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Abstract: Hierarchical zeolites have attracted more and more attention due to their excellent diffusion
and mass transfer performance. However, synthesis of most hierarchical zeolites requires long-
chain organic templates, which could increase preparation cost. Here, hierarchical ZSM-5 zeolites
were successfully prepared with simple organic templates (triethylenetetramine) in a rotating oven.
Besides hierarchical structure, the crystal size of ZSM-5 also decreased when they were synthesized
under dynamic hydrothermal conditions. The samples were analyzed using various physicochemical
characterizations, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron
microscopy (SEM), Fourier transform infrared spectra (FT-IR), temperature-programmed desorption
of ammonia (NH3-TPD) and N2 adsorption–desorption. The hierarchical ZSM-5 zeolites synthesized
in a rotating oven presented better catalytic activity and stability in iso-butane cracking reaction than
those synthesized under conventional static hydrothermal conditions.
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1. Introduction

Zeolite is a type of inorganic microporous crystal materials with regular nanopore
or cage structures, consisting of TO4 (T = Si, Al, P, etc.) tetrahedra as the basic structural
unit and connected by bridging oxygen atom [1–3]. As one of the most important solid
acid catalysts, zeolites are widely used in the field of petrochemical and fine chemical
industry due to their unique structures and physicochemical properties [4,5]. However,
microporous structure also brings some limitations to zeolites [6]. Firstly, the diffusion and
mass transfer of substance are slow. Then, reactants with larger molecular diameters are
unable to enter zeolite pores to interact with catalytic active centers. To solve the above
issues, a wide variety of approaches have been proposed such as preparation of nanocrystal
zeolite materials [7–10], synthesis of extra-large pore zeolite [11–14] and introduction of
mesopores or macropores into zeolite to form hierarchical zeolite. Wherein, the synthesis of
hierarchical zeolite has become a hot topic due to the advantages of combining microporous
zeolite with mesoporous/macroporous materials.

The preparation of hierarchical zeolite could be divided into in situ methods and
post-treatment methods. The most common post-treatment method can be achieved by
simple dealumination [15–18]/desilication [19–22] of zeolite in acid/alkali solution for
the introduction of irregular mesopores or macropores. Hard templating route and soft
templating route are the main methods in in situ synthesis. Jacobsen et al. [23] reported the
significant results that ZSM-5 nanocrystals with intracrystalline mesopores were success-
fully prepared with carbon nanoparticles. Zeolite crystals grew around carbon particles
and nucleated between them. The pores were large enough, and the gel was concentrated
enough to continue to grow in the pore system. Besides carbon nanoparticles, carbon nan-
otubes or nanofibers [24,25], CaCO3 nanoparticles [26,27], polymer microspheres [28–31]
and biological material [32–35] could be also used to synthesize hierarchical zeolites. The
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soft template route refers to the synthesis method that the template interacts with sili-
con or aluminum source in the synthesis system, serving as mesoporous templates. Xiao
et al. [36] successfully prepared hierarchical beta zeolite using polydiallyldimethylammo-
nium chloride (PDADMAC) as soft templates due to their high charge density and high
dispersion in solution. From the SEM images, it could be observed that there was a partial
connection between the hierarchical pores, which may be beneficial for the mass transfer
of reactants and products in catalysis. The experimental results showed that the activity
of hierarchical zeolites was much higher than that of traditional ZSM-5 catalysts under
the same reaction conditions in the catalytic cracking of 1,3,5-triisopro-pylbenzene. Ryoo
et al. [37] firstly synthesized ultra-thin ZSM-5 with long-chain alkyl-quaternary ammo-
nium molecules due to the strong interactions between quaternary ammonium species
with the inorganic frameworks. The experimental results indicated that appropriately
designed bifunctional surfactants could direct the formation of zeolite structures on the
mesoporous and microporous length scales simultaneously and thus yield MFI zeolite
nanosheets. And these zeolites dramatically suppressed catalyst deactivation through coke
deposition during methanol to gasoline conversion. Recently, Yu et al. [38] reported an
anisotropic-kinetics transformation strategy to synthesize single-crystalline hierarchical
ZSM-5 zeolites with highly open nanoarchitectures. Due to the improvement of mass trans-
fer efficiency and abundant accessible active site, single crystal ZSM-5 nanocage showed
significantly improved catalytic life and lower coking rate in methanol to hydrocarbon
reactions. The expensive organic templates also limited the application of hierarchical
zeolites to a certain extent.

Herein, we successfully synthesized hierarchical ZSM-5 zeolite with a simple structure-
directing agent (triethylenetetramine, denoted as TETA) in a rotating oven. Various methods
were used to characterize its physicochemical properties such as X-ray diffraction (XRD), scan-
ning electron microscope (SEM), NH3-TPD and N2 adsorption–desorption. We performed
the catalytic cracking of iso-butane on hierarchical ZSM-5, which showed higher catalytic
activity compared to ZSM-5 synthesized under conventional hydrothermal condition.

2. Results and Discussion

Figure 1 shows the XRD patterns of solid samples with a TETA/SiO2 ratio of 0.3 or
0.4 crystallized for 48 h or 72 h in rotating oven. All spectra showed the characteristic
peaks of ZSM-5 at 2θ of 7.9◦, 8.9◦, 23.1◦, 23.9◦ and 24.3◦, which correspond to the standard
MFI crystalline structure [39]. These characteristic peaks are associated with [011], [020],
[051], [303] and [313] plane. The products with a TETA/SiO2 ratio of 0.3 crystallized
for 48 h showed pure ZSM-5 zeolite. No obvious diffraction peaks of impurities and
amorphous silica were observed in the XRD patterns, and the crystallinity of the sample
was relatively high. As the crystallization time increased to 72 h, a characteristic peak at
2θ of 26.7◦ has appeared, which indicated the sample contained dense phase. Regardless
of the crystallization time for 48 h or 72 h, pure ZSM-5 zeolites could not be obtained
with a TETA/SiO2 ratio of 0.4. However, the crystallization products for 48 h or 72 h
were all pure ZSM-5 zeolites under conventional static hydrothermal conditions when the
TETA/SiO2 ratio was 0.4 (Figure S1). The above results demonstrated that both the content
of structure-directing agents and the crystallization time affected the crystallization process
significantly under dynamic hydrothermal conditions.

Figure 2 shows the SEM images of solid products under different synthetic conditions.
The samples with a TETA/SiO2 ratio of 0.3 crystallized in 48 h under conventional static
hydrothermal conditions presented typical hexagonal morphology with 20 µm particle size.
The crystal surface was smooth and had clear edges and corners (Figure 2a). Meanwhile, the
particle size of the products under dynamic hydrothermal conditions reduced to less than 10
µm. The prepared particles were uniform polyhedra with smooth surfaces, and the obvious
large pores were observed on polyhedron surfaces (Figure 2b). As the crystallization
time increased to 72 h, the morphology of samples significantly changed under dynamic
hydrothermal conditions, and other phases were produced. The overall morphology was
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not very regular, and the crystals have grown to form different morphologies, such as
a layered structure on the surface of the grain (Figure 2c). However, the samples with
a TETA/SiO2 ratio of 0.4 crystallized for 48 h under dynamic hydrothermal conditions
showed impure ZSM-5 zeolite, covering a large number of spherical crystals (Figure 2d),
which was consistent with the XRD results. The crystals had uneven size distribution, and
the surface of those was extremely rough.
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Figure 1. XRD patterns of different samples synthesized: (a) With a TETA/SiO2 ratio of 0.3 crystallized
for 48 h; (b) With a TETA/SiO2 ratio of 0.3 crystallized for 72 h; (c) With a TETA/SiO2 ratio of 0.4
crystallized for 48 h; (d) With a TETA/SiO2 ratio of 0.4 crystallized for 72 h.
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Figure 2. SEM images of samples synthesized under: (a) Conventional static hydrothermal conditions
with a TETA/SiO2 ratio of 0.3 crystallized for 48 h; (b) Dynamic hydrothermal conditions with a
TETA/SiO2 ratio of 0.3 crystallized for 48 h; (c) Dynamic hydrothermal conditions with a TETA/SiO2

ratio of 0.3 crystallized for 72 h; (d) Dynamic hydrothermal conditions with a TETA/SiO2 ratio of 0.4
crystallized for 48 h.

Figure S2 shows the N2 adsorption isotherms of the corresponding products under con-
ventional static/dynamic hydrothermal conditions, and both are typical type-I isotherms.
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However, there is an additional closed hysteresis loop (H4) in the range of relative pressure
P/P0 = 0.4–1.0 in the N2 adsorption isotherms of ZSM-5-R, which proves the existence of
mesopores. The elemental composition and textual parameters were collected in Table 1.
Though the samples were prepared under different hydrothermal conditions, there was
no significant difference in SiO2/Al2O3 ratio. The micropore volume of both the products
were more than 0.11 cm3 g−1, which demonstrated both the products had good crystallinity.
Meanwhile, the sample ZSM-5-R had larger external surface area and mesopore volume
than ZSM-5-C. Perez-Ramirez et al. defined the hierarchy factor (HF) as being the product
of the relative micropore volume (Vmicro/Vtotal) and the relative mesopore surface area
(Smeso/SBET) for the first time [40]. The results indicated that ZSM-5-C presented a typical
example of pure microporous zeolite, and ZSM-5-R showed zeolites with a small amount
of mesoporous systems. The results demonstrated that dynamic hydrothermal conditions
were beneficial for synthesizing hierarchical zeolites.

Table 1. The elemental composition and textual parameters of ZSM-5-R and ZSM-5-C.

Sample SiO2/Al2O3
3 SBET (m2 g−1) Sext (m2 g−1) Vmic (cm3 g−1) Vmeso (cm3 g−1)

Hierarchy
Factor

ZSM-5-R 1 76.9 314 91 0.12 0.05 0.105
ZSM-5-C 2 77.2 330 86 0.13 0.03 0.075

1 The solid sample synthesized at 443 K for 48 h with a TETA/SiO2 ratio of 0.3 in a rotating oven was denoted as
ZSM-5-R. 2 The solid sample synthesized at 443 K for 48 h with a TETA/SiO2 ratio of 0.3 in a conventional oven
was denoted as ZSM-5-C. 3 The SiO2/Al2O3 ratio was determined using XRF.

ATR method was used to test FTIR spectra. Spectral correction was performed by
recording the background spectrum of the sample chamber before sample measurement.
The single channel background spectrum was recorded first, and then the single channel
sample spectrum was collected. And the effect of water and carbon dioxide in the air was
removed by compensating for the atmosphere. The FTIR spectra of ZSM-5-R and ZSM-
5-C are shown in Figure 3. Five IR characteristic absorption peaks of both solid samples
were detected at 438, 540, 790, 1068 and 1220 cm−1, which indicated that there were no
differences in structure between ZSM-5-R and ZSM-5-C. The obvious band at 540 cm−1 is
ascribed to a double five-membered rings vibration peak of pentasil zeolite [41–43]. The
intensity of band at 540 cm−1 could be used to determine the crystallinity of the ZSM-5
zeolites [44]. The bands at 1220 and 1068 cm−1 are assigned to the asymmetric stretching
vibration peak of the external and internal T–O tetrahedron, respectively [45]. The band
at 438 cm−1 is attributed to the bending vibration peak of the Si–O chemical bond [46].
The band at 790 cm−1 is assigned to the symmetric stretching vibrations of the internal
tetrahedron structure of ZSM-5 zeolite [47].
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The acidity of ZSM-5-R and ZSM-5-C samples was analyzed using NH3-TPD (Figure 4),
which was an important factor affecting the catalytic activity of zeolite. Two obvious
NH3 desorption peaks of both products were observed in the range of 100–250 ◦C and
300–450 ◦C, which are corresponding to weak acid sites and strong acid sites, respectively.
And the NH3 desorption peak areas correspond to the amount of acid sites. It could be
seen that there was no significant shift for the desorption peak and no significant change
for peak area of both solid samples due to the similar SiO2/Al2O3 ratio.
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The catalytic cracking experiments of iso-butane were performed on ZSM-5-R and
ZSM-5-C. We investigated the catalytic activity and stability of the two catalysts during
800 min on stream at 625 ◦C. At first, the conversion of iso-butane on both catalysts was
roughly the same (around 90%). After running for 800 min, the conversion of iso-butane
on ZSM-5-R decreased to nearly 50%, still 20% higher than that on ZSM-5-C (Figure 5a).
Figure 5b shows the selectivity of ethylene and propylene on the above catalysts. The
selectivity of ethylene and propylene on ZSM-5-C consistently decreased. However, that
on ZSM-5-R showed a trend of first decreasing and then increasing. After 800 min of
reaction, the selectivity of ethylene and propylene on ZSM-5-R was 13% higher than that
on ZSM-5-C. ZSM-5-R exhibited higher catalytic activity due to the hierarchical structure.
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Figure 5. (a) The conversion of iso-butane and (b) the yield of ethylene and propylene on ZSM-5-R
and ZSM-5-C as a function of time on stream for 800 min test at 625 ◦C.
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3. Materials and Methods
3.1. Materials

The chemicals used in this study were colloidal silica (LUDOX HS-40), sodium hydroxide
(AR, 96%, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), sodium aluminate (AR,
NaAlO2, Al2O3 > 41 wt %, Shanghai Sinopharm Chemical Reagent Co., Ltd., Shanghai, China),
triethylenetetramine (AR, 98%, Dongxing Chemical Reagent Co., Ltd., Shenyang, China), am-
monium chloride (AR, 97%, Damao Chemical Reagent Co., Ltd., Tianjin, China) and ultrapure
deionized water (18.2 MΩ·cm). All reagents were used without any further purification.

3.2. Synthesis of ZSM-5/Hierarchical ZSM-5

ZSM-5 and hierarchical ZSM-5 zeolites were synthesized from the initial aluminosili-
cate gels with molar composition of SiO2: 0.013 Al2O3: 0.037 Na2O: 14.60 H2O: (0.2–0.4)
TETA. Typically, 0.17 g of NaAlO2 was dissolved in 14.17 g of H2O stirring until the solution
became clear. Then, 0.16 g of NaOH was added into the solution, followed by the addition
of 2.40/3.60/4.80 g of TETA stirring for 10 min. Finally, 12.30 g of colloidal silica was
added to the mixtures dropwise with stirring for 12 h. The final mixtures were transferred
into a 100 mL autoclave and heated at 443 K for 48 h or 72 h in a conventional oven or a
rotating oven at 25 rpm. The solid products were collected by filtration, washed thoroughly
with deionized water until the filtrate was neutral, and dried in air at 333 K overnight.
The obtained products were calcined at 823 K for 5 h to remove the organic templates.
Subsequently, they were fully stirred for 4 h in a 10% ammonium chloride solution at 353 K
twice. The exchanged samples were calcined at 823 K for 5 h.

3.3. Characterizations

The X-ray diffraction (XRD) patterns were recorded on a Rigaku Ultima IV diffrac-
tometer equipped with Cu Kα radiation (λ = 1.5418 Å) and operated at 40 kV and 30 mA
in the range of 2θ value between 4◦ and 40◦ at a scan rate of 6◦ min−1. Nitrogen adsorp-
tion/desorption measurements were carried out on a Micromeritics 2020 analyzer at 77.35 K
after the products were degassed at 623 K under vacuum. The quartz tube containing sam-
ples should be weighed accurately before and after degassing treatment. And the quartz
tube was installed on the physical adsorption device, adding sufficient liquid nitrogen into
the Dewar bottle, and then the characterization could be started. The elemental composition
of ZSM-5/hierarchical ZSM-5 samples was measured using X-ray fluorescence (XRF) on a
Thermo Scientific ARL PERFORM’X spectrometer, Dreieich, Germany. The morphology of
crystals was confirmed using scanning electron microscopy (SEM, Hitachi, S4800, Tokyo,
Japan). The prepared samples were sprayed with gold to increase their conductivity for
testing. Fourier transform infrared spectra (FT-IR) of the samples were recorded utilizing a
Bruker Tensor II spectrophotometer, Leipzig, Germany. Scanning of room environment was
carried out as the experimental background at ambient temperature. The influence of water
and carbon dioxide in the air was removed through atmosphere compensation in advanced
settings. Subsequently, the powder samples were placed on the ATR sample stage and
were tested with a scanning range of 400–4000 cm−1 and scanning time of 32 s. The acid
site density of the synthesized materials was determined using temperature-programmed
desorption of ammonia (NH3-TPD, Micromeritics AutoChem 2920 II, Norcross, GA, USA).
Under the condition of argon gas at 300 ◦C and 40 mL/min, pre-treatment was carried out
for 30 min, followed by cooling down to 60 ◦C. 5% of NH3/He mixture was introduced
into the reaction sample tube for purging with a flow rate of 40 mL/min, and the purging
was carried out for 20 min to allow the ZSM-5 zeolites to adsorb NH3 absolutely. Then,
pure argon with a flow rate of 40 mL/min was introduced into the reaction sample tube to
purge the NH3 adsorbed on the surface of the samples. After the baseline stabilized, the
temperature started rising to 710 ◦C at 10 ◦C/min, and the TCD signal of NH3 desorption
was recorded between 100 and 710 ◦C.
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3.4. Catalytic Reaction

The catalytic cracking experiments of iso-butane were performed on a continuous
fixed-bed flow reactor at atmospheric pressure. The protective gas N2 was firstly introduced
into the chromatography, and then the fully automatic air source, hydrogen generator and
gas chromatography were turned on. Then, a suitable operating method was chosen.
When the detector temperature reached 150 ◦C, the test could be started until the baseline
gradually stabilized. Typically, 0.3 g (40–60 mesh) of catalysts was filled in the middle of
the quartz tube, which were heated to 625 ◦C for 30 min in N2 flow. Then, the iso-butane
(volume fraction was 5%) was also passed through the reactor. The reaction products were
analyzed on-line by a gas chromatograph (GC9790 II) equipped with a capillary column
(30 m, inner diameter 530 µm) and FID detector. The calculation formulae for C4 alkane
cracking data are as follows:

C4H10 Conversion% =
c(C4H10, in)− c(C4H10, out)

c(C4H10, in)

CmHn Selectivity% =
c
(
CmHn × m

4
)

c(C4H10, in)− c(C4H10, out)

CmHn Yield% = C4H10 Conversion × CmHn Selectivity

4. Conclusions

In summary, we have developed an effective, inexpensive and simple strategy for syn-
thesizing hierarchical ZSM-5 zeolites without any complex long-chain organic templating
agents. Hierarchical ZSM-5 zeolite was successfully prepared only with simple organic
templates (triethylenetetramine) in a rotating oven. Compared with conventional static
hydrothermal synthesis, ZSM-5 zeolite synthesized in a rotating oven had smaller particle
size and hierarchical structure. SEM images and N2 adsorption–desorption confirmed
macropores/mesopores in ZSM-5-R zeolite. There was no difference for the elemental
composition, structure and acidity between ZSM-5-R and ZSM-5-C. In the catalytic cracking
reaction of iso-butane, the conversion of iso-butane and the selectivity of ethylene and
propylene were higher after running for 300 min on ZSM-5-R zeolite due to its hierarchi-
cal structure. It provided a new route for synthesis of hierarchical zeolite with simple
structure-directing agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11070297/s1, Figure S1: XRD patterns of different samples
synthesized under conventional static hydrothermal conditions; Figure S2: N2 adsorption isotherms
of ZSM-5-R and ZSM-5-C.
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