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Abstract: Colloid quantum dots (CQDs) are recognized as an ideal material for applications in next-
generation optoelectronic devices, owing to their unique structures, outstanding optical properties,
and low-cost preparation processes. However, monodisperse CQDs cannot meet the requirements of
stability and collective properties for device applications. Therefore, it is urgent to build stable 3D
multiparticle systems with collective physical and optical properties, which is still a great challenge
for nanoscience. Herein, we developed a modified microemulsion template method to synthesize
quantum dot supraparticles (QD-SPs) with regular shapes and a high packing density, which is an
excellent research platform for ultrafast optical properties of composite systems. The redshift of the
steady-state fluorescence spectra of QD-SPs compared to CQD solutions indicates that fluorescence
resonance energy transfer (FRET) occurred between the CQDs. Moreover, we investigated the
dynamic processes of energy transfer in QD-SPs by time-resolved ultrafast fluorescence spectroscopy.
The dynamic redshift and lifetime changes of the spectra further verified the existence of rapid
energy transfer between CQDs with different exciton energies. In addition, compared with CQD
solutions, the steady-state fluorescence lifetime of SPs increased and the fluorescence intensity
decreased slowly with increasing temperature, which indicates that the SP structure suppressed the
Auger recombination of CQDs. Our results provide a practical approach to enhance the coupling
and luminescence stability of CQDs, which may enable new physical phenomena and improve the
performance of optoelectronic devices.

Keywords: colloidal quantum dots; supraparticles; auger recombination; fluorescence resonance
energy transfer

1. Introduction

Colloid quantum dots are widely studied light-emitting materials with unique struc-
tures and excellent optoelectronic properties such as a wide excitation spectrum, narrow
emission spectrum, good color purity, and high photoluminescence quantum yield [1–6],
which make them ideal building blocks for optoelectronic devices with collective character-
istics. Their emission spectrum can be tuned across the entire visible wavelength band by
simply adjusting their size and type, which is attractive for applications in displays [7,8],
light-emitting diodes [9–11], solar cells [12,13], and lasers [14–17]. However, the stability
and collective properties required for device applications cannot be achieved by monodis-
perse CQDs. To build a research platform for complex multiparticle systems with collective
properties and to promote the development of CQD devices with novel optoelectronic
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properties, researchers often use self-assembly methods to create CQD superstructures
with coupling effects [18–24]. Such superstructures are expected to exhibit new physical
and optical collective properties due to the coupling between CQDs and have attracted
considerable attention, and have great application prospects in catalysis [25,26], photonic
materials [27], solar cells [28], and drug delivery [29]. Therefore, clarifying the superstruc-
ture construction mechanism of self-assembled CQDs and their unique collective optical
properties is of great significance for the development of next generation optoelectronic
devices [30–39].

In recent years, researchers have devoted tremendous efforts to the study of the optical
properties of superstructured systems [40]. The microemulsion method is commonly used
to control the self-assembly of a large number of CQDs into three-dimensional superstruc-
tures with spherical shapes, known as supraparticles. Previous studies on the preparation
of CQD superstructures by the microemulsion method mainly focused on the relationship
between experimental parameters and the final products, including the influence of the
concentration of CQDs and the type of surfactant on the surface tension and stability of mi-
croemulsion droplets, as well as the control of the final morphology of the SPs by changing
the volatilization conditions [41–44]. Another main direction is clarifying the mechanism
of superstructure assembly by monitoring the dynamical properties of supraparticle nu-
cleation in the process of CQD assembly [45–49]. The success of the synthesis method
has enabled the use of CQDs as building blocks for multifunctional SPs. For instance, the
combination of red-, green-, and blue-emitting QDs into a single SP enables white-light
generation [50,51]. Additionally, the formation of micrometer-scale spherical SPs effectively
combines the QDs into microcavities that support whispering gallery modes to achieve SP
lasers [52–56]. However, the collective luminescence properties and spectral dynamics of
quantum dot supraparticles are rarely studied [57,58]. Therefore, it is urgent and necessary
to clarify the ultrafast optical processes in QD-SPs.

In this work, we synthesized spherical quantum dot supraparticles with a regular
shape and high packing density using the microemulsion template method. This self-
assembled SP structure enabled energy transfer between CQDs through fluorescence
resonance energy transfer, resulting in a redshift in the steady-state fluorescence spectra
of the SPs. Moreover, we investigated the dynamics of the energy transfer process of
individual SPs by time-resolved fluorescence spectroscopy. The fast FRET process promotes
rapid energy transfer between excitons, which then released energy by emitting photons.
This resulted in significantly lower energy dissipation in the form of thermal energy
due to Auger recombination and potentially improved stability at high temperatures. In
addition, we achieved SPs with smaller particle spacing by short-chain ligand exchange,
as evidenced by the faster spectral redshift rate and the faster FRET rate. Therefore, SP
structures with short-chain ligands can better suppress Auger recombination, leading to
better temperature stability of the SPs. Our results show that the CQD self-assembled
supraparticle structure is an ideal platform for the research of multiparticle systems, and its
novel FRET effect and temperature-insensitive fluorescence emission characteristics could
promote the development of new types of optoelectronic devices.

2. Self-Assembly of CQDs into Supraparticles

Figure 1 shows a schematic of the synthesis of self-assembled supraparticles using
CQDs as building blocks. The surface of the CQDs was passivated by long-chain organic
ligands such as oleic acid and oleylamine, which spatially stabilized the colloid and limited
the interaction between individual CQDs. The fabrication of self-assembled SPs from
dispersed CQDs was achieved by evaporating the non-polar phases of the oil-in-water
emulsions. Nearly monodisperse droplets of the CQD solution (oil phase) were formed
using microfluidic chips, and specific size droplets could be prepared by accurately con-
trolling the shear force and relative flow rate of the oil and water phases. These formed
droplets were dispersed in an aqueous phase containing surfactants, which imparted spa-
tial stability to the droplets and prevented them from fusing or breaking. The CQDs were
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confined to the microemulsion drop by the hydrophobic interaction between the surface
ligand and the surfactant. After the formation of the microemulsions, the CQDs began to
assemble with the evaporation of the low-boiling solvent in the droplet. The concentration
of CQDs increased with the evaporation process, and as the volume fraction of CQDs
increased to 20%, the CQDs began to aggregate through hydrophobic interactions [46].
Evaporation time is related to droplet size, oil phase type, and many other factors affecting
the evaporation rate. After the oil phase evaporated completely, solid SPs were formed,
which were bound together by van der Waals forces and no longer dispersed in polar
or non-polar solvents [45,59]. The slow evaporation rate of the oil phase resulted in the
formation of SPs with a regular spherical structure and smoother surface. These SPs were
stabilized in the aqueous phase through the hydrophobic interaction of surfactants, and
their optical properties did not change significantly even after being stored in water for
months. By combining the microemulsion method with microfluidics, we can precisely
control the size of the SPs by adjusting the size of microemulsion droplets and the initial
concentration of CQDs in the oil phase.
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Figure 1. Schematic of the fabrication of colloidal quantum dot supraparticles through the microemul-
sion method.

3. Structural Characterizations of Supraparticles

The surface morphology and spatial structure of the synthesized SPs were character-
ized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
As shown in Figure 2a, most of the SP samples were spherical with a size distribution of
1.0 ± 0.2 µm due to interfacial tension during the volatilization of the oil phase. The inset of
Figure 2a presents a high-resolution image of an individual SP microsphere, illustrating its
regular spherical structure and smooth surface. To further investigate the internal structure
of SP microspheres, TEM analysis was performed. Figure 2b shows a high-angle annular
dark field (HAADF) TEM image of an individual SP microsphere, indicating that the SP
microsphere was composed of a large number of CQDs. Due to the presence of hydropho-
bic surface ligands, the spacing of CQDs in SPs was about 3 nm, which is less than 2 times
the length of oleic acid ligands. This indicates that the cross-linking between ligands in the
SPs made it difficult to redisperse in solvents, and the smooth surface of the SPs can be
attributed to the high filling factor of the cross-linked long-chain ligands. In Figure 2c, the
fast Fourier transform of the TEM image clearly shows that the CQDs were disordered in
the SPs, forming an amorphous glassy structure as expected. Previous studies have shown
that if the basic constituent particles have regular spherical shapes and the same size, and
their interactions can be well approximated with a hard sphere model, the SPs will form
superlattice structures with icosahedral or face-centered cubic structures [41,45,60,61]. In
our experiment, the initial CQDs building blocks were irregularly spherical and polydis-
perse, resulting a random arrangement of CQDs in SPs rather than superlattice structures
despite the high packing factor (as show in Figure S1). These SPs were tightly packed via
cross-linked ligands, resulting in an interparticle spacing of 3 nm, less the twice distance



Inorganics 2023, 11, 218 4 of 11

between ligand layers (Figure S1). Furthermore, as shown in Figure 2d, energy dispersive
X-ray spectroscopy (EDS) confirmed the uniform distribution of CQDs in SPs. These results
show that the as-prepared QD-SP samples have a regular shape, and the CQDs are tightly
packed in SP microspheres without agglomeration and rupture. In addition, the SPs can
be stored in water and had good solution operability, making them promising for further
integration into functional materials and devices.
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Figure 2. Structural characterization of supraparticles. (a) Typical SEM image of the supraparticles.
Inset: magnified image of an individual supraparticle. (b) Representative high-angle annular dark
field scanning transmission electron microscopy (HAADF-STEM) image of a supraparticle. (c) TEM
image of a single QD-SP. Inset: the fast Fourier transform of the QD-SP. (d) EDS elemental mapping
for cadmium, selenium, zinc, and sulfur to show the composition of the microspheres.

4. Single Supraparticle Spectroscopy and Analysis

The optical properties of the prepared QD-SP microspheres were characterized by
a confocal micro-photoluminescence spectrometer. Figure 3a shows the absorption and
emission spectra of dispersed CQD solution, as well as the emission spectrum of an
individual SP microsphere. The photoluminescence (PL) emission center of dispersed
CQD solutions was 1964 meV (631 nm) and the absorption spectrum showed the lowest
exciton transition at 2025 meV (612 nm), and the emission spectrum of an individual SP
was centered at 1944 meV (637 nm). We observed that the emission spectrum was slightly
redshifted (20 meV) after the CQDs were assembled into SPs, which can be attributed to the
fluorescence resonance energy transfer by short-range dipole–dipole coupling interactions
between adjacent CQDs [62]. CQDs exhibit quantum size effects, and their size in colloidal
solutions is not ideally uniform but follows a Gaussian distribution, resulting in CQDs
having different exciton energies. When the distance between adjacent CQDs is less
than 10 nm, small CQDs (with larger exciton energies) can act as donors while large
CQDs (with smaller exciton energies) act as acceptors, activating FRET from small to
large CQDs. We further investigated the energy dynamic processes of the SP samples
using time-resolved and spectrum-resolved fluorescence spectroscopy to provide a more
systematic demonstration of FRET. To quantify the energy transfer dynamics between
CQDs, we excited the CQD solutions and SPs with 80 fs pulses (1 kHz repetition rate)
using a wavelength of 400 nm. Figure 3c,d and Figure S2 show the emission intensity
as a function of emission wavelength and time that was obtained using a streak camera.
After exciting CQD solutions and SPs with femtosecond pulsed laser, we measured the
time-resolved PL spectra on a time scale of 100 ps (Figure 3e,f). The results showed that the
PL spectra of dispersed CQD solutions had a time-independent peak energy of 2037 meV.
In contrast, the PL spectra of QD-SPs had an initial emission peak at 2035 meV, which
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matches the emission peak of dispersed CQD solution (this spectrum reflects the actual
size distribution of CQDs). However, the emission peak rapidly redshifted within the next
100 ps and stabilized at 2020 meV after more than 100 ps, indicating that the energy transfer
process had stopped.
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Figure 3. (a) Absorption (black dashed line) and emission (black curve) spectra for the CQD solution
and emission spectrum for the SPs (red curve). (b) The excited-state pathways in a CQDs supraparticle
considered in our model. (c,d) Spectrally resolved transient photoluminescence of (c) CdSe/ZnS
CQD solution and (d) CQD supraparticles. (e,f) Emission spectra of CdSe/ZnS CQD solution (e) and
CQD supraparticles (f) at 100 ps delay time after an excitation pulse. The short vertical bars are the
peak energies. The gray vertical line is the PL peak energy of the first spectrum at 0 ps.

In order to elucidate the physical mechanism of PL spectra shift in self-assembled
CQDs, we further analyzed the time-resolved PL spectra. First, we compare the transient
PL decay curves of the dispersed CQD solution and a single SP at different emission wave-
lengths, as shown in Figure 4a,b. When the filter for wavelength selection was used, PL
decay in the CQD solutions was almost wavelength-independent, which indicates that the
CQDs in solution were independent emitters without any coupling or interaction between
them. In contrast, PL decay at different wavelengths in SPs clearly revealed the time-
dependent dynamics of FRET between CQDs. At short wavelengths, PL decayed faster at
the initial stage, and the PL lifetime gradually increased with the increase in wavelength.
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Furthermore, we fitted the lifetime data in Figure 4b with the bi-exponential equation
y(t) = A0 + A1exp(−t/τ1) + A2exp(−t/τ2), where τ1 and τ2 represent fast and slow decay
times, and A1 and A2 represent their contribution percentages, respectively. The fitting pa-
rameters are summarized in Table S1 and plotted in Figure 4c,d. As wavelength increased,
we found that the fast decay time (52.5–64.8 ps) and slow decay time (308.6–355.4 ps)
increased, but the fast component ratio decreased from 60% to 35%, while the slow com-
ponent ratio increased from 40% to 65%. Since the fast and slow decay components come
from non-radiative and radiative recombination processes, the fast component fraction
decreased rapidly with wavelength from 595 to 620 nm, indicating that exciton energy
was transferred from small to large CQDs due to dipole–dipole coupling interactions. In
smaller CQDs, most excitons transferred energy to lower bandgap CQDs rather than radia-
tive recombination. In contrast, excitons in larger CQDs received energy from FRET and
radiated photons, which produced a longer PL lifetime than smaller CQDs. Data analysis
of the ultra-fast time-resolved PL decay clearly showed the fast FRET process between
different CQDs in SPs from high energy excitons to low energy excitons; indirect coupling
via photon reabsorption was ruled out because it would not change the PL lifetime decay
rate of the CQDs.
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Figure 4. The energy transfer in CQD solution and QD-SPs. (a,b) Typical time-resolved photolumi-
nescence decay curves of CQD solution (a) and QD-SPs (b) at various wavelengths. (c,d) The fast
decay time and slow decay time of CQD solution (c) and SPs (d) PL decay curves with the emission
peak in the range of 595 to 620 nm.

5. Suppression of Auger Recombination

The fluorescence resonance energy transfer has been demonstrated to be an effective
means of enhancing the performance of sensing and light-harvesting functions [63]. In
contrast to FRET, the non-radiative Auger recombination process can lead to the loss of
energy in the form of heat, leading to reduced efficiency for CQD-based applications [64,65].
We noted that the FRET has an energy transfer mechanism similar to Auger recombination,
but Auger recombination releases energy in the form of heat. Therefore, we suspect that
when FRET occurs between CQDs, excitons transfer energy rapidly to neighboring excitons
and then recombine to emit photons, reducing the probability of Auger recombination
and thus inhibiting Auger recombination within CQDs. At higher excitation fluences, the
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transient PL of SPs showed an increased radiation lifetime compared with the CQD solution
(Figure 5a), with a slow lifetime component of 9.6 ns for the CQD solution and 12.2 ns for
the QD-SPs. Moreover, temperature-dependent PL showed that the PL intensity of the CQD
solution decreased more rapidly with increasing temperature than QD-SPs (Figure 5b).
The QD-SP structure was better at withstanding temperature increases (Figure 5b shows
a lower slope), and considering the high correlation between Auger recombination and
temperature [66], this difference suggests that the QD-SP structure effectively suppressed
this non-radiative recombination process. To further verify the relevance of FRET to
AR, we used a short-chain Octylamine (OctA) ligand exchange strategy to replace the
long-chain organic oleic acid (OA) ligand, reducing the inter-dot distances in SPs (as
show in Figure S2). Considering the strong distance-sensitivity of FRET, reducing the dot
spacing will improve FRET efficiency, which can be manifested by an increase in spectral
redshift [62]. Figure 5c shows the PL spectra of the dispersed CQD solution, OA-SPs, and
OctA-SPs at room temperature. The emission centers of the three CQD structures were
1964 meV, 1944 meV, and 1930 meV, respectively. The spectrum of OctA-SPs was redshifted
by 30 meV compared to 20 meV in the spectrum of OA-SPs. In addition, the PL emission
centers of the dispersed CQD solution did not change after the ligand exchange, suggesting
that the short-chain ligand increased the rate of FRET. Furthermore, we measured the
temperature-dependent PL spectra of the dispersed CQD solution, OA-SPs, and OctA-SPs,
as shown in Figure 5d. Under the same excitation conditions, the PL intensities of the
three different CQD structures decreased to 10% of the initial value when the temperature
increased to 310 K, 360 K, and 400 K, respectively. These results show that the SP structure
achieved the acceleration of FRET process and the suppression of Auger recombination,
improving the efficiency of CQD-based devices and has a promising application prospect
in carrier-multiplication-enhanced photovoltaics and electrically pumped lasers [67].
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6. Materials and Methods
6.1. Synthesis of Supraparticles Structures

Colloidal CdSe/ZnS quantum dots were obtained commercially (Xingzi (Shanghai,
China) New Material Technology Development Co., Ltd.). We assembled QDs into supra-
particles using an emulsion-based, bottom-up, self-assembly process following previously
reported methods with slight modifications. In this work, we used microfluidic chips in-
stead of ultrasonic methods to produce monodisperse oil-in-water microemulsion droplets.
In a typical experiment, we prepared a solution of CdSe/ZnS QDs in hexane at a concen-
tration of ~20 mg/mL as the dispersed phase and a solution of sodium dodecyl sulfate
(SDS) in deionized water at a concentration of ~6 mg/mL as the continuous phase. We
then connected a commercial microfluidic chip to a multichannel pressure regulator to
generate monodisperse hexane microdroplets, controlling their size by adjusting the flow
rates of the dispersed and continuous phases. We collected the resulting microemulsion
in a glass vial covered with parafilm pierced by several 0.5 mm holes to slow down evap-
oration and stirred it at room temperature for 12–18 h until the hexane in the oil phase
had fully evaporated. After evaporation, we washed the resulting QD SPs by three rounds
of centrifugation (5000 rpm, 2 min) and redispersed them in deionized water to remove
the residual surfactants. For ligand exchange of QD-SPs, we centrifuged the originally
prepared SPs (5000 rpm, 2 min), added 1 wt% octylamine in 1 mL methanol, and mixed
the solution at 500 rpm under magnetic stirring for 20 min. After 20 min, we washed the
ligand-exchanged QD-SPs by centrifugation (5000 rpm, 2 min) and redispersed them in
methanol and water to remove the residual ligands. We then drop-cast the dispersion of
QD-SPs onto the desired substrate (silicon for SEM imaging and glass for spectroscopy)
and dried it under a vacuum.

6.2. Structural Characterization

The SEM measurements were performed using field-emission scanning electron mi-
croscopy (FE-SEM; Auriga S40, Zeiss, Oberkochen, Germany) operated at 1 kV. The TEM
measurements were performed using the Tecnai G2 F20 S-TWIN (FEI, Hillsboro, OR, USA)
operated at 200 KV. The samples were prepared on a clean silicon wafer and then transferred
onto a 300-mesh copper TEM grid by slightly touching the sample to the mesh.

6.3. Optical Characterization

Photoluminescence spectra were measured using a confocal microphotoluminescence
system (LabRAM HR Evolution) with a high-numerical-aperture microscopy objective
(N.A. = 0.5, 50×). The PL spectra were excited by a femtosecond laser (Libra, Coher-
ent, B40 fs, 10 kHz, Santa Clara, CA, USA). Absorption spectra were measured using a
PerkinElmer UV/VIS/NIR spectrometer (Lambda 750, Villeneuve-d’Ascq, France). The
time-resolved PL measurements were performed using a streak camera with picosecond-
order time resolution (Optronis, SC-10, Kehl, Germany). Low-temperature measurements
were performed using a cryostat (80–475 K, Janis ST-500, Woburn, MA, USA) with a
temperature controller (cryocon 22C, USA) and liquid N2 for cooling.

7. Conclusions

In summary, we demonstrated a self-assembly method for preparing spherical SPs
with a regular structure and smooth surface. The high packing density made the SP
structure very stable in both water and air, and had good solution processability. PL
spectroscopy and time-resolved experiments showed that the decay rate of PL intensity
gradually increased with the increase in pump energy due to FRET, and the PL spectrum
gradually redshifted with time. As the FRET rate increased, non-radiative Auger recombi-
nation of the CQDs was suppressed, and temperature-dependent PL spectra confirmed that
the SP structure was more effective in suppressing Auger recombination than dispersed
CQDs. Through short-chain ligand exchange, we further verified that the highly packed
SPs had better high temperature optical properties, which can be attributed to the increased
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FRET rate and suppressed Auger recombination in the SPs with smaller dot spacings.
These properties make SP structures very attractive for applications in biosensors and
light-emitting devices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11050218/s1, Figure S1: High resolution transmission electron
microscopy image of SPs; Figure S2: Fourier transform in-frared spectroscopy spectra of OctA-SPs
and OA-SPs; Table S1: Life decay curve fitting parameters at different wavelengths of 595–620 nm.
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