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Abstract: Ru-ZnO-g-C3N4 nanocomposite was made using a straightforward ultrasonication method
and evaluated for its potential to remove Cd ions from aqueous environments. X-ray diffraction anal-
ysis confirms composite production with an average crystalline size of 6.61 nm, while transmission
electron microscopy results indicate nanosheet-like nanomaterials with uniform elements distribution.
Measurements of N2 adsorption–desorption reveal the creation of a mesoporous structure with a
BET surface area of approximately 257 m2/g. Fourier converted infrared reveals vibrational modes
for O-H, amino groups, triazine, and Ru-ZnO. In contrast, X-ray photoelectron spectroscopy investi-
gation reveals the presence of the elements Ru, Zn, O, N, and C. Ru-ZnO-g-C3N4 nanocomposite
has remarkable adsorption efficiency for aqueous Cd ions, achieving 475.5 mg/g in 18 min. This
study reveals that the Ru-ZnO-g-C3N4 nanocomposite may be used as an effective and reusable
adsorbent for removing Cd ions during wastewater treatment and, possibly, for eliminating other
toxic metal ions.

Keywords: Ru-ZnO-g-C3N4 nanocomposite; poisonous Cd ions; removal kinetic; adsorption mechanism

1. Introduction

Emissions of inorganic pollutants into the environment are a major cause for concern
due primarily to their transformation into more harmful compounds [1]. Cadmium is
a metal with toxic characteristics; long-term, superficial intake of cadmium has adverse
impacts on the health of people, including the development of diabetes, hypertension,
and cancer [2]. Diet is the primary source of cadmium exposure, second only to smoking;
multiple studies have linked prolonged dietary consumption of cadmium with a higher risk
of renal dysfunction and osteoporosis [3]. Dietary exposure to cadmium occurs when crops
that are consumed as food absorb cadmium from agricultural soil. The high persistence of
cadmium in soil and the high soil-to-plant transfer rates facilitate this process [4]. The pres-
ence of cadmium in natural groundwater is a global issue that has garnered considerable
attention [1,2]. Multiple industrial and agricultural processes and mining activities have
raised the quantity of harmful heavy metals in various environmental components, such
as water, wastewater, and soils, around the globe. Hazardous metals in water negatively
affect ecosystem function and may pose concerns to human health [3–6].

Several methods, including biological treatments, filtration, and adsorption [6–9], have
been developed to remove Cd ions from wastewater. However, very few irrigation water
treatment options are simple, inexpensive, and environmentally beneficial. Adsorption has
been studied as an option that can meet these requirements, and efforts have been made
over the past decade [10,11] to develop acceptable materials for the adsorptive removal of
Cd ions [12,13]. However, the development of such materials is hampered by the fact that
the two contaminants have separate physiochemical properties in agricultural waterways.
In addition, cadmium typically exists as a divalent cation, i.e., Cd ions. In treating inorganic
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contaminants in the aquatic system [14,15], nanomaterials are particularly appealing and
are being investigated on a large scale. Specifically, the features of nanocomposites, such
as RuO2-ZnO, Y2O3-ZnO, CaMgO2@g-C3N4, and Fe3O4@SiO2-NH2 are widely employed
in water purification due to their new physicochemical characteristics, which can also be
modified by doping with various materials to meet special needs and purposes [16–19].

This research intends to generate a high surface nanocomposite by a simple method to
solve and remove the pollution problem of Cd ions in aquatic systems. A ternary Ru-ZnO-
g-C3N4 nanocomposite for removing Cd ions from an aqueous solution is prepared and
evaluated. The efficacy of removal factors for adsorption capacity, including starting Cd
ions concentration, pH, and contact time, have been examined. In addition, the isotherms
of adsorption, kinetic investigations, and recyclability have been discussed. A feasible
mechanism for eliminating Cd ions from the Ru-ZnO-g-C3N4 nanocomposite surface is
shown through FTIR analysis.

2. Results and Discussions
2.1. Ru-ZnO-g-C3N4 Nanosorbent Characteristics

As shown in Figure 1, the crystalline phase of the Ru-ZnO@g-C3N4 nanocomposite
was evaluated using X-ray diffraction (XRD) techniques. The peaks of g-C3N4 were located
at 12.64◦ and 27.22◦, revealing that the distance between the interlayer structural module
and the separation of interconnected aromatic systems related to planes (100) and (002),
respectively. The Ru-ZnO nanocomposite exhibited peaks at 2θ = 31.98, 34.64, 36.45, 47.75,
56.84, 63.12, 66.30, 68.15, and 69.28◦ that might be attributed to the (100), (002), (101),
(102), (110), (103), (200), (112), and (201) surfaces of the wurtzite hexagonal ZnO structure,
respectively, conferring to JCPDS card (No.36-1451) [20]. In particular, additional peaks
corresponding to 2θ = 27.9, 34.92, and 54.35◦ are identified, delineating the RuO2 rutile
phase’s (110), (101), and (211) planes in accordance with JCPDS card No. 88-0308) [5]. The
XRD pattern indisputably demonstrates that the composite is composed of g-C3N4 and
Ru-ZnO diffraction peaks. This research demonstrated that Ru-ZnO nanoparticles were
deposited on g-C3N4 in the nanocomposite, reducing the d-space of conjugated aromatic
systems with a crystalline size of 6.61 nm.
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Figure 1. XRD patter of g-C3N4, and Ru-ZnO@g-C3N4.

The N–H bond stretching vibration, in conjunction with the OH stretching of the
adsorbed moisture, is responsible for the broad absorption band that may be found in the
range of 3300–3050 cm−1 [21,22]. It is possible to attribute the normal stretching of C–N
and C–N bonds to a group of peaks that fall within the range of 1631 to 1232 cm−1 [23].
The band with a center frequency of 808 cm−1 is a characteristic feature of the bending
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vibration of the s-triazine ring. This band indicates the presence of hexazine units in the
structure of the as-prepared Ru-ZnO-g-C3N4 nanocomposite [24]. In addition, the band at
731 cm−1 can be assigned to the stretching vibrations of ZnO [25]. The bonding pattern
of the g-C3N4 bonding system has been preserved in the FTIR spectrum of the composite
(Figure 2), and it can be seen alongside the Ru-Zn-O peak at 490 cm−1, which indicates that
the Ru-ZnO is bonding to the g-C3N4.
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Figure 2. FTIR of Ru-ZnO-g-C3N4 nanosorbent.

A substantial number of adsorption sites must be created to ensure a suitable adsor-
bent, such as Ru-ZnO-g-C3N4 nanocomposite. In other words, the material’s surface area,
pore volume, and size should be sufficient. The nitrogen adsorption–desorption analysis
(Figure 3 inset, pore size) demonstrates that the Ru-ZnO-g-C3N4 nanocomposite is a meso-
porous material with an IUPAC type IV adsorption isotherm. The isotherm is associated
with a type H1 hysteresis, indicating a narrow distribution of uniform mesoporous and
limited network effects [26,27]. The transmission electron micrograph (Figure 4) reveals the
presence of pores and the appearance of a large aggregation produced by the connectivity
of Ru-ZnO nanoparticles with g-C3N4 nanosheets. The Ru-ZnO-g-C3N4 nanocomposite
has a surface area, total porous volume, and average pore radius of 257 m2/g, 0.499 cc/g,
and 15.778 Å, respectively. It is anticipated that the adsorbent’s huge surface area and
porosity will expose many adsorbent surfaces, leading to a high adsorption efficiency.

As demonstrated in Figure 4a, the TEM image of the produced Ru-ZnO-g-C3N4
nanocomposite reveals distinctive nanosheet-like two-dimensional nanostructures with
a curved thickness of approximately 25 nm. As can be seen, the average particle size
of the incorporated Ru-ZnO nanostructures in the Ru-ZnO-g-C3N4 nanocomposite is
between 10 and 30 nm. The EDX spectrum (Figure 4b) reveals typical peaks of Ru, Zn,
N, O, and C, verifying the purity of the produced composite. The matching chemical
composition of the produced Ru-ZnO-g-C3N4 nanocomposite is shown in the inset Table
of Figure 4b. As shown in Figure 4c–f,h,i, the elemental scanning analysis for C, N, Ru,
Zn, and O in the as-fabricated Ru-ZnO-g-C3N4 nanocomposite agglomeration reveals a
generally homogeneous dispersion. On the elemental maps, a brighter zone implies a
higher elemental ratio. This result suggests that the Ru-ZnO-g-C3N4 nanocomposite has
produced a homogeneous dispersion.
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The chemical oxidation states of C, N, O, Zn and Ru in the Ru-ZnO-g-C3N4 nanocom-
posite were investigated by the XPS technique. As given in the N 1s spectra (Figure 5a), the
peak at 396.4 eV was assigned to sp2-hybridized nitrogen (C–N–C). The peaks at 284.4 eV
and 285.8 eV in the C 1s spectrum (Figure 5b) correspond to the N–C–N coordination [28].
Figure 5c depicts the XPS spectra of Zn 2p core levels, revealing two symmetric peaks at
1019.0 and 1047.4 eV. These peaks are ascribed to Zn 2p3/2 and Zn 2p1/2, respectively,
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and indicate the Zn2+ oxidation state [29]. Figure 5d depicts the O1s spectra on the surface
of Ru-ZnO-g-C3N4 nanocomposite. The O1s signal was deconvoluted into three peaks at
530.1, 528.3, and 526.6 eV, corresponding to lattice oxygen in ZnO, RuO3 (Ru6+), and RuO2
(Ru4+), respectively [30]. The XPS spectra of Ru 3d core levels exhibited a peak at 285.2 eV,
assigned to Ru 3d5/2 (Figure 5e). After deconvoluting, two small peaks were specified at
284.8 eV and 285.7 eV, indicating the two oxidation states Ru4+ and Ru6+, respectively [31].
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2.2. Adsorption Capability of Ru-ZnO-g-C3N4 Nanocomposite
2.2.1. Impact of Initial Cd (II) Concentration

When the influence of the initial concentration of Cd ions was examined in the range
of 5 to 200 ppm under optimized solutions, Ru-ZnO-g-C3N4 nanocomposite dose (10 mg),
pH 7, fixed volume of Cd ions solution (25 mL), room temperature, and a 24-h contact
time were achieved. The proportion and optimal adsorption capacity of Cd ions on Ru-
ZnO-g-C3N4 nanocomposites are depicted in Figure 6. As the Cd ions concentration
rises, the adsorbate quantity climbs steadily from 11.87 mg/g to 370.86 mg/g, while the
removal efficiency remains extremely high at 97.88%. In this instance, the fundamental
driving force that increases the initial Cd ion concentration overcomes any barrier to
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Cd ion migration from the solution. The obtained fractional adsorption turns out to be
concentration dependent.
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2.2.2. Impact of Difference pH on Cd (II) Removal

The pH value is considered to be significant when comprehending the intensity of
surface reactions between adsorbate (Cd ions) and Ru-ZnO-g-C3N4 nanocomposites. The
influence of pH on Cd ions adsorption efficiency was studied between the pH range of
1.0 and 8.0, with the optimal adsorption capacity achieved at pH 5, as shown in Figure 7.
Below pH 5, the adsorbent surface is significantly protonated, leading to poor adsorbate–
adsorbent interactions. Similar results were found in trials with similar designs [32,33].
The solubility of metal ions, such as Cd ions, depends on pH. Cd ions are very soluble
as Cd ions free ions and Cd (OH)+ at lower pH. Moreover, Cd ions precipitate as metal
hydroxide Cd (OH)2 at pH values greater than 7.5 [2,34]. These results demonstrate that the
quantitative removal capacity increases with the pH value of the solution until it reaches 5.
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2.2.3. Adsorption Isotherms Modeling

To determine the maximal adsorption capacity, adsorption isotherm tests were con-
ducted at pH = 7 with different initial concentrations of Cd ions. As depicted in Figure 8a,b,
the amount of Cd ions adsorbed on the Ru-ZnO-g-C3N4 nanocomposite increases as start-
ing Cd ion concentration varies. The Freundlich and Langmuir adsorption models were
used to replicate the experimental data on the adsorption of Cd ions onto the Ru-ZnO-g-
C3N4 nanocomposite. The Langmuir model (Figure 8a) is better suited than the Freundlich
model for modeling the adsorption of Cd ions. In addition, Table 1 contains the equations
and parameters of the Langmuir and Freundlich adsorption models, where the maximal
adsorption capacity of Cd ions at pH 7 and room temperature is 370 mg/g. The correlation
coefficients (R2) of the Langmuir model for Cd ions are approximately 0.9958, which is
greater than the Freundlich model (0.9911) and consistent with the simulations presented
in Figure 8b.
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Table 1. Cd ions equilibrium adsorption and kinetics models parameters computed.

Adsorption Model Langmuir Freundlich PFO PSO

Parameter
Qmax = 475.5 mg/g n = 59.07 Q = 98.34 QCal = 103.7, QExp = 102.5

KL = 0.069 Kf = 0.485 K1 = 0.109 K2 = 0.0064

R2 0.9958 0.9911 0.9489 0.9945

Chi-Sqr 295.85 186.92 21.91 19.034

2.2.4. Contact Time and Adsorption Kinetics Modeling

To acquire information about the mechanism governing the sorption of Cd ions, kinetic
models utilizing many model equations are generally conducted (Figure 9a–d). Figure 9a
depicts the influence of contact time on the removal of Cd ions at ambient temperature.
With stirring periods ranging from 5 to 1440 min and an initial metal ion concentration
of 60 mg, the adsorption of Cd ions onto the nanocomposites was explored. In less than
18 min, the removal of Cd ions as a function of contact time reaches equilibrium. Due to
the high number of active sites on the Ru-ZnO-g-C3N4 nanocomposite surface, the initial
sorption process is extremely rapid, reaching h0 = 2.05 mg g−1 min−1. After the equilibrium
phase, the concentration of the active site gradually drops, and the percentage removal
reaches equilibrium substantially more slowly. Accordingly, 18 min can be regarded as a
short time to attain equilibrium.
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To study the Cd ions adsorption rate, two well-known kinetic models were used to
comprehend the kinetics of Cd ion adsorption on Ru-ZnO-g-C3N4 nanocomposite. The
non-linearized versions of the pseudo-first-order [35] (Equation (1)) and pseudo-second-
order [36] (Equation (2)) kinetic models are as follows:

qt = qe

(
1 − e−1k1t

)
(1)

qt =
tk2q2

e
k2qet + 1

(2)

where qt and qe (mg g−1) represent the uptake capacity of the adsorbent at time t and
equilibrium, accordingly; k1 (min−1) and k2 (g mg−1 min−1) represent the rate constants in
the pseudo-first-order rate formula and pseudo-second-order rate formula, respectively.

Figure 9b,c depicts the pseudo-first-order and pseudo-second-order kinetic graphs for
Cd ions adsorption. Table 1 displays the estimated and experimental kinetic parameters.
Because when adsorption data are fitted into the pseudo-second-order kinetic model, the
R2 values obtained for Cd ions adsorption are greater than 0.99. The estimated qmax and
the experimental qmax are comparable. These results suggest that the pseudo-second-order
kinetic model more accurately characterizes the kinetics of Cd ion adsorption on Ru-ZnO-
g-C3N4 nanocomposite surfaces.
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If sufficient information is provided, the pseudo-second-order kinetic model can be
employed to extrapolate all stages of the sorption process, such as outer film diffusion,
sorption, and internal particle diffusion. However, this model cannot explain the specific
adsorption mechanism [36]. Consequently, the collected data were evaluated with the
intraparticle diffusion kinetic model (Figure 9d). Numerous studies indicated that the
intraparticle diffusion graph might display multi-linearity, indicating that two or more
steps may occur during the adsorption process [37]. The results reveal that three straight
lines represent the majority of data points and that the plots do not intersect the origin.

As qt varies linearly with t1/2 upon removal of Cd ions from the Ru-ZnO-g-C3N4
nanocomposite surface, the intra-particle transport kinetic model is validated. C identifies
the thickness of the border layer. The substantial value of the constant in Table 2 suggests
that the solution boundary layer has a significant impact on adsorption [38–40]. According
to kdif1, > kdif2 > kdif3, the initial stage of Cd ion elimination has a higher rate than the second
and third stages (Table 2). The quick rate of the initial stage may be attributable to the
transport of ions from the solution to the surface of the outer nanostructures via the bound-
ary layer. Concurrently, the subsequent stage mirrors the final equilibrium stage when
intra-particle diffusion begins to decrease due to the solute’s low concentration differential
and fewer accessible diffusion pores. In addition, the increasing quantity of component
C in the second stage indicates the presence of a boundary layer, validating the role of
intraparticle diffusion in the Cd ions uptake by Ru-ZnO-g-C3N4 nanocomposite [17,41].

Table 2. Cd ions Intra-particle kinetic transport model and derived magnitudes.

Step 1 2 3

kdif (mg g−1 min−1/2) 26.15 2.233 0.117

C 17.54 25.21 98.21

R2 0.9923 0.9890 0.5682

RSS 7.900 10.178 4.371

2.3. Adsorption Mechanism

The Cd ions adsorption mechanism of the Ru-ZnO-g-C3N4 nanocomposite has been
clarified using the FTIR spectrum. Figure 10a illustrates that the FT-IR spectra of Ru-
ZnO-g-C3N4 and Cd@Ru-ZnO-g-C3N4 obtained between 500 and 4000 cm−1. Ru-ZnO-
g-C3N4 spectral bands can be identified as follows: the bandwidth between 3000 and
3400 cm−1 corresponds to the NH stretching mode of the terminal amino group. The
bands at 1228, 1312, and 1409 cm−1 relate to the aromatic C–N stretching mode, and those
at 1571 and 1652 cm−1 belong to the C≡N stretching mode [42]. The peak at 889 cm−1

is a triazine ring mode, which is a comparatively common carbon nitride mode [43].
As depicted in Figure 10a, the triazine ring mode and aromatic C–N stretching modes
of Ru-ZnO-g-C3N4 have altered positions after the adsorption of Cd ions [44,45]. This
result suggested that functional groups of Ru-ZnO-g-C3N4 (N-H and CN) and delocalized
electron systems of the triazine ring (C3N3) were responsible for the elimination of Cd
ions. Figure 10b depicts a possible pathway for the adsorption of Cd metal ions into the
Ru-ZnO-g-C3N4 nanocomposite.

2.4. Assessment Study

To demonstrate the extraordinary Cd ion adsorption capability of Ru-ZnO-g-C3N4
nanocomposite, Table 3 compares the results obtained with those of other adsorbent
materials that have been previously reported. Under optimal conditions, it is evident
that the produced Ru-ZnO-g-C3N4 nanocomposite has outstanding efficacy in removing
Cd ions, with an adsorptive capacity of 475.5 mg g−1 reached in just 18 min. This result
is mostly owing to the mesoporous characteristic, nanostructure, and significant surface
area of 257 m2 g−1 of the produced material. This cost-effective nanocomposite has the
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potential to eliminate other hazardous metals and organic pollutants. In line with the
pseudo-second-order model, the rate-determining stage is regarded as chemical adsorption
that involves the adsorbent/adsorbate of electrons between the adsorbent and adsorbate.
The high regression coefficient (R2 = 0.9958) of the Elovich model provides corroborating
evidence for the chemisorption character of the Cd ions’ adsorption by Ru-ZnO-g-C3N4.
The nanostructures of the synthesized Ru-ZnO-g-C3N4 can be used as a suitable adsorbent
for aqueous cadmium (II) ions due to their simplicity of manufacture, high adsorption
efficacy, recovery ability, and reusability.

Inorganics 2023, 11, x FOR PEER REVIEW 10 of 14 
 

 

mode, which is a comparatively common carbon nitride mode [43]. As depicted in Figure 
10a, the triazine ring mode and aromatic C–N stretching modes of Ru-ZnO-g-C3N4 have 
altered positions after the adsorption of Cd ions [44,45]. This result suggested that func-
tional groups of Ru-ZnO-g-C3N4 (N-H and CN) and delocalized electron systems of the 
triazine ring (C3N3) were responsible for the elimination of Cd ions. Figure 10b depicts a 
possible pathway for the adsorption of Cd metal ions into the Ru-ZnO-g-C3N4 nanocom-
posite. 

 
Figure 10. FTIR spectra of (a) before and after Cd ions into Ru-ZnO−g−C3N4 and (b) suggested re-
moval mechanism. 

2.4. Assessment Study 
To demonstrate the extraordinary Cd ion adsorption capability of Ru-ZnO-g-C3N4 

nanocomposite, Table 3 compares the results obtained with those of other adsorbent ma-
terials that have been previously reported. Under optimal conditions, it is evident that the 
produced Ru-ZnO-g-C3N4 nanocomposite has outstanding efficacy in removing Cd ions, 
with an adsorptive capacity of 475.5 mg g−1 reached in just 18 min. This result is mostly 
owing to the mesoporous characteristic, nanostructure, and significant surface area of 257 
m2 g−1 of the produced material. This cost-effective nanocomposite has the potential to 
eliminate other hazardous metals and organic pollutants. In line with the pseudo-second-
order model, the rate-determining stage is regarded as chemical adsorption that involves 
the adsorbent/adsorbate of electrons between the adsorbent and adsorbate. The high re-
gression coefficient (R2 = 0.9958) of the Elovich model provides corroborating evidence for 
the chemisorption character of the Cd ions’ adsorption by Ru-ZnO-g-C3N4. The nanostruc-
tures of the synthesized Ru-ZnO-g-C3N4 can be used as a suitable adsorbent for aqueous 
cadmium (II) ions due to their simplicity of manufacture, high adsorption efficacy, recov-
ery ability, and reusability. 

Table 3. Monitoring characteristics for the adsorption of Cd ions onto the Ru-ZnO-g-C3N4 nanocom-
posites in comparison to other adsorbents and nanostructures. 

Materials Used 
Pseudo-Second-Order Langmuir Isotherm Optimal 

pH 
SBET 

(m2/g) D (nm) Ref. 
k2 (g/mg/min) R2 qm (mg/g) R2 

Zeolite X 0.002 0.999 62.814 0.953 6.5 - 94.85 [46] 
Geopolymers/Chitosan 0.00012 0.982 166.11 0.992 8 - - [47] 

Binary Mg–Si hybrid oxide 0.033 0.999 18.790 0.998 7 540 56.4 [48] 
Chitosan/CaCO3 nanoparticles - - 29.41 0.980 6.5 - 60 [49] 

Magnetic cellulose nanocomposites 0.811 1.000 103.1 0.820 6 7.72 30 [50] 

Figure 10. FTIR spectra of (a) before and after Cd ions into Ru-ZnO-g-C3N4 and (b) suggested
removal mechanism.

Table 3. Monitoring characteristics for the adsorption of Cd ions onto the Ru-ZnO-g-C3N4 nanocom-
posites in comparison to other adsorbents and nanostructures.

Materials Used
Pseudo-Second-Order Langmuir Isotherm Optimal

pH
SBET

(m2/g) D (nm) Ref.
k2 (g/mg/min) R2 qm (mg/g) R2

Zeolite X 0.002 0.999 62.814 0.953 6.5 - 94.85 [46]

Geopolymers/Chitosan 0.00012 0.982 166.11 0.992 8 - - [47]

Binary Mg–Si hybrid oxide 0.033 0.999 18.790 0.998 7 540 56.4 [48]

Chitosan/CaCO3
nanoparticles - - 29.41 0.980 6.5 - 60 [49]

Magnetic cellulose
nanocomposites 0.811 1.000 103.1 0.820 6 7.72 30 [50]

White pottery clay 0.0124 0.999 26.991 0.999 5.5 56.58 - [51]

Ru-ZnO-g-C3N4 0.0064 0.9945 475.5 0.9958 5.00 257 6.61 This paper

3. Experimental Methods
3.1. Chemicals and Materials

Carbonyl diamide (CH4N2O, ≥99.0%), zinc nitrate hexahydrate (Zn(NO3)2, 6H2O;
≥99.0%), ruthenium (III) chloride (RuCl3; ≥98.0%), sodium hydroxide (NaOH, ≥99%),
cadmium nitrate tetrahydrate (Cd (NO3)2. Both 4H2O, ≥98%) and hydrochloric acid (HCl,
37%), purchased from Merck Company, Rahway, NJ, USA, and were used without further
purification.
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3.2. Ru-ZnO-g-C3N4 Nanocomposites Construction

The pure g-C3N4 reported in our earlier article [52] was manufactured by employing
a well-known method. In a muffle furnace, 4.5 g of carbonyl diamide was inserted in
a crucible with an insulation material lid and sintered for 120 min at 550 ◦C at a rate of
10 ◦C/min in ambient pressure air. The yellow powders were obtained during a period
of consistent cooling. For Ru-ZnO nanomaterials, in a 1000 mL beaker at 523 K for three
hours, 0.003 moles of zinc nitrate dihydrate solution and 640 mg of RuCl3 were treated with
the saturation solution of pectinase solution. The resulting brown-white foam was then
chilled at room temperature for 20 h. Ru-ZnO nonmaterial was produced by drying and
annealing the brown-white powder at 320 K for two hours to create Ru-ZnO nonmaterial.

Ru-ZnO-g-C3N4 nanocomposites were fabricated using a step-by-step ultrasonication
technique in methanol. In 120 mL of methanol, 2760 mg of g-C3N4 was balanced and
sonicated for 15 min. The g-C3N4 methanolic solution was combined with 1200 mg of
Ru-ZnO nanoparticles, and the mixture was sonicated for an additional hour. The milky
gray solution was evaporated at 368 K for three hours. The collected Ru-ZnO-g-C3N4
nanocomposites were annealed for one hour at 423 K.

3.3. Ru-ZnO-g-C3N4 Nanocomposites Characterizations

The X-ray diffraction (XRD) pattern of Ru-ZnO-g-C3N4 nanocomposites was doc-
umented utilizing a Rigaku D/max-RA powder diffractometer equipped with a Cu-K
radiation source (λ = 1.5418 Å). The nanomaterial’s Brunauer–Emmett–Teller (BET) surface
area was calculated by recording N2 adsorption/desorption at 196 ◦C on a Micro-metrics
ASAP 2020 analyzer. A Hitachi H-800 transmission electron microscope (TEM) with dis-
persive electron X-ray (EDX) spectroscopy was employed for morphological observations
and elemental chemistry investigation. X-ray photoelectron spectroscopy (XPS) was used
to evaluate the chemical surface properties of the as-fabricated nanocomposite utilizing a
Perkin Elmer PHI 550 ESCA/SAM equipped with a monochromatized Al-K X-ray source
(hm = 1486.6 eV) and a hemispherical electron analyzer. A Nicolet Nexus 880 FTIR spectrom-
eter and the KBr pellet technique showed FTIR spectra of Ru-ZnO-g-C3N4 nanocomposites
before and after Cd ion removal to understand the probable adsorption mechanism.

3.4. Cd Ions Removal Procedures

Cd ion adsorption isotherms on Ru-ZnO-g-C3N4 nanocomposites were evaluated em-
ploying batch experiments. In 50 mL glassware, with initial Cd ion concentrations varying
from 5 to 200 ppm, 10 mg of Ru-ZnO-g-C3N4 nanocomposites sorbent was introduced. For
24 h, the combination suspensions were magnetically stirred. After achieving equilibrium
with the aqueous phase, the nanopowder was centrifuged, and atomic absorption spec-
troscopy (AAS) was used to quantify the remaining Cd ion concentrations in the aliquot
(Hitachi Z-8100, Japan). Using the following equations, the amount of adsorbed Cd ions
at any time t (min) and the consequent equilibrium values of qt and qe (in mg/g) were
determined by calculating:

qt =
V(C0 − Ct)

m

qe =
V(C0 − Ce)

m
where V represents the quantity of the solution (L), C0, Ce, and Ct are the starting concentra-
tion, equilibrium concentration, and concentration, respectively, at any period interval of
Cd ions in solution (mg/L), and m is the weight of the Ru-ZnO-g-C3N4 nanocomposites (g).

4. Conclusions

The present investigation demonstrates that the Ru-ZnO-g-C3N4 nanocomposite with
a BET surface area of approximately 257 m2/g effectively eliminates Cd ions from aque-
ous solutions. The faulty sites in Ru-ZnO, which introduce a strong contact between the
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defects and the Cd ions, are principally responsible for this extraordinary capacity. Conse-
quently, the defective Ru-ZnO-g-C3N4 nanocomposite displayed a high Cd ion capacity
of 475.5 mg g−1. Cd ion adsorption capabilities of certain nanocomposites are superior to
those of previously researched materials. Significantly, the nanomaterial’s effectiveness
in removing Cd ions was highlighted by its ability to work in an extensive pH at 5. The
kinetic studies of the adsorption process based on the investigated nanocomposite provide
corroborating evidence for the chemisorption character of the Cd ions. Ru-ZnO-g-C3N4
nanocomposite flourishes as a feasible adsorbent for removing pollutants in water treatment
due to its efficiency and practicability.
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