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Abstract: A magnesium–aluminum-layered double hydroxide (Mg-Al LDH) with a nano-lamellar
morphology was prepared by using a homogeneous precipitation and hydrothermal method, and
a calcination product (Mg-Al LDO) of the Mg-Al LDH was also obtained in this work. The XRD,
TEM, SEM, FTIR, N2 ad/desorption, and TG-DTG techniques were employed to characterize the
microstructures, morphologies, and thermostability levels of these two materials in detail. The
results showed that both the Mg-Al LDH and Mg-Al LDO had mesoporous structures and nanoplate
morphologies, with diameters of 50~200 nm. The Mg-Al LDH was transformed into Mg-Al LDO
at 773 K in an air atmosphere. The adsorption properties of the Mg-Al LDH were investigated
systematically with a copper chloride solution as a simulated waste. The experimental results
demonstrated that the pH value of the solution had an obvious influence on its Cu2+ adsorption
capacity, and the optimal pH value was approximately 5.0. The adsorption kinetics results showed
that the Mg-Al LDH had a rapid adsorption rate, and the equilibrium adsorption capacity was
62.11 mg/g. Additionally, the Cu2+ adsorption could be commendably described using a pseudo-
second-order model, demonstrating that the adsorption behavior is regulated by chemical sorption.
The adsorption thermodynamic results indicated that the adsorption process was spontaneous at
temperatures above 318 K. Moreover, the ∆G0 values decreased as the temperature was raised, which
indicated that a higher temperature can cause a greater impetus for Cu2+adsorption. In addition, the
positive values of the ∆H0 indicated that the Cu2+ adsorption was endothermic, and the positive ∆S0

values revealed an increase in the confusion at the solid–liquid interface of the adsorbent.

Keywords: Mg-Al LDH; lamellar morphology; Cu2+; adsorption; kinetics

1. Introduction

With the development of social economies and industrial development, toxic heavy
metal contamination in various types of water is becoming more and more serious, and
it has become a serious threat to human and environmental health [1,2]. It has become
one of the most important environmental problems from an ecological and health perspec-
tive. Heavy metals are highly toxic and have long-term sustainability, and they will not
degrade by themselves in the environment but can only migrate and transform to other
substances [3–6]. Additionally, some heavy metals may combine with organic matter to
convert into more toxic organometallic compounds [7]. The accumulation of heavy metals
through the biological chain will eventually enter the human body and cause serious harm
to human health, even leading to death when its concentration reaches a certain degree.
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There are many treatment methods for heavy metal ions in wastewater according
to reports in the literature. These mainly include chemical precipitation [8], chemical
reduction [9], ion exchange [10], membrane separation [11], adsorption [12], and biological
flocculation [13]. Among these, the adsorption method is a type of wastewater treatment
technology with high efficiency, a low cost, and wide application. Therefore, the devel-
opment of efficient, cheap, and reproducible adsorbents has always been a main research
hotspot in this field. The commonly used sorbents for the removal of heavy metal ions
from aqueous solutions are fertilizer industry waste [14], polymers [15], modified chi-
tosans [16], iron oxides [17], Mg-Al LDHs [18], activated alumina [19], and charcoal [20].
Among these adsorbents, LDHs and their derivates have attracted great attention due
to being inexpensive, having a large adsorption capacity, and possessing special pore
structure properties [21].

Hydrotalcite materials have excellent ion exchange and adsorption properties due to
their special sandwich structure, along with the controllability of their layer intervals and
anionic exchange capabilities and their high specific surface areas and adequate channel
structures [22]. Meanwhile, LDHs have ample hydroxyl functional groups and super-large
surface areas for effectively eliminating heavy metals from aqueous solutions. For example,
Tran et al. [23] prepared a Mg-Al LDH that was intercalated with the organic acid anions
of citrate and malate for the effective removal of Pb2+ and Cu2+ from an aqueous solution.
Huang et al. [24] investigated Cr(VI) removal using a biochar embellished with a Mg-Al
LDH inserted with ethylenediaminetetraacetic acid. Soltani et al. [25] prepared a hierarchic
LDH/MOF nanomaterial as a prospective adsorbent for the concurrent elimination of
toxic dyes and inorganic heavy metal ions from wastewater. In terms of the material
structure, the higher the degree of crystallinity, the more stable the properties of the
substance, and the better the physical and chemical properties in general. So increasing
the degree of crystallinity can make the physical and chemical properties of a substance
more stable [26,27]. However, according to the literature, the crystallinity of most Mg-Al
LDHs is not very high [28,29], which has an adverse effect on the mechanical properties
and stability of the material. In particular, contact in the solid–liquid phase interface in a
solution will weaken the stability of a material, to a certain extent.

In order to further improve the crystallinity of a Mg-Al LDH and perfect its physical
and chemical properties, we combined homogeneous precipitation and hydrothermal
technology to prepare a Mg-Al LDH material with a high degree of crystallinity in this
work. XRD, SEM, TEM, N2 ad/desorption, FTIR, and TG-DTG technologies were used
to systematically characterize the microarchitectures, morphologies, and thermostability
levels of the Mg-Al LDH. In addition, the adsorption properties of Cu2+ from an aqueous
solution were investigated by using the solution’s pH, adsorption kinetics, thermodynamics,
and dose adsorption experiments.

2. Materials and Methods
2.1. Materials

The experimental water was deionized water. CuCl2·2H2O was dissolved into the
deionized water to prepare Cu2+ stock solutions of different concentrations. Magnesium
chloride (MgCl2·6H2O), sodium hydroxide (NaOH), sodium carbonate (Na2CO3), alu-
minum nitrate (Al(NO3)3·9H2O), copper chloride (CuCl2·2H2O), and hydrochloric acid
(HCl) were obtained from the Shanghai McLean Chemical Reagent Company Limited, and
all of them were analytical-grade reagents.

2.2. Adsorbent Preparation

Certain amounts of MgCl2·6H2O and Al(NO3)3·9H2O were dissolved in 80 mL of
deionized water to obtain a mixture which was denoted as solution A. Then, 6.4 g of NaOH
and 4.24 g of Na2CO3 were diluted into 80 mL deionized water, successively, to obtain
solution B. Solutions A and B were stirred separately for a period of time, and then solution
A was added to solution B, drop by drop, to obtain a uniform reaction system that was
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stirred persistently. After dripping, the solution pH values were controlled between 9 and
10, and then the reactant continued to be fully stirred for another 30 min. Then, the mixture
was shifted into a Teflon-lined stainless-steel vessel after being stirred constantly, and it
was autoclaved at 393 K for 24 h. After cooling to room temperature, the mixture was
filtered, washed alternately with deionized water and absolute ethyl alcohol to become
neutral, and dried in an oven at 338 K for 12 h to obtain a white sample which was denoted
as Mg-Al LDH. A certain number of synthesized Mg-Al LDH samples were roasted in a
muffle furnace at 726 K for 4 h to obtain a white powdery substance which was denoted as
Mg-Al LDO.

2.3. Adsorption Experiment Method

The working Cu2+ solution of 100 mg/L was prepared by dissolving a certain amount
of CuCl2·2H2O into deionized water and reserving it in a 1000 mL measuring flask.

To detect the influence of solution pH value on Cu2+ adsorption, 50 mL of 100 mg/L
Cu2+ was mingled with 50 mg of Mg-Al LDH in a 100 mL polyethylene bottle that was
closed tightly and placed in a self-shaking shaker under vibration at 298 K for 6 h. The
solution pH values were controlled by using 0.1 mol/L of NaOH or 0.1 mol/L of HCl, and
the pH value was surveyed by a pH meter.

For the adsorption kinetic test, 50 mg of synthesized Mg-Al LDH adsorbent was added
to 50 mL of 100 mg/L Cu2+ solution (the pH value was not adjusted) under stirring at 298 K
for 5, 10, 20, 30, 60, 90, 120, 180, 240, and 360 min, respectively. Then, the same volume of
suspension was taken out at each time interval and immediately centrifuged at 8000 rpm
to isolate the solution from the mixture. The residual Cu2+ concentration in the aqueous
solution was measured using an atomic absorption spectrophotometer.

To explore the influence of temperature on Cu2+ adsorption, 50 mL of 100 mg/L
Cu2+ (the solution pH was not adjusted) was mingled with 50 mg of Mg-Al LDH in a
polyethylene bottle that was closed tightly and placed in a self-shaking shaker at 298 K,
308 K, and 318 K, respectively.

In the experiments that investigated the effect of dose on adsorption performance,
50 mL of 100 mg/L Cu2+ (the solution pH was not adjusted) was mixed with different-
quality Mg-Al LDH samples in polyethylene bottles that were closed tightly and placed in
a self-shaking shaker at 298 K for 6 h.

After the adsorption experiments were finished, the mixtures were percolated and
the concentrations of Cu2+ were analyzed by an atomic absorption spectrophotometer.
The adsorption capacities (qe, mg/g) and removal rates (η%) were calculated using the
following two formulas, respectively:

qe =
(c0 − ce)

m
× V and (1)

η =
(c0 − ce)

c0
× 100 (2)

In the above formulas, qe (mg/g) is the Cu2+ adsorption capacity, c0 and ce are the
original and equilibrium concentrations of Cu2+ (mg/L), V (L) is the solution volume, and
m (g) is the adsorbents mass.

2.4. Analytical and Characterization Methods

X-ray diffraction (XRD) diagrams of the products were tested on an X’pert Pro X-ray
diffractometer (Philips, Eindhoven, The Netherlands) to determine their crystal structures.
Scanning electron microscopy (SEM) experiments were conducted on a JSM-5610LV/INCA
electron microscope (JEOL, Tokyo, Japan). Transmission electron microscope (TEM) images
were acquired using a JEM-2100 microscope (JEOL, Japan) that was handled at 200 kV. In
order to clearly define the pore geometries and pore diameters, the Mg-Al hydrotalcite
samples were measured via N2-sorption, and a BJH analysis of the individual desorption
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isotherm experiments was conducted. Brunauer–Emmett–Teller (BET) specific surface
areas were obtained from the adsorption information in the relative pressures between 0.05
and 0.30, and the pore diameters were determined using the Barrett–Joyner–Halenda (BJH)
model while the total pore volumes were determined from the amount adsorbed at a relative
pressure of 0.995. The pore geometries, such as “ink bottle”, “slit-like”, and “cylindrical”
shapes, were obtained according to the types of adsorption and desorption isotherms and
the hysteresis loops. Nitrogen ad/desorption was performed on Quantachrome Autosorb-
iQ equipment (Quantachrome, Boynton Beach, FL, USA) at −469 K. Fourier-transform
infrared spectroscopy (FTIR) spectra of the samples were obtained by using a spectrometer
(NICOLET Nexus 470, Nicolet, Ramsey, MN, USA) and effecting limits of 4000~400 cm−1

with the specimens prepared by the KBr method. The TG-DTG experiment was carried out
on a PerkinElmer STA6000 instrument in dry-air ambience with a 10 ◦C/min heating rate.
The concentrations of Cu2+ were determined by an atomic absorption spectrophotometer
(TAS-990, Puyang general, Beijing, China).

3. Results and Discussion
3.1. Sample Characterization

The XRD patterns of the Mg-Al LDH and Mg-Al LDO are shown in Figure 1. It can be
observed in Figure 1a that the Mg-Al LDH showed sharp and symmetric diffraction peaks
at 2θ of 11.6◦, 23.42◦, and 34.84◦, which corresponded to the (003), (006), and (009) crystal
faces of the hydrotalcite (JCPDS 98-000-6296), suggesting that hydrotalcite characteristics
with a layered structure and a high degree of crystallinity were obtained [30]. In addition,
it can be clearly seen in Figure 1b that the characteristic diffraction peaks ((003) and (006))
of the Mg-Al LDH disappeared after high-temperature calcination, indicating that the
structure of the Mg-Al LDH was totally damaged, and there was chaos in the residual
layers [31]. Moreover, the image shows that the calcined products of the Mg-Al LDH
were referred to as Mg-Al LDO while the outcome of the wide peaks was attributed to the
generation of periclase [31].
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Figure 1. The XRD patterns of the (a) Mg-Al LDH and (b) Mg-Al LDO.

The micromorphologies and dispersion characteristics of the Mg-Al LDH and Mg-Al
LDO are shown in Figure 2. It can be seen in Figure 2a–c that the synthesized Mg-Al LDH
had a typical lamellar structure [32]. However, the lamellar sizes and thicknesses were
different and the overlap phenomenon between the sheets was prominent. In addition,
the degree of dispersion of the samples was not uniform, indicating the samples had high
surface energy levels. Figure 2d–f shows the morphology characteristics of the Mg-Al LDO.
It can be seen that the shape of the Mg-Al LDO was also that of a laminar microstructure,
with a uniform size. The results showed that the morphologies of the synthesized samples
did not change significantly after calcination.
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Figure 2. SEM images of (a–c) the Mg-Al LDH and (d–f) Mg-Al LDO.

Figure 3 shows the TEM images of the Mg-Al LDH and Mg-Al LDO samples. It can be
observed in Figure 3a that the morphology of the Mg-Al LDH, with diameters ranging from
tens to hundreds of nanometers, was mainly lamellar, which was consistent with the typical
plate morphology of hydrotalcite [33]. In addition, a small number of rod-like substances
also appeared in the Mg-Al LDH product, and the reason for this phenomenon was
that some individual rod-like morphologies were not completely transformed to lamellar
structures during the reaction process (Figure 3b). Figure 3c shows a complete lattice fringe,
corresponding to the high-resolution transmission electron microscope image of the Mg-Al
LDH, which indicated that the crystal growth was relatively orderly. Figure 3e,f shows
the transmission electron microscopy images of the Mg-Al LDO. It can be observed that
the morphology of the Mg-Al LDO was basically the same as that of the Mg-Al LDH.
The images show a nanoplate morphology with a certain degree of agglomeration, which
indicated that the surface energy of the sample was relatively high.
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Figure 3. TEM images of the (a–c) Mg-Al LDH and (d–f) Mg-Al LDO.

Figure 4 shows the N2 ad/desorption isotherms and the pore-size distribution curves
of the Mg-Al LDH and Mg-Al LDO nanomaterials. It can be seen in the curve features in
Figure 4a that both the Mg-Al LDH and Mg-Al LDO were type IV isotherms with H3 shape
hysteresis loops according to the IUPAC classification [34,35], indicating the existence of
mesoporosity and slit-like shapes in the two samples. The pore-size distribution curves of
the samples are plotted in Figure 4b. It can be observed that a majority of the pore sizes
were found to be in the range of 0~30 nm, suggesting that a large degree of mesoporosity
existed in both the Mg-Al LDH and Mg-Al LDO materials. In addition, the pore volume
change rate of the Mg-Al LDH at 63.03 nm was the largest, and that of the Mg-Al LDO, at
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42.25 nm, was larger. These results showed that the number of pores with pore sizes ranging
from 25 nm to 70 nm was reduced after the Mg-Al LDH calcination. As summarized in
Table 1, the BET specific surface areas of the Mg-Al LDH and Mg-Al LDO were 50.21 and
115.71 m2/g, respectively. The pore volumes of the Mg-Al LDH and Mg-Al LDO were
0.39 and 0.31 cm3/g, respectively. In comparing the Mg-Al-LDO samples after calcination
to the Mg-Al-LDH nanosheets, it was obvious that the BET surface areas of the Mg-Al
LDO were significantly increased. However, the pore volumes decreased slightly. This
may have been because the pore structures of the Mg-Al LDH collapsed during calcination,
thus reducing the pore volumes of the material, and at this time, more nanoparticles were
obtained, which increased the specific surface areas of the nanomaterials. The result showed
that more pores were formed in the Mg-Al LDO, which resulted in a large increase in its
specific surface area.
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Table 1. Structural property parameters of the Mg-Al LDH and Mg-Al LDO samples.

Parameters Mg-Al LDH Mg-Al LDO

BET surface area (m2/g) 50.21 115.71
Pore volume (cm3/g) 0.39 0.31

Average pore diameter (nm) 63.03 42.25

The FTIR spectra of the Mg-Al LDH and Mg-Al LDO are shown in Figure 5. It can be
seen in Figure 5a that there were stretching vibration peaks of the H2O and –OH groups
near 3543 cm−1 and there were bending vibration peaks of the H2O and –OH groups
near 1642 cm−1, indicating that there were water molecules and hydroxyl groups in the
spaces between the hydrohalic-like layers [36]. The absorption peaks can be obviously
seen at 1377 cm−1 in the spectrum of the Mg-Al LDH, which agreed with the vibrational
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modes of the CO3
2− anions [37]. In addition, in the spectrum of the Mg-Al LDH, the

bands at approximately 667 cm−1 and 428 cm−1 could be assigned to the existence of the
lattice translational modes (667 cm−1) and the Al–O bond (428 cm−1) [38,39]. These results
confirmed that some functional groups, such as CO3

2−, Al–O, and –OH, were contained in
the Mg-Al LDH. It can be seen in Figure 5b that the absorption peaks of the Mg-Al LDO
were very similar to those of the Mg-Al LDH.
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The TG and DTG curves of the Mg-Al LDH are shown in Figure 6. As presented, there
were two weightlessness stages for the Mg-Al LDH in the continuous heating process. The
first stage of weightlessness from 298 K to 518 K corresponded to the removal of the waters
that were physiosorbed on the outside surface of the hydrohalic material and the waters that
were intercalated into the interlayer galleries of the Mg-Al LDH [40]. The weight damage
of the hydrone for the Mg-Al LDH was 13.75%, indicating the Mg-Al LDH contained a
large number of water molecules. The second stage of weightlessness from 518 K to 1073 K
was ascribed to the dihydroxylation of the layers and the elimination of the volatile matter
arising from the interlayer CO3

2− for the Mg-Al LDH, with a weight loss of 28.15%. The
great weight damage in the second stage demonstrated that there were many OH− groups
on the surface and with CO3

2− in the interlayers of the Mg-Al LDH [41]. Moreover, it can be
noticed from the DTG curve that there was an obvious endothermic peak at approximately
483 K which was associated with the loss of the exposed OH− present on the external
surfaces of the Mg-Al LDH. In addition, there was an obvious endothermic peak at 673 K
which was assumed to be due to dihydroxylation and decarbonation [22].
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3.2. Batch Adsorption of Cu2+ onto the Mg-Al LDH

3.2.1. The Effect of Solution pH on Cu2+ Adsorption

Solution pH value has a significant influence on adsorption performance in the ad-
sorption process because the charge and adsorption active sites on the surfaces of a sorbent
and an adsorbate are importantly affected by it [42]. Figure 7 shows the relationship be-
tween the original pH value and the Cu2+ adsorption capacity. It can be observed that
the Cu2+adsorption capacity increased first and then decreased with increasing the pH
value from 4 to 9. In particular, the maximum adsorption capacity was 89.13 mg/g when
the pH value was approximately 5. This was because the different charge properties of
the Mg-Al LDH reacted to the different pH-value environments. The results showed that
there were more negative charges on the adsorbent surface. In addition, the Mg-Al LDH
would dissolve, to a certain extent, in the strong acidic medium, resulting in the collapse
of the layered structures. However, the Cu2+ was easily combined with the OH− ions to
precipitate copper hydroxide in the strong alkaline environment, which weakened the
process of the adsorption of Cu2+ on to the Mg-Al LDH. In view of the related references
and our experimental results [43,44], it was known that the optimal pH condition for
Cu2+adsorption onto the Mg-Al LDH was a weakly acidic environment. According to the
above results, we did not specifically regulate the pH value of the copper chloride solution
in the following adsorption experiments because the pH value of the deionized water
was approximately 6.
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3.2.2. Adsorption Kinetics

In order to achieve industrial production, adsorption equilibrium time is an important
evaluation index in the wastewater treatment process. The effect of the contact time on
Cu2+ adsorption onto the Mg-Al LDH was studied at the range of 5~360 min, and the
experimental data are presented in Figure 8a. It can be seen that the adsorption rate was
fast in the initial stage (5~120 min), and nearly 30% of the Cu2+ ions were adsorbed by
the Mg-Al LDH in 120 min. Then, with the extension of the contact time, the adsorption
capacity of the Cu2+ increased little by little until equilibrium was established. When the
adsorption time was 360 min, 62.1% of the Cu2+ ions were removed. This was mainly due
to the abundance of active sites that were absolutely exposed to the Cu2+ in the aqueous
solution during the initial period, and they were easily taken up. As the adsorption reaction
proceeded, the Cu2+ adsorbed onto the Mg-Al LDH, which prevented the residual Cu2+

from being adsorbed onto the adsorbent due to the electrostatic repulsion between the ions
of the same charge. Then, the Cu2+ attempted to move into the pores of the Mg-Al LDH,
which became difficult. This was a slow and stable process.
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Figure 8. (a) The effect of the contact time on the Cu2+ adsorption. The adsorption kinetics of
Cu2+ fitted with a (b) pseudo-first-order model and (c) a pseudo-second-order model (m = 0.05 g,
c0 = 100 mg·L−1, V = 50 mL, T = 298 K, pH = unregulated, and r = 160 rpm).

In order to further illustrate the adsorption mechanism, pseudo-first-order and pseudo-
second-order models [45,46] were adopted to fit the adsorption data. The two equations
used were as follows:

ln(qe − qt) = ln qe − k1t and (3)

t
qt

=
1

k2qe2 +
1
qe

t (4)

In the above equations, k1 is the pseudo-first-order adsorption rate constant (min−1),
k2 is the pseudo-second-order adsorption rate constant (min·g−1·mg−1), and
qe (mg·g−1) and qt (mg·g−1) are the adsorption capacities at an equilibrium state and
at any time, respectively.

The fitting results are presented in Figure 8b,c, and the simulation parameters are
presented in Table 2. As shown, the correlation coefficient (R2 = 0.9532) of the pseudo-
second-order model was larger than that of the pseudo-first-order model (R2 = 0.9041).
However, the calculated value of qe obtained by the pseudo-first-order model
(67.32 mg/g) was closer to the experimental value of qe (62.11 mg/g). These results
demonstrated that the pseudo-second-order model was more appropriate to fit the ad-
sorption data. Furthermore, the value of k2 obtained by the pseudo-second-order model
was relatively small, suggesting that the adsorption rate decreased with extension of the
reaction time. These results demonstrated that the pseudo-second-order model could better
simulate the Cu2+ adsorption, and it was regulated by the chemical adsorption in the
adsorption process [47].

Table 2. Parameters calculated by the pseudo-first-order and pseudo-second-order models.

Experimental Pseudo-First-Order Pseudo-Second-Order
qe

(mg·g−1)
k1

(min−1)
qe

(mg·g−1) R2 Standard Error k2
(g·mg−1·min−1)

qe
(mg·g−1) R2 Standard Error

62.11 0.0084 67.32 0.9041
Intercept Slope

0.0001 78.74 0.9532
Intercept Slope

0.1100 0.00096 0.2407 0.0013
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3.2.3. The Effect of Dosage on Cu2+ Adsorption

The influence of dosage on the adsorption capacity and removal rate of the Mg-Al LDH
adsorbent was investigated to determine an optimal solid-to-liquid ratio for the removal of
100 mg/L of Cu2+ in an aqueous solution. The mass of the adsorbent varied from 10 mg to
150 mg in 50 mL of Cu2+ solution, and the adsorption results are shown in Figure 9. The
experimental results showed that the removal percentage of the Cu2+ linearly increased
when the adsorbent dosage was raised to 90 mg/50 mL. After this adsorption saturation
point, the curve no longer rose monotonously, and it gradually showed a stable state. As
the dosage of Mg-Al LDH increased from 10 mg to 150 mg, the removal percentage of the
Cu2+ increased from 30.02% to 66.02%. At the same time, the blue curve shows that the
adsorption capacity of the Cu2+ showed a monotonically decreasing trend with the increase
in the adsorbent mass from 10 mg to 150 mg. This was because the number adsorption
sites increased sharply after the addition of adsorbent while the concentration of the Cu2+

in the liquid phase decreased when equilibrium was reached with a higher amount of
Mg-Al LDH. As the amount of Cu2+ in the solid depended on the concentration in the
liquid, the Cu2+ adsorption capacity also decreased. The results indicated that the optimal
solid-to-liquid ratio was 90 mg/50 mL under this adsorption condition.
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3.2.4. Adsorption Thermodynamics

To investigate the influence of temperature on the Cu2+ adsorption onto the Mg-Al
LDH, the Gibbs free-energy change (∆Gθ), entropy change (∆Sθ), and enthalpy change
(∆Hθ) were obtained using the following two formulas [48,49]:

LnKL =
∆Sθ

R
− ∆Hθ

RT
and (5)

∆Gθ = ∆Hθ − T∆Sθ (6)

In the above formulas, KL refers to the Langmuir equilibrium constant (L/mol),
R refers to the gas molar constant (8.314 J/mol·K), and T refers to the reaction temperature
(K). In view of the relationship between ∆Gθ and KL, the values of ∆Hθ and ∆Sθ were
obtained using the intercept and the slope from the Van’t Hoff plots of ln KL versus 1/T.

It can be seen in Figure 10a that the adsorption capacity of the Mg-Al LDH toward the
Cu2+ increased with the extension of the reaction temperature, demonstrating that a high
temperature was conducive to the diffusion and adsorption of Cu2+ onto the Mg-Al LDH.
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The computational thermodynamic parameters are shown in Table 3. As outlined, the
∆G0 values for the Mg-Al LDH at 298 K and 308 K were positive during the adsorption
process, indicating that the Cu2+ adsorption onto the Mg-Al LDH was nonspontaneous [28].
However, when the reaction temperature was increased to 318 K, the ∆G0 values became
negative, indicating that the Cu2+ adsorption onto the Mg-Al LDH was spontaneous at a
higher temperature. Moreover, the ∆G0 values diminished with increasing reaction temper-
atures, demonstrating that a higher temperature can produce a greater impetus for Cu2+

adsorption. In addition, the positive value of ∆H0 indicated that the Cu2+ adsorption was
endothermic, and hyperthermy was beneficial for improving the adsorption performance.
Simultaneously, the positive ∆S0 values disclosed an increase in the disorder at the solid–
liquid interface in the solution [50]. During the entire adsorption process, hyperthermia
contributed to the Cu2+ dissolution and its increased affinity with the Mg-Al LDH, and it
was also beneficial for the activation of the active sites on the surface of the adsorbent [51].

Table 3. Values of the thermodynamic parameters for the Cu2+ adsorption onto the Mg-Al LDH at
various temperatures.

Sample T (K) ∆Gθ

(kJ/mol)
∆Hθ

(kJ/mol)
∆Sθ

(J/(mol·K)
R2 Standard Error

Mg-Al LDH
298 3.97

65.24 205.49 0.9056

Intercept Slope

308 1.92
5.6509 1746.40318 −0.14

4. Conclusions

Mg-Al LDH samples with nano-lamellar morphologies and diameters of
50~200 mm were prepared using a homogeneous precipitation and hydrothermal method.
Then, the corresponding calcined product, Mg-Al LDO, was also obtained in this work.
The characterization results showed that the two samples had similar micro-morphological
characteristics, but the latter had a larger BET specific surface area, indicating there were
more open-framework structures and reactive sites on the adsorbent’s surface. The batch
experimental results demonstrated that the Mg-Al LDH, with its nano-lamellar morphology,
had a rapid adsorption speed and relatively large adsorption capacity (62.11 mg/g) for Cu2+

in a solution. The pH value of the solution had a vital effect on the adsorption efficiency,
and the adsorption capacity was the largest when the pH value was approximately 5. The
results of the adsorption kinetics indicated that the Cu2+ adsorption behavior could be
interpreted by a pseudo-second-order model, demonstrating that the adsorption process
was controlled by chemical sorption. The results of the dose experiments indicated that
the optimal solid-to-liquid ratio was 90 mg/50 mL. The adsorption thermodynamic results
indicated that adsorption process was spontaneous at hyperthermia (>318 K), and the ∆G0

values decreased with increasing temperatures, which indicated that a higher temperature
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could produce a greater driving force for Cu2+adsorption onto the Mg-Al LDH in an aque-
ous solution. These meaningful results could potentially stimulate further study on the
synthesis of magnesium aluminum hydrotalcite material and promote its development.
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