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Abstract: Ni/Pd co-modified graphene hydrogen storage materials were successfully prepared by
a solvothermal method using NiCl2·6H2O and Pd(OAc)2 and reduced graphene oxide (rGO). By
adjusting the hydrothermal temperature, Pd–Ni is successfully alloyed, and the size of the obtained
nanoparticles is uniform. The electronic structure of Pd was changed by alloying, and the center of
the D-band moved down, which promoted the adsorption of hydrogen. The NiPd-rGO-180 sample,
in which 180 represents the solvothermal temperature in centigrade (◦C), has the highest hydrogen
storage capacity of 2.65 wt% at a moderate condition (RT/4MPa). The excellent hydrogen storage
performance benefits from the synergistic hydrogen spillover effect of Pd–Ni bimetal. The calculated
hydrogen adsorption energies of Ni2Pd2-rGO are within the ideal range (−0.20 to −0.60 eV) of
hydrogen ads/desorption; however, the introduction of substrate defects and the cluster orientation
alter the hydrogen adsorption energy. This work provides an effective reference for the design and
optimization of carbon-based hydrogen storage materials.

Keywords: NiPd; graphene; carbon-based hydrogen storage; hydrogen adsorption

1. Introduction

Energy plays a crucial role in driving economic prosperity for nations worldwide. With
the rapid growth of the population and evolving lifestyles, global energy demands continue
to expand. Simultaneously, environmental concerns and the rapid depletion of resources
have become alarming challenges. Fossil fuel consumption has notably contributed to
environmental degradation, intensifying the need for clean and sustainable energy sources.
In this context, hydrogen emerges as a promising solution to meet the growing energy
requirements [1–3]. As an ecofriendly energy carrier, hydrogen offers a range of advantages,
including a high gravimetric energy density, zero emissions, and a renewable nature. Its
environmentally benign characteristics position it as a clean energy transporter [4]. With
its immense potential, hydrogen is expected to serve as a highly efficient alternative fuel
with diverse applications in the future. However, the development of highly efficient and
safe hydrogen transportation and storage technologies remains a subject of discussion
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and demonstration. Currently, high-pressure compressed hydrogen is the most commonly
employed storage technology, although concerns regarding safety persist. Among the three
primary techniques for hydrogen storage, namely compressed gas, cryogenic liquid, and
solid-state storage, only the former two methods have commercialized. Nevertheless, the
cost-effectiveness and safety considerations of hydrogen storage have led to significant
research efforts focusing on solid-state storage through the adsorption and/or absorption of
various materials and alloys [5,6]. The growing development of the new energy automotive
sector has spurred numerous studies on secure hydrogen storage. Porous materials, in-
cluding zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs),
and carbon-based materials (such as fullerenes, nanotubes and graphene), have received
considerable attention [7]. However, the low hydrogen storage capacity of zeolites and
porous silica, along with the low operating temperature (77K) of MOFs and COFs, pose
disadvantages for hydrogen storage [8,9]. As a result, 2D carbonaceous materials [10],
particularly graphene [11,12], have emerged as a topic of significant interest in the field
of hydrogen storage materials. Graphene offers exceptional specific surface area, struc-
tural stability, lightweight properties and rapid adsorption kinetics [13–15]. Despite the
relatively low hydrogen storage capacity of pure graphene (<1 wt% at room temperature),
which falls short of the U.S. Department of Energy (DOE) target of 5.5 wt% for onboard
applications by 2025 [16], it remains a subject of exploration and optimization for hydrogen
storage purposes. Some researchers confirmed that there is an increment in the hydrogen
storage capacity of graphene after being modified by metal atoms, clusters, or nanoparticles.
Palladium, platinum, and other precious metals have been widely studied and used to
enhance the hydrogen storage capacity of carbon-based materials owing to the hydrogen
spillover effect [17–19]. However, the high cost has inhibited the large-scale industrial
application of these precious metals. The spillover process in hydrogen storage involves
the dissociation of hydrogen molecules on the catalyst, migration of hydrogen atoms from
the catalyst to the substrate, and diffusion of hydrogen atoms on the substrate surface.
However, certain pure transition metal-decorated graphene materials face limitations due
to a high energy barrier. For instance, Psofogiannakis et al. [20] reported a migration barrier
of 2.6 eV from the Pt4 cluster to graphene. This high migration barrier hampers the efficient
and thermodynamically favorable transfer of hydrogen atoms from the catalyst to the
carbon receptor, thereby impeding the spillover rate of hydrogen.

To reduce the reliance on precious metals such as Pd, the formation of Pd-based alloys
has emerged as an effective strategy. The introduction of alloying elements can alter the
hydrogen spillover effect and consequently modify hydrogen storage capacity. Guo et al.
conducted research on the highest occupied molecular orbital (HOMO) of Penta-Graphene
(PG) decorated with Ni4, Pd4, and Ni2Pd2. Their findings revealed that the orbit of Ni
overlaps with that of Pd, resulting in a decrease in the electric field of the Ni2Pd2 cluster
compared to Ni4 and Pd4. This decrease leads to a reduction in hydrogen adsorption
energy [21]. In another study by Wu et al., a systematic comparison of the properties of
Pd6Ni4 and Pd4Ni6 was conducted [22]. It was observed that the migration of electrons
between Pd and Ni caused the D-band center of Pd to shift downward. Our previous
research demonstrated that P doping improves the electronic structure of Pd, resulting in
a downward shift of the D-band center. This, in turn, weakens the adsorption energy of
materials for H2, lowers the diffusion energy barrier of H atoms, and promotes hydrogen
spillover, thereby enhancing hydrogen absorption and desorption capacity [23]. Based on
this understanding, the design and synthesis of Pd–Ni alloys hold promise for improving
hydrogen storage performance by adjusting the D-band center.

Moreover, despite extensive research efforts in the field of hydrogen storage, the devel-
opment of efficient onboard hydrogen storage systems still poses significant scientific and
technological challenges. To address this issue, we have conducted a comprehensive inves-
tigation, taking into account previous experimental and computational studies towards
the development of an economically viable graphene-based hydrogen storage material. In
our study, we successfully synthesized the material using a solvothermal method, wherein
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palladium (Pd) was incorporated to partially replace nickel (Ni). Notably, the utilization of
ethylene glycol as the hydrothermal solvent resulted in the coexistence of Ni and Pd in the
final material. Concurrently, some Pd atoms infiltrated the Ni lattice, forming a NiPd alloy.
Our findings reveal that the NiPd-rGO material exhibits a remarkable maximum hydrogen
storage capacity of 2.65 wt% under mild conditions, specifically at 4 MPa and 298 K.

2. Material Preparation
2.1. Obtaining NiPd-rGO at Different Hydrothermal Temperatures

The experimental procedure commenced by dispersing 100 mg of graphene oxide (GO)
powder in a mixed solution comprising 30 mL of ethylene glycol and 30 mL of de-ionized
water. To this mixture, 78 mg of Pd(OAc)2 and 150 mg of NiCl2·6H2O were added. The pH
of the solution was adjusted to 12~13 using an appropriate amount of KOH. The resulting
solution, containing the dispersed components, was transferred to a 100 mL Teflon-lined
reaction kettle, sealed, and placed in an oven. The temperature of the oven was sequentially
raised to 160 ◦C, 180 ◦C and 200 ◦C, allowing the hydrothermal reaction to proceed for 12 h
at each temperature. After the hydrothermal reaction was completed, the resulting black
solution was left undisturbed for 6 h. The supernatant was carefully decanted, and the
remaining material was subjected to repeated washing with deionized water using suction
filtration until the pH reached a neutral level. Subsequently, the material was freeze-dried
for 12 h, resulting in the formation of a black powder. To further enhance the material, the
obtained black powders underwent a heat treatment process at 500 ◦C for 1 h under a 10%
H2/Ar atmosphere, employing a heating rate of 5 ◦C/min. This final treatment led to the
formation of NiPd-rGO, the desired product of the synthesis process.

2.2. Computational Methodology

For this study, a Ni2Pd2 cluster and a graphene slab consisting of sixty carbon atoms,
along with a single attached oxygen atom (rGO), were employed. To prevent interac-
tions between neighboring layers, a vacuum layer with a thickness of 15 Å was added in
the Z-direction. The formation of single-vacancy-reduced graphene oxide (SVrGO) was
achieved by removing a carbon atom from the center of the graphene sheet and attaching
an oxygen atom to the resulting vacancy, resulting in a graphene sheet with fifty-nine
atoms. Subsequently, the structure was optimized to attain a stable configuration. Density
Functional Theory (DFT) was employed as the computational method in this study. It
allowed for the calculation of important parameters such as the binding energy between
the Ni2Pd2 cluster and SVrGO, as well as the adsorption energy of hydrogen (H2) on the
composite material. Vienna Ab initio Simulation Package (VASP) was used to perform
the calculations. The exchange and correlation interactions were described using gener-
alized gradient approximation (GGA) in the form of the Perdew–Burke–Ernzerhof (PBE)
functional. The calculations used a Brillouin region of 5 × 5 × 1 as the k-point value, and
the geometry optimization structure was obtained by relaxation until the force on each
atom was less than 0.02 eV/Å, and the convergence criterion for energy was chosen as
1× 10−4 eV. The cutoff energy was 450 eV, and all calculations considered spin polarization.
The converged bond length for pristine graphene was determined to be 1.42 Å which shows
that all the parameters used in this calculation are valid. The study employed an equation
to determine the adsorption energy of the cluster and slab:

E(B) = E(Cluster+substarte) − E(substrate) − E(cluster) (1)

where E(B) is the binding energy, E(cluster+substarte) is the total energy of a system, E(substarte)
is the total energy of slab and E(cluster) is the total energy of cluster. The following equation
has been utilized for the adsorption energy of the H2 molecule, taking into account the
vibration effect for a gas phase only, as it is nearly negligible for a solid system.

E(ads) =
(

E(H2+Cluster+substarte) +4ZPE
)
− E(cluster+substrate) −

(
E(H2) +4ZPE

)
(2)
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where E(ads) is the H2 adsorption energy, E(H2+cluster+substarte) is the total energy of a
system, E(cluster+substarte) is the total energy of the cluster-decorated substrate, E(H2) is the
total energy of a single H2 molecule and4ZPE is the zero-point energy correction.

3. Results and Discussion

Figure 1 illustrates the X-ray diffraction (XRD) patterns obtained from the NiPd-rGO-X
(X = 160, 180, 200 ◦C) samples, synthesized at different hydrothermal temperatures. A
comparison with standard PDF cards allowed for the identification of a biphasic structure
within the material, indicating the coexistence of Pd and Ni phases. The peaks observed at
40.2◦, 46.8◦, 68.3◦, 82.4◦ and 86.9◦ correspond to Pd (111), Pd (200), Pd (220), Pd (311) and
Pd (222), respectively, as per the PDF database. Of particular interest, the peaks associated
with Ni (PDF#70-1849) exhibited a noticeable shift towards lower angles, implying the
incorporation of Pd atoms into the Ni lattice, thereby forming a NiPd alloy [24]. This
observation is evident from the shift of the Ni (111) diffraction peak towards smaller angles,
indicating an expansion of the nickel unit cell due to alloying with palladium. The XRD
peaks change with the variation in temperature. At 160 ◦C, the material predominantly
exhibits a split phase composed of palladium and nickel. The XRD analysis indicates that
the nickel content within the palladium lattice is relatively low, and correspondingly, the
palladium content within the nickel lattice is also relatively small. As the temperature
is increased to 180 ◦C, there is an augmentation in the quantity of palladium integrated
into the nickel lattice, leading to the formation of a greater number of palladium–nickel
alloys with nickel as the primary phase. Subsequently, at 200 ◦C, the amount of nickel
incorporated into the palladium lattice increases, resulting in the transformation of the
material into a palladium–nickel alloy with palladium as the principal phase. Moreover, the
shift in the position of the XRD peaks can serve as evidence. At 160 ◦C, the phase exhibits
closer proximity to our palladium and nickel composition. At 180 ◦C, the palladium content
within the nickel lattice notably increases, leading to a greater shift in the peak position.
Finally, at 200 ◦C, the position of the nickel peak shifts in the opposite direction, while
the peak shift of palladium becomes more pronounced. This finding suggests a higher
proportion of Ni alloyed with Pd in the sample synthesized at 180 ◦C, indicating that
180 ◦C may be the optimum hydrothermal temperature for the synthesis of NiPd. The
higher proportion of Ni in the NiPd alloy synthesized at 180 ◦C is particularly significant
as Ni is more cost-effective than Pd. Therefore, the increased proportion of Ni offers a
promising avenue for achieving a cost-effective hydrogen storage material in the NiPd
alloy synthesized at 180 ◦C.

Inorganics 2023, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 1. (a) XRD patterns, (b) Raman spectra of NiPd-rGO-X (X = 160, 180, 200 in °C) prepared at 
different hydrothermal temperatures. 

To examine the distribution of nanoparticles on the materials, field emission scanning 
microscopy (FESEM) was utilized to investigate the morphologies of the NiPd-rGO-X 
samples. The findings, depicted in Figure 2, demonstrate a uniform distribution of NiPd 
nanoparticles on the graphene surface. The grain size of these nanoparticles ranges from 
5 to 45 nm, exhibiting a normal distribution pattern. A detailed analysis of Figure 2 indi-
cates that as the hydrothermal temperature increases, the size of the nanoparticles loaded 
on the graphene surface tends to decrease. However, it is worth noting that beyond a tem-
perature of 180 °C, the size variations become insignificant, thereby further corroborating 
that 180 °C represents the optimal hydrothermal temperature. Moreover, an interesting 
observation is made with the increase in hydrothermal temperature, wherein some larger 
particles present in the NiPd-rGO-160 sample disappear. In the NiPd-rGO-200 sample, 
the particle size distribution falls within the range of 5–40 nm, exhibiting a narrower dis-
tribution compared to that observed in NiPd-rGO-160. 

 
Figure 2. SEM images (a = NiPd-rGO-160, c = NiPd-rGO-180, e = NiPd-rGO-200) and particle size 
distribution (b = NiPd-rGO-160, d = NiPd-rGO-180, f = NiPd-rGO-200) of NiPd-rGO-X (X = 160, 180, 
200 in °C) prepared at different hydrothermal temperatures. 

Figure 1. (a) XRD patterns, (b) Raman spectra of NiPd-rGO-X (X = 160, 180, 200 in ◦C) prepared at
different hydrothermal temperatures.

In order to investigate the presence of defects within the materials, Raman spec-
troscopy was employed to analyze the NiPd-rGO-X samples (where X represents the
hydrothermal temperature of 160, 180, and 200 ◦C), as illustrated in Figure 1b. The obtained
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spectra for all three samples exhibited the presence of the D-band and G-band. The D-band,
positioned at 1340 cm−1, corresponds to the disordered hybridization of sp2 [25], while the
G-band, observed at 1580 cm−1, is associated with the stretching of the C-C bond within
the graphene material. Furthermore, upon conducting calculations, it was discovered that
the NiPd-rGO-160 sample exhibited the highest ID/IG ratio, measuring 0.88. It is worth
noting that the ID/IG ratio tends to decrease as the hydrothermal temperature increases.
Consequently, the NiPd-rGO-200 sample displayed the lowest ID/IG ratio, amounting
to 0.85.

To examine the distribution of nanoparticles on the materials, field emission scanning
microscopy (FESEM) was utilized to investigate the morphologies of the NiPd-rGO-X
samples. The findings, depicted in Figure 2, demonstrate a uniform distribution of NiPd
nanoparticles on the graphene surface. The grain size of these nanoparticles ranges from 5
to 45 nm, exhibiting a normal distribution pattern. A detailed analysis of Figure 2 indicates
that as the hydrothermal temperature increases, the size of the nanoparticles loaded on the
graphene surface tends to decrease. However, it is worth noting that beyond a temperature
of 180 ◦C, the size variations become insignificant, thereby further corroborating that 180 ◦C
represents the optimal hydrothermal temperature. Moreover, an interesting observation is
made with the increase in hydrothermal temperature, wherein some larger particles present
in the NiPd-rGO-160 sample disappear. In the NiPd-rGO-200 sample, the particle size
distribution falls within the range of 5–40 nm, exhibiting a narrower distribution compared
to that observed in NiPd-rGO-160.
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Figure 2. SEM images ((a) = NiPd-rGO-160, (c) = NiPd-rGO-180, (e) = NiPd-rGO-200) and particle
size distribution ((b) = NiPd-rGO-160, (d) = NiPd-rGO-180, (f) = NiPd-rGO-200) of NiPd-rGO-X (X =
160, 180, 200 in ◦C) prepared at different hydrothermal temperatures.

The specific surface area and pore size distribution of the NiPd-rGO-X material were
determined through N2 isothermal adsorption–desorption tests conducted at a temperature
of 77K. Figure 3a,b display the N2 adsorption–desorption isotherms and pore size distribu-
tion curves of NiPd-rGO-X, respectively. It is evident that the N2 adsorption–desorption
isotherms of all three samples exhibit the characteristic features of type-IV adsorption
isotherms, suggesting the presence of a mesoporous structure within the material. The ob-
served hysteresis in the isotherms further supports the existence of mesopores. Among the
samples, NiPd-rGO-200 exhibited the highest specific surface area, measuring 137.89 m2/g.
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It is noteworthy that the specific surface area demonstrated a decreasing trend as the
hydrothermal temperature was reduced, which could be attributed to the exfoliation of
graphene layers at higher temperatures. The average pore diameter of NiPd-rGO-X was
determined to be approximately 2.5 nm, indicating a similarity in the pore structure among
the three samples. Nevertheless, the pore volume diminished with decreasing hydrother-
mal temperature, consistent with the variation in specific surface area, thus suggesting a
correlation between pore volume and surface area.
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The X-ray photoelectron spectroscopy (XPS) technique was utilized to investigate
the surface state of the samples in detail. Figure 4 showcases the XPS spectrum of NiPd-
rGO-X. Upon analyzing the survey spectra, distinct peaks corresponding to C, O, Pd and
Ni are observed. In the 1s spectrogram of C, the peaks at 284 eV, 284.8 eV and 286.3 eV
correspond to the C=C bond, C-O bond and C=O bond, respectively. These peaks indicate
the presence of incompletely reduced oxygen-containing groups in rGO, thus reflecting
its surface composition [26]. Moving on to Figure 4c, it is observed that the peaks at
335.1 eV and 340.2 eV correspond to the 3d5/2 orbital and 3d3/2 orbital of Pd(0), respectively.
Additionally, the peaks at 336 eV and 341.5 eV correspond to the 3d5/2 orbital and 3d3/2
orbital of Pd(II), respectively. This indicates the coexistence of Pd in different oxidation
states, suggesting the formation of PdO [27]. Notably, in comparison to Pd-rGO, the peak
of Ni-Pd-rGO shifts towards a higher binding energy, indicating a change in the chemical
state of the Pd atom. This forward movement suggests electron transfer from Pd to Ni after
alloying, leading to a decrease in the center of the D-band [28]. The downward shift of
the D-band center corresponds to a reduction in the adsorption of H by metals, thereby
promoting hydrogen spillover and improving the hydrogen storage performance of the
materials. Lastly, as depicted in Figure 4d, the peaks at 853.0 eV and 871.1 eV are associated
with Ni, while the peaks at 855.5 eV and 873.1 eV are attributed to Ni2+, indicating the
oxidation of Ni on the surface of the sample.

The hydrogen adsorption kinetic curves of NiPd-rGO-X at a pressure of 4 MPa and
temperature of 298 K are illustrated in Figure 4a. The measured hydrogen storage capacities
of the NiPd-rGO-160, NiPd-rGO-180, and NiPd-rGO-200 samples are 2.60 wt%, 2.65 wt%
and 2.63 wt%, respectively, indicating their close proximity as shown in Figure 5. The
marginally higher hydrogen storage capacity observed in the NiPd-rGO-180 sample can be
attributed to the enhanced alloying degree of NiPd, resulting in a more efficient hydrogen
spillover effect compared to the Pd and Ni single phases. Notably, the NiPd-rGO-180
material exhibits the highest hydrogen storage capacity (2.65 wt%) among the Ni-rGO, Pd-
rGO and NiPd-rGO materials. This remarkable improvement is ascribed to the synergistic
effect of rGO and PdNi, which alters the diffusion behavior of hydrogen molecules within
the composites. Specifically, the PdNi alloy particles act as activation centers, facilitating
the decomposition of hydrogen molecules into hydrogen atoms. These atoms are then
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stored within the surface defects of graphene, thereby enhancing the overall hydrogen
storage capacity of the material. This phenomenon is consistent with the findings of other
researchers, who have reported on the higher affinity of defects for hydrogen adsorption
from other surface sites [29,30].
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Following the optimization of the graphene slabs, as well as Ni2Pd2 clusters, the
cluster was placed onto rGO and SVrGO, where the cluster of the Ni2Pd2 was tested in
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different orientations and is presented in Figure 6. To evaluate the stability of Ni2Pd2 on
different graphene surfaces, the binding energies were determined using Equation (1),
and the findings of our study suggest that the cluster is supported on rGO (with no
defects) with three different orientations as shown in the following: Figure 6a, Pd atoms
attached to carbon having a binding energy of −1.03 eV; Figure 6b, Ni atoms attached to
carbon having a binding energy of −2.60 eV, which is higher than the former case due to
bonding of the oxygen atom with the Ni atom; and Figure 6c, Pd and Ni atoms attached
to carbon having a binding energy of −1.1 eV, which do not seem to be suitable materials
for hydrogen storage. This is attributed to lower binding energy which can cause metal
atoms agglomeration which reduces the hydrogen storage capacity. As we know, during
metal–metal interaction, metal atoms tend to cluster together, resulting in larger clusters
rather than being evenly dispersed on the substrate. This clustering phenomenon is much
stronger than the cluster–substrate interaction, which minimizes the efficiency of hydrogen
molecule interaction.
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Moreover, the desorption of metal–hydrogen complexes competes with the desorption
of H2 from pure graphene, further hindering the overall hydrogen storage process [31]. To
address these issues, defect modifications have been employed as techniques to enhance the
interaction between graphene and hydrogen molecules. Conversely, the binding energies
of Ni2Pd2 supported on SVrGO with three different orientations are shown in the following:
Figure 6d, Pd atoms attached to carbon vacancy having a binding energy of −4.72 eV;
Figure 6e, Ni atoms attached to carbon having a binding energy of −6.61 eV; and, finally,
Figure 6f, Pd and Ni atoms attached to carbon having a binding energy of −5.17 eV.
Therefore, these substrates are not conducive to clustering. The results of our study also
highlight the significance of defects in the graphene slab, as they significantly increase the
binding energy between the transition metal cluster and the substrate. Our calculations
indicate that the binding energy is approximately four times higher with the introduction
of defects, which is consistent with previous findings reported by Kim et al. [32]. This
increase in binding energy not only enhances the hydrogen storage capacity of the system
but also addresses the challenge of complex hydride desorption during hydrogen molecule
release [31]. By effectively increasing the binding energy, the presence of defects in the
graphene structure offers a promising solution for improving hydrogen storage capabilities
and overcoming the issue of complex hydride desorption.

In order to calculate the adsorption energy of the H2 molecule, Equation (2) was
applied which considers the vibration effect only for the gas phase since it is almost
negligible for a solid system. The optimized structures and corresponding calculated
adsorption energies of single H2 molecules adsorbed on Ni2Pd2-rGO and Ni2Pd2-SVrGO
at different positions within the orientation of the cluster are illustrated in Figure 7. The
adsorption energies with negative values in Figure 7 indicate favorable adsorption, as they
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signify the attraction of H2 molecules toward the cluster. Upon structural optimization,
the H-H bond underwent relaxation, resulting in bond lengths ranging from 0.83 Å to
0.88 Å, and adsorbed H2 molecules exhibited an increase in bond length on all materials as
compared to the free H2 bond length of 0.75 Å. However, when compared to an isolated
H2 molecule, the stretching of the H-H bond length was found to be minimal, with a
difference of less than 0.3 Å [33], indicating non-dissociative chemisorption or “molecular”
adsorption of H2, with the association between the H2 molecule and the Ni and Pd atoms
resulting from Kubas-type interaction. Additionally, the bond length between Ni and H
varies between 1.56 Å and 1.64 Å, and the bond length of Pd and H varies between 1.72 Å
and 1.79 Å. As shown in Figure 7, it is observed that the adsorption energies are different
from each other, which means that the orientation of the cluster and defects in the slabs
alter the adsorption energy of the H2 molecule. Successful hydrogen storage under ambient
conditions requires an adsorption mechanism that falls between physical and chemical
adsorption, with previous studies recommending an adsorption energy range of −0.20 to
−0.60 eV [34], which is consistent with the adsorption energies observed in this study. All
materials fall within this range except Figure 7(e, g), indicating their potential for hydrogen
storage.
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4. Conclusions

In this study, we employed the hydrothermal method to synthesize NiPd-rGO, aim-
ing to develop a novel hydrogen storage material with improved capacity at moderate
operating conditions and reduced cost. The obtained material exhibited a higher hydrogen
storage capacity of 2.65 wt% (at 4 MPa and 298 K) compared to its Ni-rGO and Pd-rGO
counterparts. This enhanced capacity can be attributed to the synergistic effect between the
alloy particles and rGO. The process of alloying induced changes in the electronic structure
of Pd, leading to a decrease in the center of the D-band. Consequently, the adsorption
of hydrogen on the metal surface weakened, promoting the hydrogen spillover effect.
Additionally, we investigated the binding energies with different orientations. The range of
binding energies was found to be −1.03 to −2.60 eV for Ni2Pd2-rGO and −4.72 to −6.61 eV
for Ni2Pd2-SVrGO. These results indicate that the introduction of defects into the graphene
substrate enhances the interaction between the supported cluster and the substrate, thereby
improving the stability of the material and reducing the likelihood of transition metal atom
agglomeration. The calculated adsorption energies fell within the ideal range of −0.20 to
−0.60 eV, which is conducive to efficient hydrogen ad/desorption processes. Furthermore,
the introduction of defects in the substrate and the orientation of the supported cluster
were found to influence the hydrogen adsorption energy. These findings contribute to
the advancement of hydrogen storage technologies and pave the way for the design and
optimization of graphene-based materials with superior hydrogen storage properties.
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