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Abstract: Water treatment through photocatalysts has become an important topic regarding environ-
mental protection. In the present study, silver and TiO2 (Ag/TiO2) composites for photocatalysts
were effectively synthesized by adopting the template induced method. The prepared samples were
characterized using XRD, FTIR spectroscopy, SEM, and EDX. The constructed samples’ particle size
and shape were evaluated using a SEM, and the XRD patterns showed anatase crystalline phases.
Their morphologies were controllable with changing concentration of reactants and calcination tem-
perature. The synthesized composites act as catalyst in the degradation of methylene blue (MB) and
reduction of Cr(VI) to Cr(III) under solar irradiation. In both of these activities, the best result has
been shown by the 0.01 Ag/TiO2 composite. Methanol is used as the hole scavenger in the reduction
of Cr(VI) to Cr(III). While the pH factor is important in the photocatalytic reduction of Cr(VI) to
Cr(III). According to observations, S. macrospora and S. maydis were each subject to 0.01 Ag/TiO2

nanocomposites maximum antifungal activity, which was 38.4 mm and 34.3 mm, respectively. The
outcomes demonstrate that both photocatalytic and antifungal properties are effectively displayed by
the constructed material.

Keywords: Ag/TiO2 composites; template induced method; methylene blue; Cr(VI); photocatalytic
reduction; antifungal

1. Introduction

The earth is immensely affected by wastewater management, environmental pollution,
and climate change crisis. The major portion of the earth is comprised of water that can be
regenerated, disseminated, distributed, and transported. These characteristics collectively
add to water’s great value to people [1–3]. The groundwater and surface water resources
are crucial for a variety of activities, including cattle development, energy generation,
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forestry, farming, aquaculture, seafaring, recreation, and so forth [4]. It is a remarkable gift
from the nature to humanity that must be preserved. However, environmental degradation,
particularly water contamination, is regarded as one of the fundamental issues facing the
entire planet, significantly affecting our everyday lives [5]. It comprises the introduction
of foreign chemicals into the environment, which harms and disturbs the biosphere [6].
These pollutants appear to be either native substances that have surpassed permitted limits
or foreign compounds [7–10]. Unfortunately, pollution is continually rising and is now a
severe issue that requires immediate attention [11]. The usage of dyes and their byproducts
significantly pollutes the environment. The nature of water is changed by its release of
chemicals from potable to non-potable [12]. Furthermore, microorganisms also change
the properties of water and cause different diseases. Many nanomaterials have significant
properties to control the growth of bacteria [13]. The aquatic center is unscrewed from the
dye waste, changing the soil’s composition and water content. In addition, it encourages
several illnesses, environmental degradation, and several infectious diseases.

Toxic metal and organic compound-related water contamination is still a significant
environmental and societal issue [14]. Additionally, water contamination has grown to
be a significant cause of worry and a top priority for most industrial sectors. Water
contamination is significantly influenced by dyes used in the paper, food, and textile
sectors. Due to their industrial use, dyes and associated hydrocarbons, which are among
the most significant and dangerous toxins in water, are linked to population expansion [15].
Because dyes have chromophore groups in their structure, they are utilized in coloring
fabrics. These colors may be distinguished from one another by how easily they dissolve
in water. Most dyes are categorized according to the fibers they will be imprinted on
and their chemical and physical makeup. MB (methylene blue) is used to tone down the
hues of silk in addition to dying paper and office supplies [16]. MB poses a significant
concern to human health and can have a negative impact on the environment because it
is poisonous, carcinogenic, and non-biodegradable [17–19]. The health of people can be
seriously harmed by color molecules at extremely low concentrations [20]. It can result in
eye burns, which may result in both human and animal eyes being permanently damaged.
When ingested through the mouth, it generates a burning feeling and may cause vomiting,
excessive perspiration [21], methemoglobinemia [22], and mental disorientation [23]. It can
also cause short periods of rapid or difficult breathing when inhaled.

Heavy metals also play a vital role in polluting and poisoning the water. In water,
the presence of heavy metals even in a very low concentration is considered to be poi-
sonous and the high specific density and atomic weight of the metalloids make them
dangerous [24]. Additionally, such contamination can result in several “neurological, car-
diovascular, hematological, respiratory and renal problems” that also impact the bladder,
lungs, liver, and kidneys [25]. Although there are naturally occurring heavy metals in the
ecosystem, man-made sources of heavy metals are the fourth major cause of pollution.
Chromium manganese, copper, arsenic, and lead are the examples of heavy metals that are
frequently found in water. Further, chromium is frequently employed in many industrial
processes, including the production of paint and metal plating [26]. The tanning business
utilized between 4.0 and 6.0 thousand tonnes of basic Cr annually, with 20.0 to 40.0% of that
amount being disposed of as waste [27]. Cr(VI) is on the list of priority pollutants in the
majority of nations due to its high water mobility and acute toxicity [28]. When compared
to Cr, Cr(VI) is 100 times more poisonous (III). Compounds made of Cr(VI) are exceedingly
toxic and cancer-causing.

The major reason why chromium(VI) is regarded as being particularly dangerous is
that it easily interacts with biological molecules [29]. Due to its low membrane permeability,
trivalent chromium Cr(III) is mostly safe in the environment. Chromium in hexavalent
form is more effective in piercing the cell membrane through openings for isostructural
and isoelectric anions such as HPO4

2− and SO4
2−channels, and these forms of chromium

are then raised through phagocytosis [30]. By the adsorption reduction method Cr(VI)
is converted into the less toxic form Cr(III) [31]. Hexavalent chromium (Cr(VI)) is the
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most toxic heavy metal to living things, and the most potent carcinogen [32]. Dermatitis
and recurrent ulcers have been connected to exposure to Cr (VI) [33]. Modern oxidation
techniques have proven effective at cleaning industrial effluent [34–36].

The use of solar light in photocatalysis, one of many methods for treating water, has
drawn a lot of interest because it is environmentally friendly, economical, and effective in
reducing pollutants and energy use [37]. Many commonly used techniques, including coag-
ulation, active carbon adsorption, and precipitation can be utilized to treat wastewater that
contains hexavalent chromium. The produced hole and OH• radical are quickly consumed
by sacrificial electron donors such as methanol, preventing the electrons and holes from
recombining and making the electrons accessible for the reduction of Cr(VI) [38]. AOPs
have a lot of potential for treating industrial waste water that contains dyes because they
can degrade soluble organic pollutants in liquid wastes [39]. To remove dye molecules,
researchers are now concentrating on heterogeneous catalysts. One of the best AOPs for
eliminating organic contaminants from both water and the atmosphere is heterogeneous
photocatalysis [40]. Essentially, heterogeneous photocatalysis consists of a catalyst that
contain a semiconductor which is activated by using the visible and ultraviolet electromag-
netic radiation. The elimination of industrial effluents via the photocatalytic degradation
method has attracted interest [41]. By breaking molecular bonds with the species around
them, extremely reactive free radicals produced by the photocatalysis process can trig-
ger oxidation–reduction processes, which can reduce or oxidize the pollutants [42]. By
inducing radiation, electron and hole pairs are produced on their outer most layers and
hydroxyl radical (OH.) and superoxide radical (O.

2) are produced by the reaction of water
and oxygen with the charge carriers. Due to their potential properties, semiconductor
metal oxides (MO) such as SnO2, CuO, ZnO, and TiO2, are popular study materials [43–47]
such as nonlinear optics [48], photonic crystals [49], electro ceramics components [50], solar
cells [51], and gas sensors [52].

By the incorporation of the noble metal nanoparticles in semiconductive oxides, the
photocatalytic activity of semiconductors is highly increased [53]. All semiconductors’
mechanisms for electron excitation have the potential to lead to electron and hole recombi-
nation, which lowers photo-efficiency from the valence band to the conduction band [54].
Noble metals including Au, Ag, Pd, and Pt, can be used to dope TiO2 because these boost
photocatalytic activity by preventing electron–hole pair recombination, which increases
photocatalytic activity [55]. Band gap also plays a considerable role in the photocatalytic
process [56]. The band gap of the TiO2 is the 3.2 eV. However, when Titina is doped by the
noble metal, the band gap decreases. Reduction in the band gap results in an increased
photocatalytic degradation and reduction. One of the effective methods to raise TiO2’s
photocatalytic effectiveness is to load it with Ag. For water purification silver is doped on
the surface of the TiO2 which acts as the self-cleaning agent. In this way, Ag contributes
to the process of photocatalysis. The silver metal acts as electron sinks, making them
efficient co-catalysts for boosting TiO2 photo reactivity. To capture the electrons that are
transported from the TiO2 conduction band, Ag can operate as an electron trap. At the same
time, it produces a surface plasmon resonance (SPR) effect, extending the light absorption
to the visible spectrum which result in an increase in the photocatalytic performance of
TiO2 [57]. It was discovered that Ag could increase the rate of photocatalytic degradation,
facilitate charge separation, and increase the adsorption of organic pollutants on the TiO2
surface [58]. Ag/TiO2 also acts as the electron trapping center that prevents the recombi-
nation of electrons/holes pairs caused by the Schottky barrier resulting in an enhanced
photocatalytic activity [59]. The synergistic impact of Ag, TiO2, and biochar allowed to
effectively manufacture a series of biochar-coupled Ag–TiO2 materials, and the findings
demonstrated that the degradation performance of Ag-modified TiO2 was better than the
pure TiO2 [60]. Jiang et al. showed that after two hours of exposure to light, doping TiO2
with silver demonstrated 100% photodegrade performance [61]. According to Arbiter et al.
after sixty minutes, silver titanium oxide shows 85% of dye degradation [62]. According to
Avciata et al. after 150 min of irritation, 75% dye degradation is shown by the TiO2 doped
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with Ag [63]. Further, the doping of the silver on the TiO2 also caused the photo reduction
of chromium (VI) to the chromium (III). Silver-TiO2 also acts as the photo catalyst which
enhances the reduction of Cr(VI) to Cr(III).

In our continued research work on water pollution, we focus to synthesize the Ag/TiO2
composites by using the template induce rout for photocatalytic degradation of methylene
blue and photocatalytic reduction of Cr (VI) to Cr (III).

2. Experimental Section
2.1. Material and Method

The reactants employed in this investigation included methylene blue (MB), analytical
grade sodium carbonate (Na2CO3), magnesium chloride (MgCl2), silver nitrate (AgNO3),
and potassium dichromate (K2Cr2O7). TiO2 was used as the titania source. X-ray diffraction
(XRD) data were obtained employing a Rigaku D-Max 2400 diffractometer operating in
reflection mode (Cu-K radiation), and SEM was used to evaluate the produced Ag/TiO2
composites (FEI Nova Nano SEM 450).

2.2. Preparation of Ag/TiO2 Composites

The Ag/TiO2 composites are synthesized by following the template induced route.
This is the bottom-up approach for nanotechnology for synthesizing nanomaterials
(Figure 1). In this experiment 0.1 M solution of sodium carbonate (Na2CO3) and 0.1 M
solution of Magnesium chloride (MgCl2) were combined uniformly in a beaker at 40 ◦C.
The aforementioned combination was then mixed at a 400 rpm stirring rate for 7 min, after
which the suspension was kept at 80 ◦C for 4 h. The obtained Mg5(CO3)4(OH)2.4H2O
product (MCH) was then filtered off, three times washed with first ethanol and then water
after being dried at 60 ◦C for 12 h. After dispersing 1 g of synthetic MCH template in
80 mL of pure ethyl alcohol, TiO2 was added. The solution of distilled water and ethanol
was continuously stirred for 4 h at 25 ◦C temperature. Deionized water and ethanol were
used to wash the MCH/TiO2 intermediate in succession before it was dried. In 100 mL
of absolute ethyl alcohol, 0.8 g of MCH/TiO2 intermediate was dispersed. The aforesaid
combination was then given an adequate amount of AgNO3 solution in three different
contents (0.01 M, 0.1 M, and 0.5 M), and the mixture was agitated for two hours. The
resultant samples were labeled 0.01-Ag/TiO2, 0.1-Ag/TiO2, and 0.5-Ag/TiO2 with varying
concentrations of Ag+. After bubbling CO2 gas into the mixture for 30 min to flush out
any remaining Mg2+ ions, the mixture was once again washed with the buffer solution of
CH3COOH/CH3COONH4. This buffer solution is prepared by dissolving 0.1 g ammonium
acetate in 10 mL acetic acid. Then the Ag/TiO2 composites were dried at 60 ◦C for 12 h. To
create Ag/TiO2 composites, the Ag2CO3/TiO2 precursor was calcined at 550 ◦C for 4 h.

2.3. Photocatalytic Degradation Experiment

In the photocatalytic degradation experiment, the 0.0006 g methylene blue dye was
taken and then added to the 500 mL of water. Afterward, this solution was sonicated for
fifteen minutes. Furthermore, three beakers were taken, and 100 mL solution was added to
each. About 0.2 g of composite was inserted to every beaker. The solutions were stirred in
the absence of light for thirty minutes to achieve adsorption equilibrium. Then, the stired
solutions were added to Petri dishes, and 5 mL of the solution was taken as the reference.
These Petri dishes were exposed to direct sunlight and 5 mL solution sample was taken
at 30, 60, 90, 120, and 150 min respectively. The color of MB faded. The photocatalytic
degradation rate can be estimated by using the following equation:

Photodegradation rate = Co− Ct/Co× 100
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2.4. Photocatalytic Reduction Experiment

In the photocatalytic reduction experiment, 10 ppm solution of anhydrous K2Cr2O7
was prepared and 0.2 g of 0.01, 0.1, and 0.5 Ag/TiO2 was added to it as a catalyst. Further,
2 ml of methanol was added into the solution which acted as a hole scavenger. The pH of
the solution was altered to 1.5 by utilizing NaOH and H2SO4. The solution was stirred
for thirty minutes to achieve chemical equilibrium. Taking 0-min reading as the reference
afterward, the solutions were poured into a Petri dish and exposed to the sunlight. A total
of 5 mL solution was taken in a burette after 5, 10, 15, 20, 15, 20, 25, 30, 35, 40, 45, and
50 min respectively. This experiment was performed in the last days of May. The intensity
of the sun was 2100 Wm2. The removal rate of the chromium can be determined by using
the following equation:

Photoreduction rate = Co− Ct/Co× 100

3. Result and Discussion

The FTIR results as shown in Figure 2 revealed that the 3420 cm−1 peak relates to the
stretching vibration of the hydroxyl group [64]. However, the peak at 1621 cm−1 originated
due to the bending vibration of the water molecule. The O-Ti-O lattice and Ti-O stretching
vibration are responsible for the TiO2 characteristic bands in the range 500–900 cm−1.
[Journal of Materials Science: Materials in Electronics (2018) 29:18111–18119].

To analyze the crystallinity of Ag/TiO2 composites, XRD was used in the fractional
angle range of 10◦ to 80◦ as shown in Figure 3. The XRD results show that the peak
at 0.01 represents peak a, while the other two peaks represent the peaks of 0.1 and 0.5
given the names b and c respectively. The XRD results of 0.5 Ag/TiO2, 0.1 Ag/TiO2, and
0.01 Ag/TiO2 composites are categorized into two sets. In these two sets, one category
shows the peaks of the silver, while all the other peaks are matched with the structure
of TiO2 which is present in the rutile phase. The face-centered cube structure of silver is
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presented by showing 111, 200, 220, and 311 peaks at definite positions [65]. These peaks
are present at the 38.11◦, 44.20◦, 64.44◦, and 77.39◦ positions [PDF: JCPDS 03–065-2871].
While the other peaks 110,101,210,211,220, 301, and 112 represent the rutile structure of
TiO2. Strong diffraction peaks in XRD patterns at 27◦, 36◦, and 55◦ indicated that TiO2 was
in the rutile phase [66]. θ values are 27.3◦, 36.0◦, 41.0◦ 54.2◦, 56.5◦, 68.8◦, and 70◦, which
correspond to tetragonal phase and can be indexed to the [PDF JCPDS 88-1175].
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Figure 4 depicts the scanning and flask-like electron microscope that was used to
analyze the Ag/TiO2 composites’ morphology. The shapes of the given images are spherical.
Due to spherical shapes, these composites enhance their surface area which increases the
capabilities of these composites toward different activities. On the other hand, EDS (Figure 5
and Table 1) showed the Ag element peaks, which demonstrated that Ag was combined
within TiO2.
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The morphology of the Ag/TiO2 composites was examined by using the scanning and
flask-like electron microscope. The shapes of the given images are spherical. Due to spheri-
cal shapes, these composites enhance their surface area which increases the capabilities of
these composites toward different activities.

The smallest amount of energy needed by an electron to break out from its bound
state is known as the band gap in Figure 6. Talc plots were created using absorbance
data from UV–VIS spectrophotometry at room temperature to calculate the band gap for
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manufactured nanoparticles. To do this, relations were used to compute the photon energy
“E” and the absorption co-efficient “α” of synthesized samples:

E = hv = 1240/λ

α = 4π (absorbance)/λ

Table 1. The elemental composition of (a) 0.5 Ag/TiO2 composite; (b) 0.01 Ag/TiO2 composite;
(c) 0.1 Ag/TiO2 composite.

Composite Element Line Type Apparent
Concentration k Ratio Wt% Wt% Sigma Standard Lable Factory Standard

(a)

O K series 10.63 0.0357 25.65 0.52 O2 Yes

Ti K series 14.32 0.1432 21.19 0.32 Ti Yes

Ag L series 25.29 0.2529 37.96 0.53 Ag Yes

Au M series 2.42 0.0242 4.03 0.24 Au Yes

(b)

O K series 10.69 0.0359 26.53 0.55 O2 Yes

Ti K series 17.00 0.1700 25.58 0.33 Ti Yes

Ag L series 22.69 0.2268 34.87 0.46 Ag Yes

Au M series 2.75 0.0275 4.69 0.28 Au Yes

(c)

O K series 11.58 0.0389 27.23 0.46 O2 Yes

Ti K series 14.57 0.1456 21.34 0.28 Ti Yes

Ag L series 24.79 0.2479 36.89 0.46 Ag Yes

Au M series 2.43 0.0242 4.01 0.21 Au Yes
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The absorption coefficient “α” and the energy band gap have the following relation:

(αhv) = B (hv–Hg)1/2

The band gap calculated for the 0.5 Ag/TiO2 composite is 3.6 eV, while for the 0.1 the
band gap is 3.4 eV, and for 0.01 Ag/TiO2 composite 2.7 eV.

After exposure to methylene blue under sunlight, degradation of methylene blue
started. The readings taken at different time intervals are shown in the Figure 7. After
taking the readings at these intervals, the collected solutions were run in a UV-visible
spectrophotometer, and the degradation percentage was recorded. After analysis, it was
observed that the 0.5 Ag/TiO2, 0.1 Ag/TiO2, and 0.01 Ag/TiO2 composites degraded at
54%, 68%, and 90% respectively. So, the result shows the composite 0.01 Ag/TiO2 shows
the highest degradation of methylene blue as compared to the others. Because as the Ag
loading exceeds 0.06 wt %, the photocatalytic effectiveness steadily declines, which is
mostly caused by the shielding effect of the high Ag coverage.
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To study the kinetics of the degradation of methylene blue, a graph was plotted
between the instantaneous concentration (at radiation time) and the starting concentration
of the sample introduced at zero minutes, resulting in a straight line with an R2 > 0.95 as
shown Figure 8 and Table 2. It shows that a first-order reaction was used to quantify the
photocatalytic degradation rates for synthesized photocatalysts:

− ln
co

ct
= kt
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where ce is the instantaneous concentration and co is the starting concentration of the
material being injected at zero minutes (at irradiation of time). While the value of ct
was determined by comparing the Beer–Lamberts Law at zero minutes and at various
irradiation times, the value of co is known for each photocatalyst.

A
c
=

ε

1

The UV data, as shown in Figure 9, indicate that 50 min of exposure to the sunlight
using the 0.5 Ag/TiO2 catalyst results in a 50% reduction of Cr (VI) to Cr (III), while using
the 0.1 Ag/TiO2 catalyst shows a 54% reduction of Cr (VI) to Cr (III), and 0.01 Ag/TiO2
composite as the catalyst shows 75% reduction of the Cr (VI) to Cr (III). The pH affects the
photoreduction of the Cr (VI) to Cr (III) as shown in Figure 10. The best result is shown by
the Ag/TiO2 composites at 1.5 pH as compared to the 5 and 3. So all the experiments of
photoreduction of the Cr (VI) to Cr (III) were carried out at pH 1.5.

r = −dC/dt = K′C;

In the above equation, K’, with a unit of time-1, is the fictitious first-order rate constant.
r represents the reaction rate where the illumination (reaction) time is represented by t. The
amount of aqueous Cr (VI) concentration is denoted by C; where Ce represents the level of
Cr (VI) at time t and Co represents the starting level of Cr (VI). The relationship between the
Cr (VI) concentration and absorbance is linear as shown in Figure 11 and Table 3 as well.

ln (Ct /Co) = −K′
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Table 2. Kinetics study of photocatalytic degradation of methylene blue.

Ag/TiO2 Composites R2 Kapp Degradation

0.01 Ag/TiO2 0.0090 0.0135 90%

0.1 Ag/TiO2 0.981 0.007 68%

0.5 Ag/TiO2 0.9682 0.0051 54%
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Figure 9. (a) The UV visible spectra of 0.5 Ag/TiO2 composite of photocatalytic reduction of Cr (VI)
to Cr(III). (b) The UV visible spectra of 0.1 Ag/TiO2 composite of photocatalytic reduction of Cr(VI)
to Cr(III). (c) Photocatalytic reduction of Cr(vi) to Cr(III). (d) Comparison graph of 0.5 Ag/TiO2,
0.1 Ag/TiO2, and 0.01 Ag/TiO2 composites.

Table 3. Kinetics study of photocatalytic reduction of Cr(VI) to Cr(III).

Ag/TiO2 Composites R2 Kapp Reduction

0.01 Ag/TiO2 0.8965 0.0259 75%

0.1 Ag/TiO2 0.8708 0.014 54%

0.5 Ag/TiO2 0.9243 0.0166 50%
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The kinetics study indicates the photocatalytic reduction of Cr(VI) to Cr(III) follows
the pseudo first-order reaction.

Ag/TiO2 + hv
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The proposed mechanism of removal of photocatalytic pollutants by Ag/TiO2 com-
posite is shown in Figure 12. The Ag/TiO2 in an aqueous matrix is exposed to light with an
energy level over its band gap (Eg = 2.7 eV), and electrons are produced in the conduction
band and holes in the valance band (Equation (1)). Hydroxyl radicals can be created when
the adsorbed water reacts with the photogenerated valance band gaps (Equation (2)). Target
pollutants can be subjected to a photocatalytic interaction with the generated hydroxyl
radicals and the valance band holes (Equations (3) and (4)). On the other hand, the ad-
sorbed molecular oxygen on Ag/TiO2 can combine with the photogenerated conduction
band electrons to make superoxide radical anions (Equation (5)). Moreover, the target
pollutants can cause degradation and reduction products by interacting with newly formed
superoxide radical anions and conduction band electrons (Equations (6) and (7)) [67].
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3.1. Effect of Methanol

Methanol was chosen to serve as a hole scavenger. Methanol radicals are created when
the CH3OH scavenges the h+ in the valence band (CH2OH.). The hole scavenger produces
a radical by removing the hydrogen from the hydroxyl group [68,69]. The valence band
receives e- from the formaldehyde radicals created by the oxidation of the methanol radical.
The formaldehyde undergoes additional oxidation to generate formic acid before being
broken down into CO2 and H2O.

CH3OH + h+
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The conducting band can accept formaldehyde (CH2O), H+, and e− as donations or
fill the positively charged vacancies, which slows the rate of e−/h+ recombination. The
produced holes are scavenged by the methanol, which is then oxidized to produce the
species that donate electrons. CH2OH. Eo = 0.95 V (CH2OH/CH2O) [70]. When a methanol
hole scavenger is employed, the photogenerated holes are not immediately consumed.
Instead, the hydroxyl radicals radicalize the CH3OH, which results in the formation of
e− [71].

OH• + CH3OH
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3.2. Antifungal Performance

0.01 Ag/TiO2, 0.1 Ag/TiO2, and 0.5 Ag/TiO2 nanocomposites were further tested for
their antifungal activity against S. macrospora and S. maydis using the agar well-diffusion
method and amphotericin B as a reference. An overview of the findings is shown in
Table 4. When compared to 0.1 Ag/TiO2 and 0.5 Ag/TiO2 nanocomposites, 0.01 Ag/TiO2
nanocomposites display stronger toxicity, with zone inhibition values of 38.4 and 34.3 mm,
as shown by the antifungal activity data (Table 4). Reduced size and the synergistic
interaction of 0.01 Ag/TiO2 nanocomposites resulted in an increased antifungal effect.

Table 4. Zones of inhibition for the antifungal activity of 0.01 Ag/TiO2, 0.1 Ag/TiO2, and 0.5 Ag/TiO2

nanocomposites were determined using the Agar Well cut diffusion method.

Antifungal Performance

Bacterial Strains Samples Blank Zone of Inhibition (mm)

S. macrospora 0.01 Ag/TiO2 0 38.4

0.1 Ag/TiO2 0 30.6

0.5 Ag/TiO2 0 27.8

S. maydis 0.01 Ag/TiO2 0 34.3

0.1 Ag/TiO2 0 29.4

0.5 Ag/TiO2 0 27.2

4. Conclusions

The Ag/TiO2 composites are synthesized by using the template induced method. For
the crystallinity of the Ag/TiO2 composites, the XRD technique is used. In contrast, the
Ag/TiO2 composites’ morphology is determined using the SEM technique. EDS is used
for element detection. Moreover, the photocatalytic removal of MB and the photocatalytic
reduction of the Cr (VI) to Cr (III) are performed by using the Ag/TiO2 composites as
the catalysis. After performing these activities, it is concluded that 54%, 68%, and 90%
methylene blue is degraded by using the 0.5 Ag/TiO2, 0.1 Ag/TiO2,and 0.01 Ag/TiO2
composites respectively. While 50%, 54%, and 75% Cr(III) is reduced to Cr(III) by using the
0.5 Ag/TiO2, 0.1 Ag/TiO2, and 0.01 Ag/TiO2 composites. The kinetics study shows that
degradation of methylene blue follows the first-order kinetics and reduction of Cr(VI) to
Cr(III) follows the pseudo first-order reaction. In both of these activities (photocatalytic
degradation of methylene blue and photocatalytic reduction of Cr(VI) to Cr(III)) the best
result is shown by 0.01 Ag/TiO2 composite after 150 and 50 min respectively of exposure
to sunlight.
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