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Abstract: Silver-based chalcogenide semiconductors exhibit low toxicity and near-infrared optical
properties and are therefore extensively employed in the field of solar cells, photodetectors, and
biological probes. Here, we report a facile mixture precursor hot-injection colloidal route to prepare
Ag2TexS1−x ternary quantum dots (QDs) with tunable photoluminescence (PL) emissions from
950 nm to 1600 nm via alloying band gap engineering. As a proof-of-concept application, the
Ag2TexS1−x QDs-based near-infrared photodetector (PD) was fabricated via solution-processes
to explore their photoelectric properties. The ICP-OES results reveal the relationship between
the compositions of the precursor and the samples, which is consistent with Vegard’s equation.
Alloying broadened the absorption spectrum and narrowed the band gap of the Ag2S QDs. The UPS
results demonstrate the energy band alignment of the Ag2Te0.53S0.47 QDs. The solution-processed
Ag2TexS1−x QD-based PD exhibited a photoresponse to 1350 nm illumination. With an applied
voltage of 0.5 V, the specific detectivity is 0.91 × 1010 Jones and the responsivity is 0.48 mA/W. The
PD maintained a stable response under multiple optical switching cycles, with a rise time of 2.11 s
and a fall time of 1.04 s, which indicate excellent optoelectronic performance.

Keywords: Ag2TexS1−x QDs; ternary alloying; band gap engineering; photodetectors

1. Introduction

Near-infrared (NIR) light has several advantages, including great penetration depth,
strong confidentiality, and excellent anti-electromagnetic interference properties [1–4].
Thus, NIR materials have found extensive applications across diverse domains such as
bioimaging, optical communication, photodetectors, and solar cells [5–11]. Currently, NIR
materials are mainly concentrated on PbS, PbSe, HgTe QDs, rare-earth nanocrystals, and
single-walled carbon nanotubes (SWNTs) [12–16]. Among them, PbS, PbSe, and HgTe
QDs contain the toxic heavy metals lead and mercury and rare-earth nanocrystals with
non-tunable band gaps and narrow absorption windows. For SWNTs, their application is
limited by their broad length distribution, spanning hundreds of nanometers. Therefore,
it becomes imperative to foster the creation of novel materials with continuously tunable
band gap and high biocompatibility. Silver-based chalcogenide (Ag2S, Ag2Se, and Ag2Te)
QDs, as classic NIR materials, possess excellent properties such as low toxicity, wide
absorption windows, and good biocompatibility [17–19]. Among these, Ag2S QDs are
one of the most extensively studied semiconductor materials and have ultralow solubility
product constants (Ksp(Ag2S) = 6.69 × 10−50), which enable the minimal release of Ag
ions in biosystems, thus ensuring their potential application in biomedical, ReRAMs, and
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optoelectronic devices [20–22]. However, due to the large band gap of Ag2S (1.1 eV), its
photoluminescence (PL) emission peak is limited to less than 1200 nm, and photodetectors
based on this material cannot respond to light in longer wavelength bands and have
poor power conversion efficiencies [23]. Therefore, expanding the band gap of Ag2S and
improving its photoelectric performance is very important for the application of Ag2S
materials in the field of optoelectronic devices.

Compared to traditional binary QDs, ternary alloy QDs not only retain the quantum
size effect of nanomaterials but also enable effective control of the band gap by adjusting
the composition [24,25]. Smith et al. [26] studied the influence of different reactive anion
precursors on the size and composition of PbSexTe1−x, PbSxTe1−x, and PbSxSe1−x QDs. The
results demonstrated that the highly reactive Chalcogenide precursors bis(trimethylsilyl)
(TMS2) help to achieve uniform anion incorporation. In addition, it was possible to modu-
late the excitonic absorption and fluorescence peak of alloy QDs by adjusting the anions
ratios. The next generation of electroluminescent displays based on quantum dots requires
the development of efficient and stable Cd-free blue emission devices, which remains a chal-
lenge due to the poor photophysical properties of blue emission materials. Jang et al. [27]
proposed a method by which to synthesize efficient blue-emitting ZnTeSe QDs. They
found that the hydrofluoric acid and zinc chloride additives effectively improved the
luminescence efficiency by eliminating the layer faults in the ZnSe crystal structure. More-
over, chloride passivation via liquid or solid ligand exchange results in slow radiative
recombination, high thermal stability, and efficient charge transport characteristics, and
the fluorescence peak was adjusted to 457 nm, while the photoluminescence quantum
yield (PLQY) was elevated to a remarkable 100% by controlling the Te doping level. In
addition, Ren et al. [28] proposed a water-phase synthesis method for the preparation of
NIR CdHgTe alloy quantum dots. CdHgTe QDs are obtained by heating a mixture of CdCl2,
Hg(ClO4)2 and NaHTe in the presence of a thiol stabilizer and exhibit PL emission peaks in
the range from 600 to 830 nm, which can be adjusted according to size and composition.
The PLQY of CdHgTe QDs is about 20–50%, which depends on its emission wavelength
and composition. Compared to other reported NIR quantum dots (such as CdTe/CdHgTe
and InAs), the prepared CdHgTe alloy quantum dots have a much narrower emission
spectrum, with a full width at half-maximum (FWHM) of only 60–80 nm. HRTEM and XRD
characterization show that CdHgTe QDs have a good crystal structure and monodispersity.
In order to improve the photostability of CdHgTe QDs and reduce their cytotoxicity, CdS
nanocrystal shells were added to the surface of CdHgTe QDs. Kim et al. [29] investigated
the synthesis of eco-friendly materials AgBiS2 QDs and the effect of heat treatment on
their properties. Increasing the heat treatment temperature reduces the number of surface
functional groups, including N (amine) and S (thiol) groups, and there are fewer defects on
the particle surface. However, heat treatment at 300 ◦C reduces PL intensity even when
the ligands are fully removed. By measuring the photocurrent response of the AgBiS2
photodetector to near-infrared light, the photocurrent of the AgBiS2 photodetector is the
highest after heat treatment at 200 ◦C. Heat treatment removes excessive protective agents
and ligands in the inks and improves the photocurrent response of AgBiS2.

Herein, for the first time, we develop a facile mixture precursor hot-injection method
for the synthesis of Ag2TexS1−x alloy QDs. The composition of the alloy QDs was reg-
ulated by adjusting the ratio of precursor S to precursor Te. Through augmenting the
amount of the precursor Te, the fluorescence peak of the alloy QDs redshifted and the
absorption spectrum broadened, thereby achieving controllable tuning of the band gap.
Furthermore, a photodetector based on Ag2Te0.53S0.47 QDs as the photosensitive layer has
been constructed. The narrow band gap photosensitive layer enables the device to exhibit
photoresponse to 1350 nm illumination. The device maintained a stable response and
exhibited excellent optoelectronic performance under multiple light switching cycles. This
is also the first report on the preparation of Ag2TexS1−x QDs and the investigation of their
optoelectronic properties.
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2. Experimental Section
2.1. Materials

Silver acetate (AgAc, 99.99%, Alfa Aesar, Haverhill, MA, USA), sulfur powder (S, 99.95%,
Aladdin, Shanghai, China), oleylamine (OAm, 80%, Acros, Geel, Belgium), tellurium powder
(Te, 99.999%, Alfa Aesar), tri-n-butylphosphine (TBP, >95.0%, TCI, Tokyo, Japan), and 1,2-
ethanedithiol (EDT, 98.0%, Alfa Aesar); all these reagents were used without purification.

2.2. Preparation of TBP-Te and TBP-S Precursors

The precursors of TBP-Te and TBP-S were prepared in a glove box. TBP-Te: 2.5 mmol
(0.32 g) Te powder was dissolved in 5 mL TBP, employing the use of ultrasonic treatment
for a duration of 24 h. TBP-S: 2.5 mmol (0.08 g) S powder was dissolved in 5 mL TBP with
vigorous magnetic stirring and ultrasonic treatment for 1 h. The total number of moles of
Te and S was kept at 0.10 mmol and the two precursors with different atomic ratios.

2.3. Synthesis of Ag2TexS1−x QDs

In the conventional hot-injection method, a blend comprising AgAc (0.067 g, 0.4 mmol)
and Oam (16 mL) was introduced into a 100 mL three-neck flask at room temperature.
Subsequently, the solution underwent a remove oxygen process through vigorous magnetic
stirring while maintaining a vacuum for 30 min. Afterwards, the temperature of the reaction
was subsequently elevated to 120 ◦C in the presence of a nitrogen atmosphere, resulting
in the attainment of a transparent solution. Then, 0.2 mL mixture precursor (TBP-S and
TBP-Te) was injected into the solution while vigorously stirring at a speed of 1000 rpm.
This temperature was maintained for a duration of 5 min to ensure the consistent growth of
the QDs. The products were precipitated with ethanol and recovered by centrifugation at a
speed of 12,000 rpm for 10 min. The products were dispersed in chloroform (15 mg/mL).
A series of Ag2TexS1−x samples were used, referred to as S/Te-A (S:Te = 1:0), S/Te-B
(S:Te = 2:1), S/Te-C (S:Te = 1:1), and S/Te-D (S:Te = 0:1).

2.4. Photodetector Fabrication

The photodetector device fabrication and ligand exchange protocol is based on pre-
vious research [30]. At first, this process begins with cleaning the glass substrates. Then
the Ag2TexS1−x QDs solution was deposited onto the glass substrate by employing the
spin-coating technique under a speed of 1500 rpm and kept for 30 s. Subsequently, a volume
of 500 µL of ligand solution (consisting of 5 mM EDT dissolved in acetonitrile) was gently
applied onto the film for a duration of 30 s, followed by removal of the ligand solution
using a spinning method. Afterwards, the QD film was immersed in acetonitrile 3 times to
eliminate any remaining unbound ligands. The ligand exchange and spin-coating were iter-
ated 6 times. Finally, 5 nm/100 nm-thick Ti/Au metal electrodes were deposited through an
interdigitated shadow mask (the channel width is 50 µm and the size is 18 mm × 18 mm)
through a thermal evaporator.

2.5. Characterizations

Talos F200X (ThermoFisher, Waltham, MA, USA) was used to test transmission
electron microscope (TEM) and high-resolution TEM (HRTEM) images of Ag2TexS1−x
QDs under an acceleration voltage of 200 kV. X-ray diffraction (XRD) patterns were mea-
sured by a PANalytical Empyrean diffractometer (Malven PANalytical, Almelo, Holland)
(Cu-Kα λ = 1.54056 Å) in the range of 20–80◦. An inductively coupled plasma optical
emission spectrometer (ICP-OES) was performed on PerkinElmer Avio 500 (PerkinElmer,
Waltham, MA, USA). The absorption spectra were recorded with a PerkinElmer Lambda
750 spectrometer (PerkinElmer, Waltham, MA, USA). The NIR fluorescence spectra were
executed on an Applied NanoFluorescence Spectrometer (Houston, TX, USA), applying
an excitation laser source of 785 nm. The X-ray photoelectron spectroscopy (XPS) were
collected on a PHI-5000 VersaProbe instrument (ULVAC-PHI, Chigasaki, Japan) using
Al/Kα radiation as excitation source, the electron emission angle is 34◦, the diameter of
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the X-ray spot is 250 µm, the base pressure is 4.17 × 10−7 mBar during the analyses, the
samples are etched for 60 s with 1 keV Ar+ ions before the XPS scan to remove the surface
layer which adsorb water and oxygen in the air. All the XPS spectra recorded for Ag 3d, Te
3d, and S 2p were referenced to the C 1s peak, which was calibrated by positioning it to
289.58 eV−Φ. The 289.58 eV is the binding energy position of the C 1s peak with respect
to the vacuum level, and Φ is the work function of Ag2Te0.53S0.47 (~5.16 eV) [31,32]. Thus,
the set value of the extraneous polluted carbon is 284.42 eV. The ultraviolet photoelectron
spectroscopy (UPS) was measured by using a Thermo ESCALAB 250Xi instrument (Ther-
moFisher, Waltham, MA, USA) with He I radiation. The Keithley 4200-SCS semiconductor
analyzer equipped with a Signatone S-1160 Probe Station (Signatone, Gilroy, CA, USA) is
employed to characterize the optoelectronic performance of devices.

3. Results and Discussion

Figure 1 displays the low-magnification TEM and HRTEM images of Ag2TexS1−x
QDs, which exhibit excellent dispersibility, clear lattice patterns, and good crystallinity.
Figure 1a shows TEM image of Ag2S QDs (denoted as S/Te-A), which appear as uni-
formly spherical particles. With the increase in the Te content, the morphology of the
QDs gradually transformed from uniform spherical morphology to a branch-like structure,
as shown in Figure 1b,c (denoted as S/Te-B and S/Te-C, respectively). When all the S
elements are replaced by Te, the morphology changes to a branch-like structure composed
of interconnected spherical particles (S/Te-D), as depicted in Figure 1d.
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Figure 1. TEM and HRTEM images of Ag2TexS1−x QDs: (a) S/Te-A, (b) S/Te-B, (c) S/Te-C, and
(d) S/Te-D.

Similar results have been reported in other studies on Ag2Te QDs, which elucidate
that this morphology is mainly attributed to the driving force generated by strong dipole-
dipole interactions, leading to the formation of a branch-like structure [33]. Additionally,
we performed a statistical analysis of the size distributions of the different Ag2TexS1−x
QDs (100 particles counted in each image, Figure S1). The diameters of S/Te-A, S/Te-B,
S/Te-C, and S/Te-D were measured as 3.92 ± 0.19 nm, 5.45 ± 0.31 nm, 5.32 ± 0.51 nm, and
5.23 ± 0.32 nm, respectively.

To investigate the crystal structure of the Ag2TexS1−x QDs, we measured the XRD pat-
terns of the samples with different S/Te ratios. Figure 2 shows the S/Te-A sample consisting
of Ag2S QDs, with diffraction peaks matching those of Ag2S crystals (JCPDS:14-0072) and
exhibiting a relatively broad peak width, which is attributed to the small size of the QDs.
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The characteristic diffraction peaks of Ag2S in the Ag2TexS1−x QDs gradually weaken
with increasing Te content, indicating a phase transition from monoclinic Ag2S crystals
(JCPDS:14-0072) to monoclinic Ag2Te crystals (JCPDS:81-1820). Finally, the characteris-
tic diffraction peaks of the S/Te-D sample coincided with those of pure Ag2Te crystals
(JCPDS:81-1820), exhibiting broadened diffraction peaks. ICP-OES was used to analyze
the actual atomic ratios of the S and Te anions in the samples. Figure S2 illustrates the
relationship between Te/(Te + S) for the precursors and the products of the four samples.
When the molar ratio of the Te source to the S source is 1:2, the Te-to-S ratio in the product
is 0.54:1 (Ag2Te0.35S0.65). When the molar ratio of the Te source to the S source turns to 1:1,
the Te-to-S ratio in the product becomes 1.13:1 (Ag2Te0.53S0.47) owing to the slightly higher
reactivity of the Te source compared to that of the S source. These results demonstrate
that the manipulation of the anion ratio in the precursor mixture is an effective means of
controlling the anion content within the alloy QDs.
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XPS was used to characterize the elements and their valence states in the alloyed
QDs. Figure 3a shows the low-resolution scan spectrum of the Ag2Te0.53S0.47 QDs, which
demonstrates the sample contains Ag, Te, O, S, and C elements. Figure 3b–d show the
high-resolution scan spectra of Ag 3d, Te 3d, and S 2p. As illustrated in Figure 3b, the
high-resolution Ag 3d region spectra of Ag2Te0.53S0.47 QDs show two symmetric peaks,
Ag 3d5/2 and Ag 3d3/2, which correspond to binding energies of 367.7 eV and 373.7 eV,
respectively. This confirms that the oxidation state of silver is univalent (Ag+) [34]. In
Figure 3c, the high-resolution Te 3d region spectra show two peaks, Te 3d5/2 and Te 3d3/2,
which correspond to binding energies of 572.0 eV and 582.4 eV, respectively, suggesting that
the valence of telluride is negative bivalence (Te2−) [35,36]. Furthermore, the spectrum of
the S 2p region was characterized and analysed (Figure 3d). The spectrum contains multiple
peaks, which must be separated. Fitting the low-binding-energy peaks yields two distinct
peaks with binding energies measuring 162.6 eV and 161.3 eV. These peaks can be attributed
to the S 2p1/2 and S 2p3/2, respectively, in agreement with the Ag-S binding energies [37].
An additional peak appears in the high-energy region (approximately 168.3 eV), indicating
that a small fraction of S may have undergone oxidation to form sulfate ions upon exposure
to air [38].

Figure 4 shows the PL emission spectra of Ag2TexS1−x QDs with four different S/Te
ratios under 785 nm excitation. The dashed lines represent the spectral regions that could
not be detected because of the response range of the spectrometer (900 nm–1700 nm). The
fluorescence peak of the Ag2TexS1−x QDs exhibits a gradual redshift, transitioning from
955 nm to 1255 nm, 1470 nm, and ultimately reaching 1605 nm. When the size of the
direct band gap semiconductor decreases, the PL emission should blue-shift. However,
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the size of Ag2TexS1−x QDs decreases, and the PL peak redshift contradicts the above
theory (S/Te-B to S/Te-D). This anomalous phenomenon can be explained by Vegard’s
law, which describes the relationship between the band gap of ternary alloy materials and
their elemental composition of elements [39]. The band gap of Ag2TexS1−x alloy can be
described as follows:

Ealloy = xEt + (1 − x)Es (1)

where x is the proportion of component t; and Ealloy, Et, and Es are the band gap energies
of the alloy material, pure t, and pure s, respectively. Because the band gap of Ag2Te
(0.06 eV) [40] is much smaller than that of Ag2S (1.1 eV) [41], as the Te component increases,
the value of x increases, leading to a decrease in the band gap of the alloy QDs and a
redshift in the PL emission peaks.
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Figure 5 shows the absorption spectra of Ag2TexS1−x QDs with four different S/Te
ratios. The S/Te-A to S/Te-D samples do not exhibit distinct excitonic absorption peaks,
which is similar to previous reports of Ag2S QDs and Ag2Te QDs [42,43]. The optical band
gap values of Ag2TexS1−x QDs are calculated by the extrapolated energy intercept of the
Tauc plot. For direct bandgap materials, the Tauc equation can be described as follows [44]:

αhν = A(hν − Eg)
1/2 (2)

where α is the absorption coefficient; hν is the incident photon energy; A is a proportionality
constant; and Eg is the optical band gap, respectively. The band gap was calculated to be
1.45 eV, 1.07 eV, 0.89 eV, and 0.84 eV for S/Te-A, S/Te-B, S/Te-C, and S/Te-D, respectively.
As the Te content increased, the absorption wavelength ranges of the alloy QDs broadened,
and the band gap decreased. This result is consistent with the alterations observed in the PL
emission spectra of Ag2TexS1−x QDs. Furthermore, the result reveals that the adjustment
of Te content effectively controls the band gap of Ag2TexS1−x QDs.
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UPS was used to measure the kinetic energy of the Ag2Te0.53S0.47 QDs, as shown
in Figure 6. The test sample was prepared by spin-coating it into a thin film on a glass
substrate. Figure 6a shows the survey of UPS spectrum of the Ag2Te0.53S0.47 QDs. Figure 6b
portrays the region of high binding energy cutoff. The tangent value in the cutoff region
is approximately 16.6 eV, indicating that the Fermi level positioning of the alloy QDs is
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4.61 eV. Combined with the low binding energy cutoff region shown in Figure 6c (with a
tangent value of approximately 0.54 eV), the energy level of the valence band maximum
(EVB) was calculated to be 5.15 eV (relative to the vacuum level EVac). Finally, combined
with the band gap of Ag2Te0.53S0.47 QDs (Eg = 0.89 eV), the energy level of the conduction
band minimum (ECB) can be calculated to be 4.26 eV. Therefore, the accurate depiction of
the energy band alignment for the Ag2Te0.53S0.47 QDs is depicted in Figure S3.
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As a proof-of-concept application, Ag2TexS1−x QDs were used as the active layer
for the photodetector (PD) device. The photoelectric properties of Ag2TexS1−x QD-based
PD were investigated (Figure S4). Figure S4a,b show that neither the Ag2S QD-based
or Ag2Te0.53S0.47 QD-based PD have any response to 1350 nm illumination. This can be
attributed to the large band gap of these two QDs, which cannot be excited by 1350 nm
light to generate photocurrent. With the increase in Te component, both Ag2Te0.53S0.47
QD-based and Ag2Te QD-based PD generate photocurrent under 1350 nm illumination,
and the light response of Ag2Te0.53S0.47 QDs is more obvious than that of Ag2Te QDs. Thus,
composition adjustment can not only expand the band gap of QDs, but also help to improve
the performance of photodetectors.

In order to evaluate the performance of Ag2TexS1−x QD-based PDs, the corresponding
figures of merit were calculated The two representative parameters (responsivity R and
special detectivity D*) were determined as follows [45]:

R =
Iph − Id

P
(3)

D∗ =
A1/2·R

(2q·Id)
1/2 (4)

where Iph is the photocurrent; Id is the dark current; P is the radiated power (product of
active area and incident light density); A is the active area of the photodetector; and q
is the electron charge. At an applied voltage of 0.5 V and an illumination intensity of
2 mW/cm2, the D* of the Ag2Te0.53S0.47 QD-based PD reaches 0.91 × 1010 Jones, and the
R is 0.48 mA/W. In addition, the response speed of the Ag2Te0.53S0.47 QD-based PD was
determined using the rise time (τr) and fall time (τf). Figure 7 shows the response speed
curve of the detector at a bias voltage of 0.5 V and an illumination intensity of 2 mW/cm2.
Figure 7a shows the detector still exhibits good repeatability under continuous 10-cycle
switching. The fluctuations observed in the light and dark states may be caused by surface
defects generated from ligand exchange processes. Figure 7b demonstrates that τr was
2.11 s and τf was 1.04 s within one switching cycle.
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In order to elucidate the electron–hole transport mechanism in the photodetector, the
schematic of energy band diagrams of Au/Ag2TexS1−x QDs/Au PD on the glass substrate is
shown in Figure 8. Figure 8a shows the energy band diagram of the Ag2TexS1−x QD-based
PD under dark and without external bias. The contact between the metal electrode (Au)
and Ag2TexS1−x QDs exhibits a slight barrier height (ΦSBH), which proves that the contact
between Au and the Ag2TexS1−x QDs is not a simple Ohmic contact but a Schottky contact.
This is consistent with the results of the nonlinear I–V curve of the Ag2TexS1−x QD-based
PD. Figure 8b shows the energy band diagram of the Ag2TexS1−x QD-based PD under NIR
light with a wavelength of 1350 nm illumination and without external bias. The Ag2TexS1−x
QDs are excited to produce charge carriers (electron–hole pairs), which are transported
between the Ag2TexS1−x QDs due to the quantum tunneling effect. However, only a very
small number of carriers can reach the electrode due to the influence of the Schottky barrier.
Therefore, no photocurrent can be observed. In addition, under illumination and with
external bias, the trap states of Ag2TexS1−x QDs (including surface defect levels and internal
defect levels) serve as trapping centers for photogenerated holes [46]. This results in a
reduction in the depletion region width and ΦSBH, which offers favorable conditions for
carriers tunneling from the Ag2TexS1−x QDs to the metal electrode under external bias,
causing increased photocurrent (Figure 8c).
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4. Conclusions

In summary, we have successfully prepared Ag2TexS1−x ternary QDs via a facile
mixture precursor hot-injection method. TEM images and XRD confirmed that the mor-
phology and lattice parameter gradually shifted from Ag2S to Ag2TexS1−x and finally to
Ag2Te QDs. The ICP-OES results reveal the relationship between the compositions of the
precursor and samples, which is consistent with Vegard’s equation. In addition, optical
characterization confirms the feasibility of Ag2TexS1−x QDs with tunable PL emission and
band gap by alloying engineering. The EVB and ECB values of the Ag2Te0.53S0.47 QDs were
also calculated using UPS and absorption spectra, and an accurate diagram of the energy
band alignment was plotted. The Ag2TexS1−x QD-based PD was fabricated to investigate
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their photoelectric properties. The PD shows good photoresponse at 1350 nm illumina-
tion, D* is 0.91 × 1010 Jones, and R is 0.48 mA/W under an applied voltage of 0.5 V and
power densities of 2 mW/cm2. The PD maintains a stable response under multiple optical
switching cycles, with a rise time of 2.11 s and a fall time of 1.04 s, indicating excellent
optoelectronic performance. Therefore, the novel Ag2TexS1−x ternary alloy QDs extend the
photoresponse range of Ag2S QDs, demonstrating promising potential in near-infrared PL
emission and photodetection.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/inorganics12010001/s1: Figure S1: The size distribution of Ag2TexS1−x
QDs; Figure S2: ICP-OES data shows the relative amount of Te in the product versus the relative
amount of Te in the precursor solution. Figure S3: The schematic band alignment of Ag2Te0.53S0.47
alloyed QDs. Figure S4: The I-V characteristics of the fabricated Ag2Te0.53S0.47 QD-based PD in dark
and under 1350 nm NIR light with power densities of 2 mW/cm2.
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