnetization, generated by a
90◦x radiofrequency pulse of the 15N spin after the chemical shift evolution and followed
by the 90◦y reading pulse, as shown in Figure 9C. In the absence of heteronuclear decou-
pling, 2HxNz evolves into an observable antiphase doublet. To minimize the cancellation
of antiphase components, the spectra are processed with a 90◦ phase shift, and signals are
analyzed as pseudo-singlets [53]. An additional advantage of this pulse sequence is that the
removal of heteronuclear decoupling prevents the heating of the receiving coil, allowing for
a faster recycling of the experiments. Combined, the short experimental duration and short
duty-cycle permit an increase in the number of transients per experiment, with an overall
improvement in the sensitivity for the paramagnetic signals and saturating conditions for
the diamagnetic ones [54].
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Several experiments have been designed to measure 1H R1 and R2 in paramagnetic 
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(e.g., NOESY or HSQC) with the previously described inversion-recovery building block 
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Figure 9. The fundamental HSQC pulse sequence (A) and sensitivity improvement implementation
though a refocused reverse INEPT scheme (B). The narrow and broad black rectangles denote 90◦

and 180◦ flip angle pulses, respectively. T represents the scalar coupling evolution time, defined as
1/4JHX. The phase of the pulses is x when not indicated. Heteronuclear decoupling in the indirect
dimension is reported as wide gray rectangles. Indirect and direct acquisition times are indicated
as t1 and t2, respectively. The sensitivity improvement scheme generates a couple of pure single
quantum coherences (red rectangle) with respect to the classical INEPT step (blue rectangle). The
removal of the reverse INEPT building block (C) generates an antiphase single quantum coherence
that is directly detected without heteronuclear decoupling in the indirect dimension. In all rectangles,
only the y component of the signal product operator is shown.

3.4. Relaxation Rate Measurements

In metalloproteins, when paramagnetism strongly impairs the possibility of obtaining
an extended resonance assignment, and only a small percentage of the protein backbone
can be assigned without the use of paramagnetic-tailored experiments, R1 and R2 relaxation
rates can be used as a tool to perform signals assignment [55]. Indeed, dipolar and Curie
spin terms of paramagnetic relaxation have an r−6 dependence, which is r—the distance
between the metal ion and the nuclear spins. There are several factors, both experimental
and theoretical, providing “caveat” of this analysis: the accuracy of measurements, the
factorization of the diamagnetic contribution, uncertainty in the structural model, local
mobility, the presence of the distance independent contact contribution, the fact that the r−6

relationships are based on the approximation that unpaired spin density is fully localized on
the metal ion. Nevertheless, it is possible to identify potential assignments on the grounds
of relaxation rates. On the other hand, the exploitation of this relationship the other way
around was established more than two decades ago [56]: once the assignment is known,
paramagnetic relaxation enhancement (known by the acronym PRE) can be converted into
metal-to-nucleus distances and used as distance restraints in structure calculations [57–59].

Several experiments have been designed to measure 1H R1 and R2 in paramagnetic
systems. The general approach for R1 measurements is to edit an “existing” 2D experi-
ment (e.g., NOESY or HSQC) with the previously described inversion-recovery building
block [60] (Figure 10A,B). Depending on the choice of recycle and inter-pulse delay, the
180◦-τ-90◦ block can be used to suppress solvent and slow relaxing signals with an “ad
hoc” choice of the τ delay [52] (WEFT or superWEFT filter), as already described here in
the section dealing with one-dimensional experiments. When a long recycle delay allows
the complete magnetization recovery to equilibrium conditions, the experiment is used
to measure longitudinal relaxation rates by running a series of experiments at variable τ

values [61]. Both 15N and 13C HSQC are able to provide accurate measurements for R1
rates of backbone and side chain 1H spins (Figure 10A) [62]. In the case of R2, the usual
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editing scheme is a spin-echo filter inserted during or after an INEPT building block [63].
Unfortunately, the combination of spin-echo and INEPT periods prevents the identification
of fast relaxing signals and, typically, allows accurate measurements of R2 < 50 s−1. To
extend the measurements to a range of faster rates, the transverse relaxation delay can be
directly embedded into an INEPT block (Figure 10C,D) in order to measure R2 values up to
400 s−1 [64,65].
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Figure 10. IR-HSQC-AP pulse sequence (A,B) 1H-15N correlation spectra and resulting spectrum
acquired on a 15N-labelled sample of the High Potential Iron Protein (HiPIP) PioC protein, with a
standard HSQC (red) and paramagnetic optimized IR-HSQC-AP (blue) pulse sequences. Signals
marked with asterisks are folded peaks arising from side chains. [62] In this specific case, the inversion
recovery building block is used as a relaxation filter to suppress the diamagnetic background. Black
labels indicate 11 additional cross-peaks recovered with the paramagnetic tailored experiment. R2-
weighted HSQC-AP pulse sequence (C) and relative intensity after the initial INEPT, simulated at
different 1H R2 values (D) [64].

3.5. 13C Direct Detected Experiments

Essentially, the approaches described throughout this article aim at minimizing the
loss of the NMR information around a paramagnetic center. The region of the molecule
where signals are broadened is commonly defined as an NMR-blind sphere around the
metal center, and it depends on the electron correlation time of the paramagnetic metal
ion. Therefore, the electronic structure of the metal ion(s) defines the threshold of signal
detectability, and, of course, this cannot be circumvented. In order to decrease this detection
limit, many efforts in recent years have been focused on the use of 13C-detected NMR
experiments [66–68]. The rationale for the use of 13C direct detection is based on the fact
that there is a direct relationship between PREs and the square of the gyromagnetic ratio
of the studied nucleus, as shown in Figure 11. Therefore, paramagnetic relaxation effects,
causing the broadening of signals beyond detection, are 16 times lower on 13C spins than
on 1H spins. The successful use of 13C direct detection instead of 1H detection paved the
way for novel strategies to assign and characterize paramagnetic systems. In particular, the
CACO experiment, which correlates the intra-residue Cα and C’ spins, has very interesting
features. The optimization of CACO for paramagnetic systems, shown in Figure 12, can
be taken as a paradigm to extend the approach to other 13C-detected experiments. The
experiment involves only the excitation of 13C spin without carrying 1H magnetization
into play, and it uses constant time evolution in the indirect dimension, which can be
efficiently shortened. The In-Phase Anti-Phase (IPAP) scheme for virtual homodecoupling
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of Cα
zC′

y doublets can be removed, and the signal detected as antiphase, avoiding loss of
information due to fast relaxation during the IPAP step. Moreover, the CACO experiment
can also be used to analyze the advantages and drawbacks of the proton-start version of
the experiment, which exploits 1H as the starting polarization source [69,70].
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The electron correlation time (τe) is assumed to be equal to 6.0 ps, in the absence of chemical exchange
(τM = 0 s). Curves are simulated for 1H, 13C and 15N nuclei resonating at 500, 125 and 50 MHz,
respectively. Limits of detectability, expressed as signal line broadening (Hz), are set from a minimum
of 1 Hz to a reasonable maximum of 1000 Hz.
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Figure 12. The CACO-AP pulse sequence scheme implemented with a Hα-to-Cα INEPT delay
T of 2.7 ms. The phase cycle reported in the figure is as follows: φ1 = x, φ2 = y, φ3 = x,−x,
φ4 = x,x,x,x,y,y,y,y, φ5 = x,x,−x,−x, φ6 = x,−x,−x,x,−x,x,x,−x. PFG used in the sequence has a sine
bell shape and duration of 1 ms.

A straightforward modification of the experiment can be obtained by inverting the Cα

and C’ channels in order to perform a COCA. Recently, the application of CACO-AP and
COCA-AP experiments under saturating conditions (short recycle delay) has shown that
structural information regarding the topology of cluster binding ligands can be unveiled
when comparing experiments with very different values for t1 and t2 acquisition due to
the different contributions to nuclear relaxation introduced by the paramagnet. For each
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Cα-C’ group, the relative intensity of the two signals is correlated with the orientation of
the Cα-C’ magnetization vector towards the metal center. 13C spins can be used as a source
of structural information in solution for paramagnetic systems. Pseudocontact and contact
contribution to chemical shift influence carbon nuclei in the same way they are acting on
proton probes. Indeed, since the contact relaxation is less intense on carbon spins than on
the proton spins, directly bound residues, which experience the Fermi interaction, become
detectable. As already outlined in Figure 11, the range of distances monitored by 13C PREs
is strongly synergistic with that of 1H PREs and, together, strongly reinforces the battery of
paramagnetism-based structural restraints [57,71]. The 13Cα and 13C′ R1 PREs, measured
by the IR-CACO-AP and IR-COCA-AP pulse sequences, were able to efficiently frame the
protein structure around the metal center and to restrain the conformational space sampled
by the simulated annealing process for structure calculations. An extensive combination of
classical and paramagnetic-based structural restraints succeeded in obtaining NMR struc-
tures with high accuracy throughout all regions of the protein, overcoming the “limitations”
that have been associated with the solution structure of paramagnetic molecules by NMR
for decades.

3.6. Multidimensional Triple-Resonance Experiments

Triple resonance experiments are a combination of building blocks and acquisition
parameters that, essentially, have already been discussed in the previous paragraphs.
However, multidimensionality has some “caveat” that might be addressed. In 2D NMR
experiments of paramagnetic systems, broad signals often overlap, resulting in crowded
spectra that are challenging to interpret and sometimes even impossible. Congested and
poorly resolved spectra become more informative when an additional dimension is called
into the scene. The inclusion of an extra dimension (t3) enhances signal dispersion, result-
ing in higher-quality spectra that enable the identification of sequential connectivity. This
is particularly useful for residues that lack contact or pseudocontact shifts and are only
influenced by paramagnetic relaxation enhancement. The broadening of the signals due
to paramagnetism and their overlap with the diamagnetic resonances prevents an unam-
biguous sequence-specific assignment. An additional dimension within an NMR pulse
sequence requires additional delays: taken together, the INEPT steps between heteronuclei
and chemical shift evolutions can be long enough to lose a considerable part of the magneti-
zation due to relaxation. Nonetheless, efforts have been pursued to extend the suitability of
3D NMR experiments for paramagnetic proteins. The 3D HNCA experiment correlates the
chemical shift of the amide proton with the chemical shift of the covalently-bound nitrogen
and alpha carbons of the same and preceding residues. This routine NMR experiment
can be modified to detect paramagnetic resonances according to the parameters that we
already discussed in the previous sections: i. reducing the initial HN-to-N INEPT delay
during which 1H R2 relaxation is active; ii. reducing the time needed for 1H refocusing after
the 2HzNy antiphase is generated; iii. shortening the back-transfer of the magnetization
after Cα chemical shift evolution. Concerning watergate, the 3-9-19 binomial pulse is
preferable to the longer soft-hard-soft 90◦-y-180◦-y-90◦ since the two soft 90◦ pulses are
time-consuming (ca. 1 ms). It has also been shown that pulse field gradient (PFG) duration
can be shortened from 1 ms to 200 us while maintaining a clean spectrum; concurrently,
the time needed for the dissipation of residual circulating currents can be shortened from
200 us to 40 us. Finally, since 15N heteronuclear decoupling is active during the acquisition,
a shorter recycle delay can be implemented up to 0.5 s without the risk of heating and
damaging the probe-head [72]. Other multidimensional NMR experiments amenable for
optimization are the 3D CBCA(CO)NH and CBCANH. These two pulse sequences are
among the most popular experiments for sequential backbone assignment in proteins
solution NMR [73–75]. The standard versions of both experiments make use of several
INEPT transfer delays, crush gradients, flip-back pulses, sensitivity enhancement schemes,
and echo anti-echo gradient selection. During these building blocks, relaxation is, of course,
operative, and, therefore, the two experiments are expected to be unsuitable for param-
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agnetic optimization unless they are modified. The use of a relaxation-weighted INEPT
transfer delay and the elimination of the sensitivity improvement scheme gives higher
S/N. Removing the echo anti-echo gradient selection eliminates two PFGs immediately
before t3 acquisition and saves time in the most critical part of the sequence. Owing to
the fact that 1H R2 relaxation is active during the last refocusing step of the INEPT, the
removal of the two PFGs reduces the loss of magnetization due to relaxation, meanwhile
enhancing the S/N ratio. The withdrawal of the gradient selection has the drawback that
there is no efficient water suppression scheme left in the sequence. Anyway, this can
be encompassed with a watergate scheme short enough to be compatible with the short
delays of the reverse INEPT. Of course, all considerations discussed for the optimization
of 2D NMR experiments concerning acquisition and processing parameters hold for 3D
experiments, following the general paradigm that acquisition and recycle delays need to be
shortened while the number of transients must increase in order to enhance the sensitivity
of the experiment. For completeness’ sake, we remind the reader that tailored strategies
to assign side chains, in the case of paramagnetic proteins, have been attempted. The
coordination of paramagnetic prosthetic groups is committed to residue side chains. As
a consequence, Hβ, Cβ, Hγ and Cγ nuclei of coordinating residues are positioned in the
deepest region of the blind sphere, and hence their detection is difficult, if not impossible.
Nevertheless, the use of a tailored HCCH-TOCSY was successful in recovering signals from
coordinating side chains up to a distance of 4 Å from the metal ion.

4. Why

The quest for fast, relaxing, fast-shifted signals in one-dimensional experiments still
represents, nowadays, a simple and valuable approach to understanding the structure and
electronic properties of metal complexes and metal sites in proteins. In current inorganic
chemistry literature, paramagnetic NMR (pNMR) is indeed enjoying a second youth, and
most often so through very simple (or apparently simple) 1D experiments, both in solution
and in the solid state. We do not aim to provide an exhaustive literature review, and
we refer the interested reader to [21,29] for further reference on recent applications. To
emphasize the impact and versatility of pNMR, some striking recent examples using only
1D experiments are highlighted here. The detection of a Fe-bound hydride ion shifted as
much as −4000 ppm [76] represents the first case of a hydride bound to a paramagnetic
metal for which the shift was predicted by DFT-based modeling and eventually observed.
In the same complex, −10,000 ppm shifts were observed for the P donors. This highlights
the challenge in targeting the appropriate chemical shift range when aiming to detect such
nuclei and opens the per-mil ballpark for shifts [77]. Solid-state pNMR has been used in
material science to address the doping homogeneity of luminescent materials, which can
affect the energy transfer between sensitizer and activator ions in doped phosphors [78].
Along the way, the search and design of molecules with large magnetic susceptibility
anisotropy. The observation of the patterning of the pseudocontact shift at the distance
of 20 Å from the metal paved the way for the use of Co2+ for paramagnetic tags as an
alternative to lanthanides [79].

It is also important to mention the increasingly relevant role of quantum chemical
methods in relating the structural properties to the pNMR observables. The possibility of
calculating the electronic structure of paramagnetic centers from first principles is offered,
on the one hand, by the continuous increase in the computational power and, on the other
hand, by the relentless efforts of the QC community, and the ORCA team in particular, to
make QC tools understandable and useable by non-specialists [80].

As far as pNMR is concerned, Soncini and Van den Heuvel have provided the first
modern QC treatment of the paramagnetic NMR shifts [81], which requires a complete
treatment to reintroduce the correct field and space dependence [82].

Biological Inorganic chemistry has probably been the field where paramagnetic NMR
has found many rewarding applications. Structure, coordination and electronic properties
of single and multiheme proteins have been extensively characterized and reviewed [83–87].
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Paramagnetic NMR has played a paramount role in the understanding of the electronic
structure of [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters in proteins [88–91]. For all the above
cases, the distribution of unpaired electron density onto the ligands allowed us to identify
the type of cluster [92] and the individual oxidation states of each iron ion, quantify the anti-
ferromagnetic couplings operative in the cluster, and assess the contribution of delocalized
valence, i.e., the double-exchange term of the spin-Hamiltonian [93–95]. For all the small
ferredoxins and HiPIPs studied, NMR offered room-temperature information that was
able to complement low-temperature information taken from EPR and Mossbauer [96–109].
The methodological and instrumental advances of the last two decades have extended
this approach to larger and less stable proteins, such as those involved in iron–sulfur
cluster biogenesis or copper homeostasis, as well as to the mapping of protein-protein
interactions responsible for cluster transfer and cluster assembly [110–116]. Paramag-
netically shifted NMR signals have been assigned to ligands of different kinds of mono-
and multi-nuclear copper clusters, allowing spectroscopically the identification of the lig-
ands and their binding mode and the investigation of the reaction mechanisms of copper
enzymes [115,117–119]. Paramagnetic relaxation-based NMR restraints have been success-
fully employed for the structure refinement of copper-containing systems [120–122]. Cu2+

has also been used as a relaxation filter that allows the selective NMR signal suppression of
components in mixtures according to their complexation ability to a paramagnetic ion [123].

Like the multi-iron centers of FeS clusters, multicopper centers also display relatively
sharp NMR lines due to shorter electron relaxation times as a consequence of the magnetic
coupling. Again, this has allowed the use of paramagnetic NMR to explore the electronic
structure and its physiological consequences [124]. The CuA center of multicopper oxidases,
which has two spin-coupled copper ions in a formal Cu1.5+ oxidation state with a thermally
accessible excited state at room temperature, has been studied quite extensively. Because
the observed hyperfine shift is essentially given by contact contributions, a linkage between
the electronic and molecular structure of the cluster was proposed, and the Karplus-like
equation governing the dependence of hyperfine shift from the Hβ-Cβ-Sγ-Cu dihedral
angle was used to discuss the electronic excited states involved in the electron transfer
mechanisms [125–128].

Ni-containing proteins have also been studied by paramagnetic NMR. In this case, the
coordination number and ligand field of the d8 ion determines whether the metal ion has a
ground state S = 0 or it is a high spin, S = 1. In the latter case, Ni2+ proteins present significant
contributions from both contact and pseudocontact terms, thus puzzling the factorization of
the different contributions to both shifts and relaxation. A combination of NOE experiments
and the use of selectively deuterated mutants allowed the assignment of the hyperfine
shifted signals of the Nickel chaperone protein Helicobacter pylori HypA as well as the
characterization of its interaction with UreE, an important step of the maturation pathway
of the nickel-dependent enzyme Urease [129,130]. The Ni(II)-binding properties of the
intrinsically disordered protein NDRG1 have also been assessed via 1H paramagnetic NMR.

Non-native metal substitution with paramagnetic systems [131,132], as well as the
use of paramagnetic tags attached to the protein post-expression [124,133–136], has also
allowed for the characterization of structure and dynamics in several biomolecular systems.
The reader is referred to [6,8,9,134,137–140].

In conclusion, we can say that, thanks to many instrumental and methodological
developments, paramagnetic NMR spectroscopy has been capable of surfing the wave of
contemporary Inorganic Chemistry for a very long time, still contributing nowadays to
diverse topics such as coordination chemistry, biological inorganic chemistry and material
science. Moreover, its application also illuminates areas such as structural biology, medici-
nal chemistry, magnetochemistry and others. NMR of paramagnetic molecules has been
capable of rejuvenating itself by expanding its capacity and exploring new applications.
We hope that this review will act as a toolkit to assist newcomers in the field and to provide
them with some useful basic operating instructions.
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