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Abstract: The six new copper(II) coordination compounds [Cu(HL1)Cl2] (1), [Cu(HL1)Br2] (2),
[Cu(H2O)(L1)(CH3COO)]·1.75H2O (3), [Cu(HL2)Cl2] (4), [Cu(HL2)Br2] (5), [Cu(H2O)(L2)(CH3COO)]
(6) were synthesized with 2-formyl- and 2-acetylpyridine N4,S-diallylisothiosemicarbazones (HL1

and HL2). The new isothiosemicarbazones were characterized by NMR, FTIR spectroscopy, and X-ray
crystallography ([H2L2]I). All copper(II) coordination compounds were characterized by elemental
analysis, FTIR spectroscopy, and molar conductivity of their 1mM methanol solutions. Furthermore,
the crystal structure of complex 3 was determined using single-crystal X-ray diffraction analysis. The
studied complexes manifest antibacterial and antifungal activities, that in many cases are close to
the activity of medical drugs used in this area, and in some cases even exceed them. The complexes
4 and 5 showed the highest indexes of selectivity (280 and 154) and high antiproliferative activity
against BxPC-3 cell lines that surpass the activity of Doxorubicin. The complexes 1–3 also manifest
antioxidant activities against cation radicals ABTS•+ that are close to that of trolox, the antioxidant
agent used in medicine.

Keywords: isothiosemicarbazones; copper complexes; antiproliferative activity; antibacterial activity;
antifungal activity; antiradical activity

1. Introduction

Copper is one of the crucial micronutrients that is located in different amounts in
all human body tissues. The highest amount of copper is in the liver [1]. Various metal-
loproteins depend on copper as their active site, which makes it essential in a range of
biochemical processes: electron transfer, oxidation, and oxygen transport. Copper also
participates in cellular respiration, antioxidant protection, neurotransmission, connective
tissue biosynthesis, and cellular iron metabolism [2]. Over the past few years, copper
compounds have been studied as potential therapeutic agents for application as cancer
medicine and as diagnostic drugs [3,4]. Many Cu(II) coordination compounds rapidly
interact with glutathione in cells to form adducts and as a result the Cu(I) coordination
compound is formed. This compound can generate a superoxide anion, which can induce
ROS formation in a Fenton-like reaction [5]. However, antiproliferative action is not the
only one for copper coordination compounds such as therapeutic agents, because of their
high redox activity. For example, the copper(II) coordination compound with indomethacin
is widely used as an anti-inflammatory drug in veterinary practice [6].
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Cu(II) complexes of thiosemicarbazone are widely described in the literature because
they are able to form stable complexes with different metal ions, which are lipophilic, and
can easily permeate cell membranes. These complexes exhibit various types of biological
activity: anticancer [7–12], antibacterial and antifungal [13–18], and antioxidant [19]. The
antioxidant activity of copper(II) complexes is less studied.

There are many reasons why oxidative stress occurs: pollution, smoking, alcohol
consumption, obesity etc. Antioxidants can protect us from free radicals that are produced
in our body due to oxidative stress. Such free radicals can cause different diseases such as
diabetes, cardiac diseases, cancer, and atherosclerosis [20].

In isothiosemicarbazones, alkylation of the sulfur fragment occurs, and they usually
coordinate to the central metal atom through azomethine and thioamide nitrogen atoms.
Therefore, in contrast to NS donor atoms of thiosemicarbazones, the isothiosemicarbazones
have NN donor atoms. Due to the difference in coordination, it becomes possible to
obtain coordination compounds of isothiosemicarbazones with a different structure, which
will affect their chemical and biological properties. In some cases isothiosemicarbazones
and their copper(II) coordination compounds outperform in activity the complexes of
corresponding thiosemicarbazones [21]. Copper(II) complexes with isothiosemicarbazones
are less often described in the literature [22–24] and there are several references to their
biological activity, such as antibacterial [25,26] and anticancer [27,28].

Recently, we have synthesized 2-formylpyridine and 2-acetylpyridine 4-allyl-S-
methylisothiosemicarbazones and their copper(II) coordination compounds [29,30]. Their
biological activities such as anticancer, antibacterial, antifungal, and antioxidant have also
been researched. These compounds showed promising results. In this paper we have
replaced the S-methyl radical with the S-allyl one in the structure of isothiosemicarbazone
to study how this will affect biological activity.

The aim of the present investigation is the synthesis, characterization, and study
of antibacterial, antifungal, anticancer, and antioxidant activities of Cu(II) coordination
compounds with 2-formylpyridine and 2-acetylpyridine N4,S-diallylisothiosemicarbazones
(HL1 and HL2, Figure 1).
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Figure 1. Structural formula of HL1 (R = H) and HL2 (R = CH3).

2. Results and Discussion

In this work we have synthesized two new S-substituted isothiosemicarbazones,
namely 2-formylpyridine N4,S-diallylisothiosemicarbazone (HL1) and 2-acetylpyridine
N4,S-diallylisothiosemicarbazone (HL2), that were obtained by a three-step method start-
ing with interaction between N4-allylthiosemicarbazide with allyl iodide, then conden-
sation with 2-formyl-/2-acetil-pyridine, and, finally, neutralization with sodium carbon-
ate (Scheme 1).
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Furthermore, the single crystals of HL2·HI were obtained by its recrystallization from 
methanol and their structure has been determined using single-crystal X-ray diffraction 
analysis. As a result, it was determined that this organic compound crystallizes in the tri-
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organic cation [H2L2]+ forms upon the transfer of the proton from HI to HL2. 

  

Scheme 1. Synthesis of N4,S-diallylisothiosemicarbazones HL1 and HL2 (HL1: R = H; HL2: R = CH3).

The structures of the HL1 and HL2 were confirmed using 1H and 13C NMR spec-
troscopy (Figures S1–S4). The NMR spectra of HL1 contain peaks of three tautomeric forms
that according to the literature [31] presumably are imino form and cis(N1-N4)/trans(N1-N4)
amino forms (Scheme 2). The NMR spectra of HL2 contain peaks of two tautomeric forms.
Only cis(N1-N4) and trans(N1-N4) amino forms of HL2 can be observed in its spectra.
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Furthermore, the single crystals of HL2·HI were obtained by its recrystallization from
methanol and their structure has been determined using single-crystal X-ray diffraction
analysis. As a result, it was determined that this organic compound crystallizes in the
triclinic space group P¯1 and represents an ionic compound [H2L2]I (Table 1, Figure 2a).
The organic cation [H2L2]+ forms upon the transfer of the proton from HI to HL2.

The NNCN torsion angle of the isothiosemicarbazide fragment in this cation is 0.1◦,
which indicates its cis(N1-N4) form (both terminal nitrogen atoms are on one side of the
double C1=N2 bond). The C(1)–N(1) and C(1)–N(2) bonds equal 1.330(7) and 1.312(7) Å
(Table 2). This indicates that the isothiosemicarbazide fragment is stabilized in the amino
form [31]. The conformation of the [H2L2]+ cation is favorable for formation of two inter-
molecular hydrogen bonds with the iodide anion (Table 3, Figure 2a) and for a tridentate co-
ordination to the transition metal atoms. The survey of the Cambridge Structural Database
(CSD) [32] revealed that non-coordinated isothiosemicarbazones are mainly stabilized in
the amino form [30,33–36], but in the case of {2-[(2-oxyphenyl)methylidene]hydrazinyl}
(methylsulfanyl)-N-(prop-2-en-1-yl)methaniminium iodide [37] the imino form is realized.
The cis(N1-N4) conformation similar to that in [H2L2]+ cation was found in [30,37] with
corresponding torsion angles in the range 0.56–2.31◦, while in [33–36] these angles are in
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the range of 175.01–178.97◦. In the crystal of [H2L2]I two intermolecular hydrogen bonds
N–H···I link the organic cation to the iodide anion (Table 3). Two weak hydrogen C–H···I
bonds unite charged components into chains (Figure 2b).

Table 1. Crystal and Structure Refinement Data for [H2L2]I and 3.

Compound [H2L2]I 3

Empirical formula C14H19I1N4S1 C15H23.5Cu1N4O4.75S1
Formula weight 402.29 431.48
Crystal system Triclinic Triclinic

Space group P1 P1
Unit cell dimensions

a (Å) 7.3553(8) 8.6225(5)
b (Å) 9.0535(9) 10.9536(5)
c (Å) 13.3945(18) 11.3493(8)
α (◦) 103.136(10) 89.140(4)
β (◦) 91.306(11) 69.700(6)
γ (◦) 100.693(9) 81.612(4)

V (Å3) 851.56(18) 993.85(11)
Z 2 2

ρcalc (g cm−3) 1.569 1.442
µMo (mm−1) 1.999 1.234

F(000) 400 449
Crystal size (mm) 0.60 × 0.12 × 0.08 0.48 × 0.40 × 0.21

θ Range (◦) 3.12–25.05 3.39–25.25

Index range
−8 ≤ h ≤ 8,
−10 ≤ k ≤ 10,
−15 ≤ l ≤ 15

−10 ≤ h ≤ 10,
−12 ≤ k ≤ 13,
−13 ≤ l ≤ 11

Reflections collected/unique 6159/6159
(twin)

6114/3587
(Rint = 0.0238)

Completeness (%) 99.8 (θ = 25.05◦) 99.6 (θ =25.25◦)
Reflections with I > 2σ(I) 4518 3037

Number of refined parameters 184 240
Goodness-of-fit (GOF) 1.002 1.001

R (for I > 2σ(I)) R1 = 0.0437,
wR2 = 0.0954

R1 = 0.0403,
wR2 = 0.1226

R (for all reflections) R1 = 0.0608,
wR2 = 0.0992

R1 = 0.0496,
wR2 = 0.1296

∆ρmax/∆ρmin (e·Å−3) 0.988/−0.521 0.687/−0.279
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Table 2. Selected Bond Lengths (Å) and Angles (deg) in fragments of isothiosemicarbazones in
[H2L2]I and 3.

Bonds
[H2L2]I 3

(Å)

N(3)–C(2) 1.292(7) 1.286(4)
N(3)–N(2) 1.374(6) 1.362(3)
C(1)–N(1) 1.330(7) 1.305(4)
C(1)–N(2) 1.312(7) 1.361(4)
C(1)–S(1) 1.760(6) 1.768(3)
S(1)–C(11) 1.821(6) 1.796(4)
N(1)–C(8) 1.463(7) 1.474(4)

Angles (◦)

C(2)–N(3)–N(2) 112.8(5) 123.1(2)
N(3)–N(2)–C(1) 111.5(5) 107.0(2)
N(2)–C(1)–N(1) 127.1(6) 122.9(3)
N(2)–C(1)–S(1) 115.8(5) 117.0(2)
N(1)–C(1)–S(1) 117.1(5) 120.1(2)
C(1)–S(1)–C(11) 102.5(3) 104.4(2)
C(1)–N(1)–C(8) 126.6(5) 122.1(3)

Table 3. Hydrogen Bond Distances (Å) and Angles (deg) for [H2L2]I and 3.

D–H···A d(H···A) d(D···A) ∠(DHA)
Symmetry

Transformation
for Acceptor

[H2L2]I

N(1)–H(1)···I(1) 2.84 3.622(5) 152 x, y, z
N(4)–H(2)···I(1) 2.75 3.490(5) 146 x, y, z

C(14)–H(2)···I(1) 3.31 4.241(6) 165 −x + 2, −y + 1,
−z + 1

C(14)–H(3)···I(1) 3.16 4.121(7) 175 −x + 1, −y + 1,
−z + 1

3

O(1W)–
H(1)···O(3W) 1.88 2.761(4) 166 −x, −y + 1, −z +

2
O(1W)–

H(2)···N(2) 1.94 2.835(3) 176 −x, −y, −z + 2

O(2W)–
H(1)···O(1W) 2.05 2.814(4) 151 x, y, z

O(2W)–
H(2)···O(2) 1.95 2.759(4) 158 x − 1, y, z

O(3W)–
H(1)···O(2W) 1.92 2.735(5) 159 x, y, z

O(3W)–
H(2)···O(1) 1.99 2.838(3) 174 x, y, z

Six new copper(II) complexes were obtained by the interaction of the corresponding
copper(II) salts with isothiosemicarbazones HL1 and HL2 (Scheme 3). They have the
following compositions: Cu(HL1)Cl2 (1), Cu(HL1)Br2 (2), Cu(L1)(CH3COO)·2.75H2O (3),
Cu(HL2)Cl2 (4), Cu(HL2)Br2 (5), Cu(L2)(CH3COO)·H2O (6).
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Molar conductivity values of the complexes 1–2 and 4–5 in methanol are in the range
of 169–192 Ω−1·cm2·mol−1 which indicates that they behave like 1:2 electrolytes, while the
molar conductivity values of complexes 3 and 6 are in the range of 82–85 Ω−1·cm2·mol−1

which corresponds to the 1:1 type of electrolyte. The fact that the synthesized complexes 1–6
behave like electrolytes means that the anions of acid residues (Cl−, Br−, CH3COO−) from
the inner sphere are readily substituted with solvent molecules while having been dissolved.
It means that complexes 1–2 and 4–5 contain two anions of acid residue (Cl−/Br−) in their
composition and that in the process of dissolution complex cations and two anions of acid
residue are formed. In the case of complexes 3 and 6 only one anion acid residue is present
in their composition.

The FTIR spectra of complexes 1–6 were compared with the spectra of corresponding
isothiosemicarbazones (HL1/HL2) in order to determine the changes that occur during
their formation (Figures S5–S12). It was observed that three donor nitrogen atoms of the
isothiosemicarbazones HL1 and HL2 are involved in the coordination to the copper(II)
central atoms. In the spectra of complexes 1–2 and 4–5 the ν(NH) stretching vibration band
is shifted by 63–86 cm−1 towards lower wavenumbers. Meanwhile, this band disappears
in the spectra of complexes 3 and 6. It means that the NH group of isothiosemicarbazones
is deprotonated in the process of coordination to the copper(II) ions in the presence of
acetate ions that act like a weak base. The ν(C=N1) and ν(C=Npyr) bands that are observed
in the range of 1601–1558 cm−1 are shifted by 10–30 cm−1 suggesting the coordination of
isothiosemicarbazones using azomethine and pyridine nitrogen atoms. Absorption bands
of C–S bonds practically are not displaced in the spectra of complexes. Consequently,
the sulfur atom is not involved in the coordination to the metal ion in these compounds.
Furthermore, the characteristic bands of acetate ions are present in the FTIR spectra of
complexes 3 (1620 and 1324 cm−1) and 6 (1614 and 1312 cm−1). According to the litera-
ture [38] the difference (∆) between these two characteristic bands (∆ = 296 cm−3 for 3
and ∆ = 302 cm−3 for 6) corresponds to monodentate acetate ion in the inner sphere of the
coordination compound.

Single crystals of complex 3 were obtained as a result of recrystallization from methanol
and their structure was determined using single-crystal X-ray diffraction analysis. The com-
plex 3 crystallizes in the triclinic space group P¯1 (Table 1). Structural study determined
that the formula of 3 is [Cu(H2O)(L1)(CH3COO)]·1.75H2O. The asymmetric part of the unit
cell contains one molecular complex [Cu(H2O)(L1)(CH3COO)] (Figure 3) and 1.75 solvate
water molecules. The Cu(II) in 3 is five-coordinated and the coordination polyhedron
represents a square pyramid. The tridentate isothiosemicarbazone ligand is coordinated
to the central atom in the monodeprotonated form (L1)− using an N3-set of donor atoms
(Figure 3a) and forms two fused metallacycles. Such a coordination mode of similar ligands
was found in the complexes of various transition metals [27,30,36,37,39]. Nevertheless, the
sulfur atom of isothiosemicarbazones can also participate in coordination [30,35,40].

The basal plane of the Cu(II) polyhedron is formed by three donor atoms of the
ligand (L1)− and an oxygen atom of the acetate ion. The oxygen atom of the coordinated
water molecule is at the apex of this polyhedron. The bond distances and angles in
coordination surrounding are given in Table 4. The coordination of the (L1)− to the Cu(II)
ion did not lead to a change in its conformation, but affected the redistribution of bond
lengths in the isothiosemicarbazide fragment: C–N interatomic distances, namely C(1)–N(1)
and C(1)–N(2) values of 1.305(4) and 1.361(4) Å (Table 2) indicate the stabilization of the
imino form.
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Table 4. Bond Lengths (Å) and Angles (deg) in Coordination Metal Environment in 3.

Bonds Å

Cu(1)–N(1) 1.962(3)
Cu(1)–N(3) 1.948(2)
Cu(1)–N(4) 2.037(3)
Cu(1)–O(1) 1.942(2)

Cu(1)–O(1W) 2.353(2)

Angles ◦

N(1)–Cu(1)–N(3) 78.61(10)
N(1)–Cu(1)–N(4) 158.36(11)
N(1)–Cu(1)–O(1) 99.28(10)

N(1)–Cu(1)–O(1W) 98.61(10)
N(3)–Cu(1)–N(4) 80.30(10)
N(3)–M(1)–O(1) 172.76(10)

N(3)–M(1)–O(1W) 99.94(9)
N(4)–M(1)–O(1) 101.04(10)

N(4)–M(1)–O(1W) 89.75(10)
O(1)–M(1)–O(1W) 87.21(9)

The components of the crystal are united in the chain by a system of hydrogen bonds
in which two coordinated and four solvate water molecules from two formula units form a
six-membered chair-like H-bonded cycle (Table 3, Figure 3b). These chains are associated
in the layer parallel to (ab) crystallographic plane by intermolecular hydrogen bonds
O(W)−H···O(acetate) and O(W)−H···N2.

In order to study the biological properties of the synthesized copper(II) complexes the
antibacterial and antifungal properties of the complexes 1–6 were tested on Gram-positive
(S. aureus, B. cereus) bacteria, Gram-negative (E. coli, A. baumannii) bacteria, and fungi
(C. albicans). The obtained results in form of minimum inhibitory/bactericidal/fungicidal
concentrations are shown in Table 5.

First of all, it is seen that copper(II) coordination compounds in most cases show
higher activity than the corresponding N4,S-diallylisothiosemicarbazones HL1 and HL2.
The copper(II) complexes manifest higher antibacterial activity towards Gram-positive
microorganisms. Among all synthesized copper(II) complexes, the least active ones were
the complexes obtained from copper acetate (3 and 6). Other complexes showed ap-
proximately the same values of activities. So, the dependence between the activity and
acid residue can be seen in these results. The activity decreases in the following order:
Cl− ≈ Br− > CH3COO−. The ligand also affects the activity: copper(II) complexes with
2-acetylpyridine N4,S-diallylisothiosemicarbazone (HL2) are more active towards Gram-
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positive microorganisms and A. baumanii than the complexes with 2-formylpyridine N4,S-
diallylisothiosemicarbazone (HL1). A group of antibiotics (Furacillinum [37,41] and Tetra-
cycline [42–45]) and a group of antifungals (Nystatine [37] and Fluconazole [46]) were used
in order to compare the antibacterial and antifungal activities of synthesized complexes
with the corresponding activities of medicines. The synthesized complexes 1, 2, and 5
manifest greater activity than Furacillinum towards Gram-positive microorganisms and
E. coli. Complexes 4 and 5 surpass 2–5 times the activity of Furacillinum in the case of A.
baumanii. Furthermore, complex 5 approximately coincides with the activity of Tetracycline
towards Gram-negative microorganism E. coli. All the studied copper(II) complexes surpass
4–20 times the activity of standard antifungals (Nystatine and Fluconazole).

Table 5. Minimal inhibitory, bactericidal, and fungicidal concentrations (µg mL−1) of HL1, HL2, and
copper(II) complexes 1–6.

Compound

Staphylococcus
aureus

ATCC 25923

Bacillus cereus
ATCC 11778

Escherichia coli
ATCC 25922

Acinetobacter
baumannii
BAA-747

Candidaalbicans
ATCC 10231

MIC MBC MIC MBC MIC MBC MIC MBC MIC MFC

HL1 125 250 31.3 62.5 >1000 >1000 - - 15.6 31.3
1 0.977 1.95 0.977 1.95 15.6 31.3 15.6 31.3 7.81 15.6
2 0.977 1.95 1.95 3.91 15.6 31.3 15.6 31.3 3.91 7.81
3 31.3 62.5 31.3 62.5 250 500 - - 31.3 62.5

HL2 31.3 62.5 62.5 62.5 >1000 >1000 >1000 >1000 7.81 62.5
4 0.488 0.488 0.488 0.488 31.3 62.5 1.95 1.95 3.91 15.6
5 0.488 0.488 0.488 0.488 1.95 3.91 1.95 1.95 3.91 15.6
6 3.91 3.91 1.95 3.91 62.5 62.5 31.3 31.3 3.91 31.3

Furacillinum
[37,41] 9.3 9.3 4.7 4.7 18.5 37.5 4.7 9.4 - -

Tetracycline
[42–45] 0.25 1.96 0.06 - 0.98 3.91 0.5 - - -

Nystatine [37] - - - - - - - - 80 80
Fluconazole [46] - - - - - - - - 15.6 31.3

Note: MIC—minimum inhibitory concentration; MBC—minimum bactericidal concentration; MFC—minimum
fungicidal concentration; «-»—data not available.

The antibacterial activity of the synthesized copper(II) complexes can be compared
with compounds with similar structures that were previously described in other articles:
copper(II) coordination compounds with 2-formylpyridine and 2-acetylpyridine N4-allyl-S-
methylisothiosemicarbazones (S-MeT2FP and S-MeT2AP, correspondingly) [29,30]. Three
types of microorganisms were taken for comparison: Gram-positive S. aureus, Gram-
negative E. coli microorganisms, and fungus C. albicans. The copper(II) complexes with
2-formylpyridine N4,S-diallylisothiosemicarbazone (1, 2) showed more modest results
towards S. aureus than their S-methyl substituted analogs (Figure 4a). While the copper(II)
complexes with 2-acetylpyridine isothiosemicarbazone HL2 obtained in this work surpass
the activity of Cu(S-MeT2AP)Cl2 and Cu(S-MeT2AP)Br2 described in the literature. In the
case of Gram-negative microorganisms E. coli complexes 1 and 2 are 4 times more active
than the recently described copper(II) complexes (Figure 4b). The complex 5 manifests
higher activity than coordination compounds with S-MeT2AP.

For comparison of antifungal properties, the activity against C. albicans was analyzed
(Figure 5). All the synthesized complexes 1, 2, 4, 5 exceed the activity of the corresponding
coordination compounds with S-MeT2FP and S-MeT2AP.
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Moreover, for the screening of the antiproliferative activity, HL2 and copper(II) com-
plexes 4 and 5 have been tested towards a series of cancer cell lines (HeLa, BxPC-3, RD) and
a normal cell line (MDCK). The obtained results, in the form of semimaximal inhibitory con-
centrations (IC50) and selectivity indexes (SI), are shown in Table 6 as well as the correspond-
ing values of similar compounds, 2-acetylpyridine N4-allyl-S-methylisothiosemicarbazone
and its copper(II) complexes, that are described in [30].

While 2-acetylpyridine N4,S-diallylisothiosemicarbazone (HL2) does not manifest
anticancer activity (only tested on HeLa and BxPC-3 cell lines), copper(II) complexes
manifest a strongly marked antiproliferative activity. The complexes 4 and 5 manifest
about the same level of activity. They showed the highest selectivity indexes, 280 and
154, towards BxPC-3 which is one of the most aggressive forms of neoplastic diseases [47].
Recently described copper(II) coordination compounds surpass the antiproliferative activity
of studied complexes 4 and 5 towards MDCK and RD cell lines. Doxorubicin (DOXO)
is a chemotherapy medication used to treat cancer that was used as a standard. Both
synthesized complexes showed higher activity and selectivity than DOXO for all of the
studied series of cancer cell lines.
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Table 6. IC50 values of HL2 and complexes 4 and 5 towards non-cancerous cell line (MDCK),
cancer cell lines (HeLa, BxPC-3, RD), and the corresponding selectivity indexes in comparison with
doxorubicin and similar compounds described in [30].

Compound MDCK HeLa BxPC-3 RD
IC50, µM IC50, µM SI IC50, µM SI IC50, µM SI

DOXO 7.1 ± 0.3 10.0 ± 0.4 0.71 3.7 ± 0.3 1.9 16.2 ± 0.6 0.44
HL2 - >100 - >100 - - -

4 1.4 ± 0.1 0.5 ± 0.1 2.80 0.005 ± 0.001 280 0.2 ± 0.1 7.00
5 1.23 ± 0.01 0.39 ± 0.01 3.15 0.008 ± 0.001 154 1.3 ± 0.4 0.95

S-MeT2AP 13.0 ± 1.3 47.6 ± 4.9 0.27 1.5 ± 0.5 8.7 >100 -
[Cu(S-MeT2AP)Cl2] 1.00 ± 0.02 3.0 ± 1.2 0.33 0.09 ± 0.01 11 0.16 ± 0.01 6.3
[Cu(S-MeT2AP)Br2] 0.35 ± 0.01 0.6 ± 0.2 0.58 0.02 ± 0.01 18 0.05 ± 0.01 7.0

Note: S-MeT2AP—2-acetylpyridine N4-allyl-S-methylisothiosemicarbazone [30]; SI = IC50(MDCK)/IC50(cancer
cell line)—selectivity index.

The antiradical activity against ABTS•+ cation radicals was studied for HL1, HL2,
and copper(II) complexes 1–6. The obtained results in form of semimaximal inhibitory
concentrations (IC50) are shown in Table 7. The HL1 and its copper(II) complexes 1–3
manifest the highest antiradical activity that is close to the activity of trolox, which is used
in medicine as standard antioxidant agent. Complexes 4 and 5 are practically inactive
towards ABTS•+ cation radicals.

Table 7. Antiradical activity of complexes 1–6 against ABTS•+.

Compound IC50, µM

HL1 28.5 ± 4.0
1 28.9 ± 6.1
2 32.7 ± 0.9
3 30.1 ± 1.3

HL2 80.8 ± 13.4
4 >100
5 >100
6 95.0 ± 7.3

Trolox 33.3 ± 0.2

3. Experimental Section
3.1. Materials and Instrumentation

All the reagents used were chemically pure. Copper(II) salts CuCl2·2H2O, CuBr2,
Cu(CH3COO)2·H2O (Merck) were used as supplied. Allyl isothiocyanate, 50–60% (w/w)
aqueous solution of hydrazine, allyl iodide, 2-formylpyridine, 2-acetylpyridine, and sodium
carbonate were used as received (Sigma-Aldrich). N4-Allyl-3-thiosemicarbazide was syn-
thesized by reaction of fourfold excess of 50–60% (w/w) aqueous solution of hydrazine
and allyl isothiocyanate [48]. The solvents were purified and dried according to standard
procedures [49].

Bruker DRX-400 was used to record the 1H and 13C NMR spectra. Acetone-d6 was used
as a solvent to prepare probes for the NMR study. Bruker ALPHA FTIR spectrophotometer
was used to record FTIR spectra of studied substances in the range of 4000–400 cm−1 at rt.
The elemental analysis was performed similarly to the literature procedures [50] and on
the automatic Perkin Elmer 2400 elemental analyzer. R-38 rheochord bridge was used to
measure the resistance of 1 mM methanol solutions of complexes 1–6 at 20 ◦C.
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3.2. Synthesis

3.2.1. Synthesis of N4,S-Diallylisothiosemicarbazones

2-Formylpyridine N4,S-Diallylisothiosemicarbazone (HL1)

At the first step, the allyl iodide (1.68 g, 10.0 mmol) has been added to the solution
of N4-allylthiosemicarbazide (1.31 g, 10.0 mmol) in ethanol [51]. After 2 h of stirring at
room temperature, 2-formylpyridine (1.07 g, 10.0 mmol) was added. The solution was
stirred at 70 ◦C for 30 min. After cooling to room temperature, a yellow precipitate formed
from the solution, which was filtered off, washed with ethanol, and dried in air. The
obtained precipitate was dissolved in ethanol, and aqua solution of sodium carbonate was
added dropwise to the obtained solution until the pH reached value 7–8. After that, the
2-formylpyridine N4,S-diallylisothiosemicarbazone was extracted by chloroform and dried
in vacuo.

Pale yellow solid. Yield: 75%; mp 62–63 ◦C. FW: 260.36 g/mol; Anal Calc. for
C13H16N4S: C, 59.97; H, 6.19; N, 21.52; S, 12.32; found: C, 60.28; H, 6.03; N, 21.48; S, 12.49%.
FTIR data (cm−1): ν(N-H) 3219; ν (C=N) 1599, 1575, 1560; ν(CH2–S) 1096; ν (C–S) 766.

Form A (amino form, cis(N1-N4)). 1H NMR (acetone-d6): 8.59 (d, 1H, CH aromatic);
8.33 (s, 1H, CH=N); 8.04 (d, 1H, CH aromatic); 7.79 (t, 1H, CH aromatic); 7.33 (t, 1H, CH
aromatic); 7.47 (br, 1H, NH); 6.12–5.88 (m, 2H, CH allyl); 5.44–4.96 (m, 4H, 2×CH2=C); 3.96
(t, 2H, CH2-N); 3.72 (d, 2H, CH2-S). 13C NMR (acetone-d6): 163.61 (C-S); 154.91, 152.51,
135.38, 123.35, 119.92 (C aromatic); 149.46 (CH=N); 136.04, 134.17 (CH allyl); 117.24, 115.37,
(CH2=); 45.34 (CH2-N); 32.24 (CH2-S).

Form B (imino form). 1H NMR (acetone-d6): 8.57 (d, 1H, CH aromatic); 8.24 (s, 1H,
CH=N); 8.13 (d, 1H, CH aromatic); 7.77 (t, 1H, CH aromatic); 7.31 (t, 1H, CH aromatic);
5.13 (br, 1H, NH); 6.12–5.88 (m, 2H, CH allyl); 5.44–4.96 (m, 4H, 2×CH2=C); 4.09 (d, 2H,
CH2-N); 3.83 (d, 2H, CH2-S). 13C NMR (acetone-d6): 163.56 (C-S); 155.21, 151.73, 134.91,
123.62, 120.46 (C aromatic); 149.37 (CH=N); 136.05, 133.75 (CH allyl); 117.83, 115.26, (CH2=);
45.58 (CH2-N); 32.49 (CH2-S).

Form C (amino form, trans(N1-N4)). 1H NMR (acetone-d6): 8.69 (d, 1H, CH aromatic);
8.23 (s, 1H, CH=N); 8.24 (d, 1H, CH aromatic); 7.97 (t, 1H, CH aromatic); 7.48 (t, 1H, CH
aromatic); 6.12–5.88 (m, 2H, CH allyl); 5.44–4.96 (m, 4H, 2×CH2=C); 3.95 (t, 2H, CH2-N);
3.93 (d, 2H, CH2-S). 13C NMR (acetone-d6): 163.13 (C-S); 154.49, 152.53, 133.42, 124.18,
122.77 (C aromatic); 148.96 (CH=N); 137.25, 133.01 (CH allyl); 118.01, 116.87 (CH2=); 47.50
(CH2-N); 35.78 (CH2-S).

2-Acetylpyridine N4,S-Diallylisothiosemicarbazone (HL2)

The isothiosemicarbazone HL2 was synthesized similarly to HL1 using 2-acetylpyridine
(1.21 g, 10.0 mmol) instead of 2-formylpyridine.

Pale yellow solid. Yield: 80%; mp 96–97 ◦C. FW: 274.38 g/mol; Anal Calc. for
C14H18N4S: C, 61.28; H, 6.61; N, 20.42; S, 11.69; found: C, 61.07; H, 6.48; N, 20.37; S, 11.48%.
FTIR data (cm−1): ν(N-H) 3215; ν (C=N) 1601, 1583, 1558; ν(CH2–S) 1044; ν (C–S) 743.

Form A (amino form, cis(N1-N4)). 1H NMR (acetone-d6): 8.58 (d, 1H, CH aromatic);
8.26 (d, 1H, CH aromatic); 7.71 (t, 1H, CH aromatic); 7.29 (t, 1H, CH aromatic); 7.27 (br,
1H, NH); 5.99 (m, 2H, CH allyl); 5.20 (m, 4H, 2×CH2=C); 3.96 (t, 2H, CH2-N); 3.86 (d, 2H,
CH2-S); 2.51 (s, 3H, CH3). 13C NMR (acetone-d6): 161.53 (C-S); 157.19, 156.99, 135.66, 123.00,
120.16 (C aromatic); 148.46 (C=N); 135.55, 134.41 (CH allyl); 116.98, 115.15, (CH2=); 45.31
(CH2-N); 32.35 (CH2-S); 12.30 (CH3).

Form B (amino form, trans(N1-N4)). 1H NMR (acetone-d6): 8.56 (d, 1H, CH aromatic);
8.20 (d, 1H, CH aromatic); 7.75 (т, 1H, CH aromatic); 7.31 (t, 1H, CH aromatic); 5.98 (m,
2H, CH allyl); 5.29 (m, 4H, 2×CH2=C); 5.10 (br, 1H, NH); 4.11 (t, 2H, CH2-N); 3.69 (d, 2H,
CH2-S); 2.43 (s, 3H, CH3). 13C NMR (acetone-d6): 161.26 (C-S); 158.23, 156.79, 135.60, 123.25,
120.35 (C aromatic); 148.53 (C=N); 134.99, 133.99 (CH allyl); 117.67, 115.38 (CH2=); 45.88
(CH2-N); 32.28 (CH2-S); 12.02 (CH3).
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3.2.2. Synthesis of Copper(II) Complexes

[Cu(HL1)Cl2] (1)

Copper(II) chloride dihydrate (CuCl2·2H2O) (0.170 g, 1 mmol) was added to a hot
(55◦ C) ethanolic solution (25 mL) of 2-formylpyridine N4,S-diallylisothiosemicarbazone
HL1 (0.260 g, 1 mmol). The mixture was stirred for 30 min at 55 ◦C. By cooling to room
temperature, a green precipitate was obtained. It was filtered out, washed with cold ethanol,
and dried in vacuo.

Green solid. Yield: 80%. Anal. Calc. for C13H16Cl2CuN4S (394.81 g mol−1): C, 39.55;
H, 4.08; Cl, 17.96; Cu, 16.10; N, 14.19; S, 8.12. Found: C, 39.38; H, 4.05; Cl, 17.91; Cu, 15.89;
N, 14.02; S, 7.95. Main FTIR peaks (cm−1): ν(NH) 3156, ν(C=N) 1591, 1567, 1534, ν(CH2–S)
1095, ν(C–S) 768. χ(CH3OH): 169 Ω−1 cm−2 mol−1.

[Cu(HL1)Br2] (2)

The coordination compound 2 was synthesized similarly to compound 1 using CuBr2
(0.223 g; 1 mmol) and HL1 (0.260 g; 1 mmol).

Green solid. Yield: 85%. Anal. Calc. for C13H16Br2CuN4S (483.71 g mol−1): C, 32.28;
H, 3.33; Br, 33.04; Cu, 13.14; N, 11.58; S, 6.63. Found: C, 32.05; H, 3.20; Br, 33.17; Cu, 13.45;
N, 11.71; S, 6.72. Main FTIR peaks (cm−1): ν(NH) 3139, ν(C=N) 1593, 1567, 1538, ν(CH2–S)
1098, ν(C–S) 765. χ(CH3OH): 178 Ω−1 cm−2 mol−1.

[Cu(H2O)(L1)(CH3COO)]·1.75H2O (3)

The coordination compound 3 was synthesized similarly to compound 1 using
Cu(CH3COO)2·H2O (0.200 g; 1 mmol) and HL1 (0.260 g; 1 mmol).

Brown solid. Yield: 82%. Anal. Calc. for C15H23.5CuN4O4.75S (431.48 g mol−1): C,
41.75; H, 5.49; Cu, 14.73; N, 12.98; S, 7.43. Found: C, 41.62; H, 5.58; Cu, 14.79; N, 12.81;
S, 7.29. Main FTIR peaks (cm−1): ν(C=O) 1620, ν(C=N) 1596, 1558, 1532, ν(C–O) 1324,
ν(CH2–S) 1091, ν(C–S) 766. χ(CH3OH): 85 Ω−1 cm−2 mol−1.

[Cu(HL2)Cl2] (4)

The coordination compound 4 was synthesized similarly to compound 1 using
CuCl2·2H2O (0.170 g; 1 mmol) and HL2 (0.274 g; 1 mmol).

Green solid. Yield: 78%. Anal. Calc. for C14H18Cl2CuN4S (408.84 g mol−1): C, 41.13;
H, 4.44; Cl, 17.34; Cu, 15.54; N, 13.70; S, 7.84. Found: C, 41.23; H, 4.56; Cl, 17.51; Cu, 15.72;
N, 13.57; S, 7.93. Main FTIR peaks (cm−1): ν(N–H) 3129, ν(C=N) 1591, 1571, 1544, ν(CH2–S)
1044, ν(C–S) 746. χ(CH3OH): 192 Ω−1 cm−2 mol−1.

[Cu(HL2)Br2] (5)

The coordination compound 5 was synthesized similarly to compound 1 using CuBr2
(0.223 g; 1 mmol) and HL2 (0.274 g; 1 mmol).

Green solid. Yield: 72%. Anal. Calc. for C14H18Br2CuN4S (497.74 g mol−1): C, 33.78;
H, 3.65; Br, 32.11; Cu, 12.77; N, 11.26; S, 6.44. Found: C, 33.95; H, 3.82; Br, 32.29; Cu, 12.65;
N, 11.10; S, 6.26. Main FTIR peaks (cm−1): ν(NH) 3143, ν(C=N) 1591, 1569, 1542, ν(CH2–S)
1043, ν(C–S) 747. χ(CH3OH): 178 Ω−1 cm−2 mol−1.

[Cu(H2O)(L2)(CH3COO)] (6)

The coordination compound 6 was synthesized similarly to compound 1 using
Cu(CH3COO)2·H2O (0.200 g; 1 mmol) and HL2 (0.274 g; 1 mmol).

Brown solid. Yield: 81%. Anal. Calc. for C16H22CuN4O3S (413.98 g mol−1): C, 46.42;
H, 5.36; Cu, 15.35; N, 13.53; S, 7.75. Found: C, 46.19; H, 5.42; Cu, 15.12; N, 13.59; S, 7.49.
Main FTIR peaks (cm−1): ν(C=O) 1614, ν(C=N) 1595, 1561, 1543, ν(C–O) 1312, ν(CH2–S)
1041, ν(C–S) 741. χ(CH3OH): 82 Ω−1 cm−2 mol−1.
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3.3. X-ray Crystallography

The single-crystal X-ray analysis of [H2L2]I and complex 3 were carried out at room
temperature (293 K) on an Xcalibur E CCD diffractometer equipped with a CCD area detec-
tor and a graphite monochromator, MoKα radiation (0.71073 Å). CrysAlis PRO software
was used for data collection and reduction, and unit cell determination. The structures
were solved and refined using the SHELXS97 and SHELXL2014 software packages [52,53].
The non-hydrogen atoms were treated anisotropically (full-matrix least squares method
on F2). The hydrogen atoms were placed in calculated positions and were treated using
riding model approximations with Uiso(H) = 1.2Ueq(C), while the oxygen-bounded H
atoms were found from differential Fourier maps at an intermediate stage of the structure
refinement. These hydrogen atoms were refined with the isotropic displacement parameter
Uiso(H) = 1.5Ueq(O).

The crystallographic data were deposited with the Cambridge Crystallographic Data
Center, CCDC nos. 2253067 and 2253068 for [H2L2]I and 3, respectively. Copies of this
information may be obtained free of charge from the Director, CCDC, 12 Union Road,
Cambridge CHB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or
www.ccdc.cam.ac.uk (accessed on 26 April 2023)).

3.4. Antibacterial and Antifungal Activity

Antibacterial and antifungal activities of the isothiosemicarbazones HL1, HL2, and
copper(II) coordination compounds 1–6 were studied on a series of standard strains: Bacillus
cereus (ATCC 11778), Staphylococcus aureus (ATCC 25923), Acinetobacter baumannii (BAA-747),
Escherichia coli (ATCC 25922), and Candida albicans (ATCC 10231). The minimum inhibitory
concentrations (MICs, µg mL−1), minimum bactericidal concentrations (MBCs, µg mL−1),
and minimum fungicidal concentrations (MFCs, µg mL−1) were determined using the
method of serial dilutions in liquid broth. The solutions of the tested substances were
prepared in DMSO with a 10 mg mL−1 concentration. Subsequent dilutions were prepared
by incorporating 2% peptonate bullion.

3.5. Antiproliferative Activity
3.5.1. Cell Cultures

The BxPC-3 (ATCC CRL-1687) cells were grown as a monolayer in Roswell Park Memo-
rial Institute 1640 medium to which penicillin–streptomycin (final concentration of penicillin
100 U mL−1; final concentration of streptomycin 100 µg mL−1) was added. Furthermore, fetal
bovine serum (FBS) was added to the medium at a concentration of 10% v/v.

The HeLa (ATCC CCL-2), RD (ATCC CCL-136), and MDCK (ATCC CCL-34) cell
lines were grown in Dulbecco’s modified essential medium. The medium contained
glucose (4.5 g L−1), L-glutamine (4 mM), HEPES buffer (20 mM), bovine albumin fraction
(0.2% v/v), and penicillin-streptomycin (final concentration of penicillin 100 U mL−1; final
concentration of streptomycin 100 µg mL−1). Moreover, the medium was supplemented
with FBS at a concentration of 10% v/v.

The cells were cultured in 75-cm2 dishes in a 5% humidified CO2 environment at 37 ◦C.

3.5.2. Resazurin Test

The viability of cancer cells (BxPC-3, HeLa, RD) and normal cells (MDCK) was deter-
mined by using resazurin as a reagent.

Stock solutions (1 × 10−2 M) of the tested compounds (HL1, HL2, and complexes
1–6) were prepared by dissolving 10−5 mol of each substance in 1 mL DMSO. These stock
solutions were then used to prepare diluted solutions with final concentrations of 0.1, 1, 10,
100, and 1000 µM. Corresponding media were used for the dilution process.

To perform the assay, 90 µL of corresponding culture medium containing 1 × 104 cells
were placed in the wells of a 96-well microtiter plate and incubated at 37 ◦C, 5% CO2 for a
2–3 h period to allow the attachment of cells. Next, 10 µL of diluted solutions (0.1–1000 µM)
of the tested compounds were added to the wells with culture medium. The incubation
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continued for 24 h, after which resazurin indicator solution (20 µL) was added to each
well. After 4 h of incubation in presence of resazurin, the absorbance was measured at two
wavelengths (570 nm and 600 nm).

3.6. Antiradical Activity

The ABTS•+ method [54] with modifications was used to study the antiradical activity
of HL1, HL2, and complexes 1–6.

The reaction of 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS, 7 nM)
and potassium persulfate (140 mM) gave the ABTS•+ radical cations. The reaction was
performed in the dark at 25 ◦C for 12 h. The acetate-buffered saline (0.02 M, pH 6.5) was
used for dilution of the obtained solution up to a concentration at which its absorbance at
734 nm was 0.70 ± 0.01 AU.

Stock solutions (1 × 10−2 M) of the tested compounds (HL1, HL2, and complexes
1–6) in DMSO were diluted to obtain final concentrations of 10, 100, and 1000 µM. After
that, 180 µL of ABTS•+ working solution and 20 µL of each tested compound solution
were mixed and homogenized in the wells of a 96-well microtiter plate. After 30 min
of incubation at 25 ◦C, the absorbance of the solutions was measured at 734 nm. The
experiment was conducted three times to ensure accuracy.

4. Conclusions

Two new N4,S-diallylisothiosemicarbazones and six new copper(II) coordination com-
pounds have been synthesized. The structure of isothiosemicarbazones HL1 and HL2 was deter-
mined using NMR spectroscopy. Isothiosemicarabzones exist in different tautomeric forms in
the solution. Crystal structures of [H2L2]I and complex 3 ([Cu(H2O)(L1)(CH3CO1O)]·1.75H2O)
were proved using X-ray diffraction analysis. The studied isothiosemicarbazones behave as
tridentate ligands with N3-set of donor atoms. All the studied complexes (1–6) are electrolytes,
which indicates the process of substitution of acidic residues (Cl−, Br−, CH3COO−) by solvent
molecules in the process of dissolution of these complexes.

Biological evaluation showed that the synthesized complexes manifest promising
antibacterial, antifungal, and anticancer activity. Their antibacterial/antifungal activ-
ity in many cases is close to the activity of some drugs that are used in medicine for
these purposes and, in some cases, surpass them. Complexes 4 and 5 selectively in-
hibit proliferation of BxPC-3 cancer cell line with IC50 values 5–8 nM. Thus, these com-
plexes exceed 400–700 times the corresponding activity of doxorubicin and 2.5–18 times
the activity of the corresponding copper(II) complexes with 2-acetylpyridine N4-allyl-S-
methylisothiosemicarbazone. Moreover, their selectivity indexes are in the range of 150–280
which confirms their strongly marked selectivity.

In addition, HL1 and complexes 1–3 exhibit antiradical activity that exceeds that of trolox.
Therefore, copper(II) complexes with S-substituted N4-allylisothiosemicarbazones manifest
promising biological properties, which are also affected by the nature of S-substituent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11050195/s1, Figure S1: 1H NMR spectrum of 2-
formylpyridine N4,S-diallylisothiosemicarbazone (HL1); Figure S2: 13C NMR spectrum of 2-
formylpyridine N4,S-diallylisothiosemicarbazone (HL1); Figure S3: 1H NMR spectrum of 2-acetylpyridine
N4,S-diallylisothiosemicarbazone (HL2); Figure S4: 13C NMR spectrum of 2-acetylpyridine N4,S-
diallylisothiosemicarbazone (HL2); Figure S5: FTIR spectrum of HL1; Figure S6: FTIR spectrum of
1; Figure S7: FTIR spectrum of 2; Figure S8: FTIR spectrum of 3; Figure S9: FTIR spectrum of HL2;
Figure S10: FTIR spectrum of 4; Figure S11: FTIR spectrum of 5; Figure S12: FTIR spectrum of 6.
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