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Abstract: In recent years, society has paid great attention to health care and environmental safety.
Thus, research on advanced sensors for detecting substances that can harm health and the envi-
ronment has been developed rapidly. Another popular target for detection techniques is disease-
expressing materials that can be collected from body fluids. Carbon, which has outstanding elec-
trochemical properties, can come from a variety of sources and has many morphological shapes, is
nevertheless an environmentally friendly material. While carbon nanomaterial has become one of
the most common targets for high-tech development, electrochemical voltammetry has proven to be
an effective measurement method. Herein, the paper proposes a currently developed carbon nano-
material along with research on a modified carbon material. Moreover, four common voltammetry
methods and related works are also introduced.

Keywords: carbon materials; electrochemical; voltammetry; detection

1. Introduction

Electrochemistry is a science that studies the relationship between electricity where
the applied potential and the output current are recorded continuously. A suitable applied
potential can trigger an available redox reaction, and this reaction can also affect the record
current. While the oxidation reaction can release additional energy, the reduction reaction
will consume energy, making a change in the current flow. It is possible to detect such
changes in the current, thus recognizing whether the redox reaction in the electrolyte
exists. Hence, electrochemical methods are a powerful tool for detecting substances in the
electrolyte such as biomaterials or ions [1,2]. The need for such detection has attracted
great attention because the presence of these substances can have a huge impact on the
environment and human health [3,4]. Voltammetry methods, on the other hand, rely on
applying different voltages to find the change in current at which the reaction occurs. For the
purposes of electrochemical detection, many voltammetry measurement methods have been
developed, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), different
pulses voltammetry (DPV) and square wave voltammetry (SWV) [5,6]. Until recently, other
methods were developed to optimize the sensitivity as well as measurement ranges [7].

Carbon-based material is a low cost, environmentally friendly material. Though
carbon is one of the most basic nanomaterials, it still attracts a lot of attention due to its
outstanding properties in terms of electrical conductivity, fast charge transfer, high stability
and ease of modification [8–10]. Attempts were made not only to alter the morphological
structure of carbon but also to modify the elements contained in its chemical structure [11].
While the morphology of the material can easily be altered for better surface area and large
pore sizes, the result is usually an amorphous carbon material. The chemical structure
of carbon can be modified by both physical and chemical methods [12,13]. It has been
proven that functional groups can significantly improve the electrochemical properties of
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the carbon material [14]. Up until now, there have been various studies on the modifications
of the carbon material.

Because carbon and its variations possess excellent electrochemical properties, they
have been used in electrochemical applications [15]. Without exception, carbon nanomateri-
als have also been used in voltammetry measurement methods [16–18]. The materials have
been developed so that they can detect the smallest amount of target while maintaining the
linearity of the peak current (linear range) [19]. The measurement targets are usually heavy
metal ions or biomaterials which can cause diseases or pollute the environment [20]. The
other well-known targets are the chemicals that express the existence of cancer cells, stress,
disease, viruses and anti-cancer drugs [21–25]. The collected data can be used to predict
the disease and mental state of patients.

Current development in carbon materials and their application in the field of voltam-
metry are omitted from this review manuscript. First, the types of carbon were classified
and compared according to their outstanding properties. Among the materials that should
be mentioned are graphene oxide (GO)/graphene oxide (rGO), amorphous carbon with
different morphologies, biomass-derived carbon (natural source carbon) and metal/metal
oxide–carbon composite. Subsequently, applications of the carbon material in detecting
targets by voltammetry were proposed. There, the currently commonly used voltammetry
methods are discussed and the advantages of voltammetry in detection are proposed.

2. Sp2 Carbon Materials

As mentioned in the Introduction, the hydrophilicity–hydrophobicity and electro-
chemical properties of carbon materials can be modified by incorporating different types
of chemical functionalities and heteroatoms (O, N, B, S or P) on the carbon surface by
physical and chemical methods [26]. Besides, biomass is one of the abundant natural
carbon sources, which can be self-doped and made during synthesis due to the available
structural components (S, N and P elements) [27]. Therefore, many carbon-based material
structures have been proposed. This review will focus on the morphology, advantages
and disadvantages of producing graphene oxide/reduced graphene oxide, amorphous
carbon, biomass-derived carbon and metal/metal oxide–carbon composites which have
great potential in the application of electrochemical voltammetry (Figure 1).
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2.1. Graphene Oxide and Reduced Graphene Oxide

Thanks to its unique optical, mechanical, chemical and electronic properties, GO
has become one of the most promising materials that has been extensively studied in the
past decade [28]. So far, many studies have been conducted using GO related to energy
storage, solar cells, desalination, oil–water separation, drug delivery, etc. [29–33]. GO is
structurally similar to graphite, though the base plane and edges of GO contain hydroxyl,
carboxyl and epoxy oxygen functional groups, leading to sp2 and sp3 hybridization of
the carbon in the structure. Because GO has good solubility in water/organic solvents
and has a favorable electron mobility structure, it becomes an attractive material for
electrochemical studies and applications. Normally, graphene oxide can be generated by
treating graphite in a strong oxidizing environment, including Brodie’s method, Hummers’
method, Tour’s method and the electrochemical method, which will be described in more
detail below [34,35]. Hummers’ method is commonly used to synthesize GO, but this
method is not environmentally friendly and has a low yield [36]. Therefore, Marcano
et al. propose Tour’s method (improved graphene oxide/IGO) which can overcome the
disadvantages of previous ones. Compared to Hummers’ method, this method uses more
KMnO4, and the reaction takes place in the presence of a mixture of H2SO4 and H3PO4
(9:1 ratio) [37] (Figure 2a). Here, the presence of H3PO4 increases the efficiency of the
oxidation process [38]. In order to demonstrate the superiority of the IGO method over
Hummers’ method (HGO) and modified Hummers’ method (HGO+), the author compared
the volume of under-oxidized materials recovered after the process. As a result, for the
same amount of starting material, IGO produced significantly less amount of hydrophobic
carbon material than either HGO or HGO. In addition, the synthesis process does not
emit a large amount of heat and toxic gases, which is an advantage when producing GO
on an industrial scale. With the trend towards finding an environmentally friendly GO
synthesis method, Pei et al. synthesized pure GO sheets by the water electrolytic oxidation
of graphite [39] (Figure 2b). In this study, commercial flexible graphite paper was used as
the raw material for the synthesis of GO in two sequential electrochemical processes taking
place at room temperature. Initially, the sliced graphite paper undergoes electrochemical
intercalation in a concentrated H2SO4 solution, which causes a significant decrease in
surface resistance. In the second electrochemical process, the acidic solution is diluted, and
the anodic electrocatalytic oxygen evolution of water occurs under the applied voltage.
Compared to Hummers’ and K2FeO4 methods, this method is about 100 times faster in
oxidation, requires less H2SO4 and can be fully reused.

The negatively charged functional groups in GO facilitate the formation of stable
colloids in water and are an ideal candidate for some applications such as sensors, super-
capacitors, multifunctional gels, etc. [40–42]. However, in some cases, these functional
groups also become a disadvantage as they create defects in the GO crystal lattice and make
GO susceptible to degradation upon hydration. To overcome the disadvantages of GO,
researchers performed GO reduction using the electrochemical, microwave, photo assisted
and thermal methods [43–46] to obtain reduced GO (Figure 3).

However, since the reduced amount of functional groups leads to agglomeration
and a tendency for reduced GO to crumble, the synthesis of reduced-GO membranes
is still challenging. Recognizing the need for further studies on the effect of oxygen-
containing functional groups on the success of reduced-GO-membrane synthesis, Huang
et al. conducted a study to clarify this issue [47] (Figure 2c). In this study, a hydrothermal
method was used to synthesize a uniformed reduced-GO membrane. Here, the hydroxyl
and carboxyl groups are mainly responsible for the formation of a homogenous reduced-GO
film. Due to hydrogen bonding between adjacent layers formed by hydroxyl and carboxyl
functional groups, the surface interaction between the reduced-GO sheets is enhanced.
Then, a reduced-GO film was synthesized without shrinkage or damage even after drying.
Moreover, this study is the premise for several future studies related to the hydrothermal
synthesis of rGO, which can be applied in enhancing photocatalysis and improving the
electrochemical performance of electrodes.
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2.2. Amorphous Carbon

Amorphous carbon is one of many allotropic forms of carbon, including carbon mate-
rials that have no long-range crystalline order in their structure [48] (Figure 4). Amorphous
carbon includes sp3 (can give a three-dimensional structure) and sp2-hybridized carbon
atoms (can form chains, benzene-like rings, hexagon-based layers, etc.), leading to disorder
and multidimensionality in the structure [49].
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Figure 4. Chemical structure of amorphous carbon.

As a result of incomplete pyrolysis, amorphous carbon substances of plant and animal
origin can be produced. Moreover, they can also be made of polymers such as polyacry-
lonitrile, polyimide, polyvinyl alcohol, etc. [50–52]. Through the carbonization process at
a suitable temperature range, a short-range order carbon structure (amorphous carbon)
will be created (Figure 5).
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Kim et al. synthesized activated multi-size pores containing carbon nanofibers us-
ing single nozzle co-electrochemistry and a steam-activated process to generate a signal
transducer and template for immobilization bioreceptors [53] (Figure 6a). Here, the electro-
spinning method is used to synthesize a 1D structure (fiber). This method allows control
over the structure of the material by varying the composition of the precursor. For instance,
polyacrylonitrile can undergo carbonization in the temperature range of 800–1300 ◦C, and
poly methyl methacrylate will be degraded at about 300 ◦C. Therefore, poly acrylonitrile
acts as the carbon source of material, and the decomposition of poly methyl methacrylate
creates the pore structure for the carbon nanofibers. The steam activation step maximizes
the amount of micro/mesoporous, resulting in an increased surface area of the material,
meaning that the antibody can easily coat the sensing electrode and increase its affinity for
the target analyte.

Realizing that the fully sp3-bonded amorphous carbon structure has the potential
to achieve the unique properties of both diamond crystals and amorphous materials,
Zhi-dan Zeng et al. synthesized it by combining high-pressure and in situ laser heating
techniques [54] (Figure 6b). Glass carbon with sp2 bonds is the precursor to this process.
After loading the glassy carbon sample with high pressure > 40 GPa and a temperature of
about 1800 K, carbon with a complete sp3 bond was formed with a disordered structure
(amorphous diamond). X-ray diffraction experiments revealed that amorphous carbon has
good incompressibility comparable to crystalline diamond and generally has much better
properties than glassy carbon. The discovery of the carbon material containing a fully sp3

amorphous structure with outstanding physical properties added a diamond-like structure
to the carbon family. Such material seems to have a high potential for further exploitation.

Amorphous carbon thin film is also an allotropic form of carbon, which is of great
interest to scientists due to its outstanding mechanical and electrochemical properties and
its outstanding potential for applications in arrays systems such as solar panels, hard masks,
deformation and connection electrodes, sensors, micro-supercapacitors, batteries, nanogen-
erators, etc. [55]. Specifically, in a study involving foldable electronics, Pal et al. synthesize
hydrogenated amorphous carbon thin films and use them as ultra-thin anisotropic conduc-
tive films to coat a printed metal circuit board [56] (Figure 6c). Branched poly(ethylenimine)
is the starting material, acting as a carbon source and nitrogen dopant. The dimethyl-
formamide solvent was used to dissolve the polymer to form a precursor solution. The
precursor solution was then immobilized on a conductive electrode plate (Si wafer or ITO)
by the spin-coating method. The sample was decomposed in a microwave oven with
a power of 240 W (to set the temperature for the substrate at 350 ◦C) for 1 min to produce
a thin film of nitrogen-doped amorphous carbon. It is a fast, one-step carbon film synthesis
process that shows great potential for practical manufacturing applications.

2.3. Biomass-Derived Carbon

As we all know, biomass is the combination of carbon with numerous other elements
(H, O, N, P, S, etc.) to create living biological organisms in nature. Heteroatom-doped
three-dimensional carbon materials with a porous structure and made of biomass have
great potential for electrochemical applications [57–59].

Bamboo is well known as an inexpensive biological source due to its short maturation
cycle and ability to grow almost anywhere [60]. Furthermore, it is rich in silicon dioxide
(precursor of silicon carbide (SiC)) and nitrogen-containing functional groups (precursor of
pyrrolic-N), which can contribute to improving the electrochemical properties of carbon
materials and the overall performance of supercapacitors [61]. Realizing the promising
potential of bamboo, Abbas et al. used it as a starting material for the synthesis of hierarchi-
cally porous bio-renewable carbon materials doped with SiC/pyrrolic-N [62] (Figure 7a).
After the pyrolysis process, the nitrogen-containing functional groups in natural bamboo
will produce pyrrolic-N species, resulting in increased wettability and better electrolyte ions
transfer through the carbon material. The carbonized powder was activated with potassium
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hydroxide. In this process, SiO2 becomes a sacrificial material, leaving an ultra-microporous
and mesoporous surface of the carbon material.
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high-pressure laser heating technique [54]. (c) Thin films of hydrogenated amorphous carbon are
synthesized by spin-coating and microwave irradiation [56].

In addition to the direct use of sources from living organisms, using by-products from
biomass processing for electrochemical applications is one of the ways to reduce input
material costs in device production. Heavy bio-oil is an industrial by-product, characterized
by high viscosity and poor fluidity, which makes its use very limited [63]. Thanks to the
composition and elemental analysis, Zhu et al. found that the C and O content of heavy
bio-oil was 57.36% and 36.05%, respectively, showing that it is an ideal carbon source with
oxygen-containing functional groups. To open a new direction for the reuse of this waste
source, Zhu et al. proposed the preparation of hierarchical porous carbon material from
heavy bio-oil derived from the pyrolysis of rice husk [64] (Figure 7b). The carbonization
of heavy bio-oil under nitrogen atmosphere is the first stage of the synthesis process. The
carbonation product undergoes activation, where the activating agent is sodium hydroxide.
Upon completion of both processes, a three-dimensional bonded porous structure with
surface oxygen-containing functional groups is obtained. The resulting material applied to
the supercapacitor exhibits excellent capacitance performance exceeding expectations in
comparison with the carbon material produced directly from the raw husk [65].
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The conversion of biomass to carbon materials for stable solid carbon storage is
a solution to reduce global emissions known as negative emission technology [66]. The
hydrothermal method only uses high-pressure water as a solvent to convert biomass
into carbon materials [67]. Although easy to operate, pressure and temperature in batch
reactors vary proportionally, making it difficult to determine which factor affects the
final product [68,69]. To overcome that shortcoming, Yu et al. developed a process to
independently control temperature and pressure in a hydrothermal system that can heat
cellulose to form submicron carbon spheres [70] (Figure 7c). In the presence of water,
under constant pressure (20 MPa) and with a gradual increase in temperature, the cellulose
structure decomposed from flat, rod-shaped cellulose to crystalline cellulose (<100 ◦C) and
finally to a carbon sub-micron sphere (100–150 ◦C). In this process, water at high pressure
plays a key role as it has the ability to cut hydrogen bonds, leading to an increase in the
rate of cellulose decomposition at a low temperature of 117 ◦C instead of above 200 ◦C
as in previous studies. Compared to the conventional cellulose hydrothermal reaction,
this hydrothermal system not only has a fast reaction time and low temperature, but the
size of the sub-micron carbon spheres produced is about 40 times smaller. This study has
contributed to a new approach to the production of sustainable carbon materials.
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Figure 7. (a) A carbon material with a dual-doped SiC/pyrrolic-N pore structure is generated from
the pyrolysis and activation of bamboo powder [62]. (b) After heat and activation treatment, the
rice husk pyrolysis by-product is converted into a three-dimensional bonded porous structure with
surface oxygen-containing functional groups [64]. (c) Synthesis of submicron carbon spheres from
cellulose by the hydrothermal system (independently controlling temperature and pressure) [70].

3. Metal/Metal Oxide–Carbon Composite Materials

Metal/metal oxide–carbon composite materials are emerging due to their fascinating
physical, chemical, electrical, and optical properties, as well as a wide range of applications
(sensors, supercapacitors, automobiles, etc.) [71]. Unlike the material that was mainly built
based on the carbon structure, the carbon composite was designed so that the metal/metal
oxide has the largest active surface area. The composite’s detecting function benefits from
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the loaded material. Here, sp2 carbon plays the role of the bone structure, which conducts
the electricity between the electrode and the loaded materials. Instead, the metal/metal
oxide material exchanges electrons with substances in the electrolyte. Though the metal
oxide material does not high electrical conductivity like metal materials, they both have
excellent electrocatalyst ability, resulting in higher sensitivity [72,73]. It is noted that some
of the metal oxides like SnO2 and ZnO can carry the properties of a semiconductor material,
which made them good materials in electron transfer ability [74,75]. Fe3O4 and Co3O4 with
multiple valence states have also been found to be outstanding in their performance in
catalytic activities [76,77].

A method for dispersing gold nanoparticles in carbon microspheres that is non-toxic
has been proposed by Zhou et al. (Figure 8a) [78]. The Au3+-decorated microspheres
were obtained by simply dissolving HAuCl4 in the suspension of polydopamine. Here,
polydopamine acts not only as an adsorbent, reducing agent and stabilizer but also as
a carbon source for the structure of the final material, a gold-decorated carbon microsphere.
Calcination temperature not only enhances electrical conductivity but also reduces the
active surface area of the material due to the aggregation of gold nanoparticles. Although
gold nanoparticles have performed well in increasing the electrocatalytic activity of carbon
microsphere, the cost seems to be a barrier for this material to be widely applied. Instead of
gold, Ikhsan et al. conducted a study on silver to apply in electrochemical sensors because of
their low cost and higher electrical conductivity than noble metals such as gold, palladium
or platinum. The rGO–silver nanocomposite was synthesized by modified Tollens’ reaction,
in which GO with surface functional groups serves as a support material for the growth
of silver nanoparticles (Figure 8b) [79]. In the presence of ammonia, glucose is used as
a reducing agent. The reduction of Ag(NO3) (present in the [Ag(NH3)2]+ complex) and GO
takes place simultaneously, leading to the formation of silver nanoparticles on the reduced
GO surface. The presence of silver nanoparticles on the reduced GO surface increases the
active surface area, facilitating efficient electron transitions during electrostimulation.

The method of metal oxide immobilization in the structure of carbon materials by
oxygen plasma process was proposed by Kim et al. [80] (Figure 8c). First, electrospinning
of a homogeneous solution containing polyacrylonitrile (as a carbon source), polystyrene
(a pore-forming agent) and FeCl3 (a source of Fe3+ ions to create Fe2O3 nanoparticles) takes
place. The oxygen plasma process is performed on electrospun multicore nanofibers and
generates multiple oxygen-functional groups on the surface. These functional groups not
only increase the cyclization of the polyacrylonitrile chain but also contribute to the phase
change of Fe3+ ions into Fe2O3 nanoparticles during stabilization. Finally, carbonization
is carried out at a temperature of about 800 ◦C for 1 min to convert polyacrylonitrile into
a carbon structure, with the same progress the polystyrene decomposes and leaves holes
on the surface of the final product. For the application in H2S gas sensors, the large surface
area and uniformly dispersed Fe2O3 component in the carbon structure play a key role in
increasing the sensitivity to the target gas (the limit of detection is down to 2 ppm).

Carbon fibers synthesized by electrospinning have emerged as electrode materials
because of their high applicability in energy storage devices. However, the carbon structure
produced by this method is amorphous carbon with low electrical conductivity, which
leads to poor prospects for its further application. To overcome this limitation, Li et al.
proposed a new strategy for the synthesis of metal-organic, framework-embedded elec-
trospun nanofibers [81] (Figure 8d). MOF-74(Ni) nanospheres dispersed in electrospun
nanofibers, after undergoing pyrolysis and oxidation, are converted into nickel(II) oxide
nanoparticles enclosed in carbon nanospheres. This hierarchically mesoporous structure
not only increases the space for ion migration but also prevents the elimination of oxides
and maintains it in an active state during long-term cycling.
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Figure 8. (a) Carbon spheres surface modified with in situ synthesized gold nanoparticles [78].
(b) The rGO-Ag nanocomposite was synthesized by modified Tollens’ reaction [79]. (c) The plasma
oxygen process is used to immobilize iron(III) oxide in the multi-dimensional pore structure of carbon
nanofibers [80]. (d) MOF-74(Ni) nanospheres dispersed in electrospun nanofibers create mesopores
in the structure of the carbon fiber after carbonization and oxidation [81].

4. Electro Voltammetry

While electrochemistry deals with the studies based on the relationship between
the flow of electrons with the changes in chemicals, the voltammetry electrochemical
sensor uses a wild voltage range to determine the existence of a desired target. It uses
the oxidase and reduction reactions of the target material, which can be activated when
given a suitable amount of energy known as cell potential [82]. The cell potentials of the
targets are almost unitary and can be easily distinguished from each other. However, the
sensitivity of these reactions greatly depend on the presence of elements of the environment,
such as the potential of hydrogen (pH) or the presence of different ions [83]. On the other
hand, there are many measurement methods that have been developed throughout history
in an effort to achieve high sensitivity and low noise signals. There, the measurement
parameters can greatly affect the reaction that happens to the target. Interestingly, the
effects of the parameters are unique for each target, so one setting condition may be
favorable for one target’s response but unfavorable for others. The suitable electrolyte
made with simple preparation can help the data generated by voltammetry electrochemical
have an outstanding selectivity. On the other hand, when embedding metal/metal oxide
nanomaterials into the structure of carbon, the sensing properties will be changed. Since
the loaded materials acted as the main catalytic, the position of the peak can be shifted.
The loaded material with high electron transfer can keep the redox system reversible
even with a high potential change during detecting measurement [84,85]. In addition, the
excellent electrocatalytic made the composite more sensitive during the detecting activity,
improving the limit of detection. However, it is ineffective for the loaded materials to
function alone, since their own structure limit interaction with the electrode needed in the
measurement [86].

Currently, there are three most commonly used electrolytes that are applied to the
detection of the studies of the materials. The first is simply DI water. Secondly, the
detections of the targets can happen ideally in the electrolyte containing K3[Fe(CN)6],
which acts as an electron transfer mediator due to the highly electrochemical reversibility of
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the pair of Fe(CN)6
3−/Fe(CN)6

4− [87,88]. However, not only does this electrolyte need to
be prepared in the laboratory and is hard for practical application, but undesirable reactions
can also happen between existing ions. Finally, the third is standard phosphate-buffered
saline (PBS). PBS, which is now easily available on the market, contains a mixture of ions
similar to the physiological one of the human bodies. Hence, PBS is usually used for target
detection studies that should be collected from the human body. The downside is that
the quality of the peaks generated from the targets is lower than that of the electrolyte
containing Fe(CN)6

3−/Fe(CN)6
4−.

Nowadays, there are two well-known methods used for the detection of metal ions
as well as biomaterials. One is colorimetry, and the other is voltammetry. For the case of
colorimetry, although simple preparation steps can be performed at home, it is difficult to
obtain information about the target concentration individually. The differences in colors
require a complicated system to distinguish them. In the case of voltammetry, while it
always requires analytical systems (potential state), the technologies have advanced to the
point where many compact/mini-processor systems have been introduced. Voltammetry
includes Linear Sweep Voltammetry (LSV), Cyclic Voltammetry (CV), Differential Pulse
Voltammetry (DPV) and Square Wave Voltammetry (SWV) (Figure 9). All these measure-
ment methods need to be performed in a three-electrode system. There, the material is
usually laid on a commercial carbon electrode, including a glassy carbon electrode (GCE),
carbon paste electrode (CPE) and conventional carbon paste electrodes. The recent works
based on carbon materials are shown in Table 1.
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Table 1. Carbon material, their variation and performance in detecting application.

Material Electrode Measurement
Method Target Linear Range

(µM)
Limit of

Detection (µM)
Sensitivity
(µA/µM) Ref

Ag@C/GCE LSV Tryptophan 0.1~100 0.04 0.05 [89]
RGO–DHP 1/GCE LSV Estradiol 0.4~20 0.077 nr [90]

K3C60/MPC 2 LSV Nitroaromatic
compounds 0.5~240 0.17 0.303 [91]

AuNPs 3/GN/GCE CV Caffeic acid 0.5~50 0.05 nr [92]
Activated GCE CV Caffeic acid 0.1~1 0.068 nr [93]

Pd−Cu@Cu2O/N-rGO DPV Tryptophan 0.01~40 0.0019 0.3923 [94]
Poly(Lmethionine)/GR 4/GCE DPV Tryptophan 0.05~10 0.017 0.312 [95]
MIS/MWCNTs-VTMS/GCE 5 DPV Caffeic acid 0.75~40 0.22 0.39 [96]

rGO/PDA 6 DPV Caffeic acid 0.005~450.5 0.0012 2.15 [97]
GE/Au/GE/CFE 7 DPV Dopamine 0.59~44 0.59 nr [98]

EBNBHCNPE 8 DPV
Dopamine 0.5~160 0.2 0.1372

[99]Uric acid 20~600 15 0.1375

AuNPs@PDA-rGO DPV
Riboflavin 0.02~60 0.0096 nr

[100]Pyridoxine 0.03~600 0.025 nr
CNT/SPCE 9 DPV TNT 0.006~6.6 0.006 0.44 [101]

PEDOT-Gr/Ta DPV

Hydroquinone 5~250 0.06 nr

[102]
Catechol 0.4~350 0.08 nr

Resorcinol 6~400 0.16 nr
Nitrite 2~2500 7 nr

Fe3O4/cMWCNTs/GCE 10 SWV Ganciclovir 0.08~53 0.02 nr [103]
MWCNT/GCE SWV Resorcinol 1.2~190 0.49 nr [104]

1 Dihexadecylphosphate. 2 Macro porous carbon. 3 Gold nanoparticles. 4 Graphene. 5 multiwall carbon nanotubes
(MWCNTs)/vinyltrimethoxysilane (VTMS) recovered by a molecularly imprinted siloxane (MIS) film prepared by
sol–gel process. 6 Polydopamine. 7 layer-by-layer assembly of graphene sheets and gold nanoparticles modified
carbon fiber electrode. 8 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone-modified carbon-nanotube-
paste-electrode. 9 Screen-printed carbon electrodes. 10 Fe3O4/carboxylated multi-walled carbon nanotubes
modified glassy carbon electrode.

4.1. Linear Sweep Voltammetry

LSV or staircase voltammetry, changes the applied potential continuously, usually
from the negative to positive potential. When the applied potential becomes favorable for
the reaction of the target, the received integration current at the electrode shows peaks
that can be clearly distinguished. In fact, the scan speed can directly affect the collected
peak width. This phenomenon can greatly limit the ability to identify the chemical in the
redox system because there are exit chemicals with peak locations aligned near each other.
Although the setup is simple, not only the selectivity provided by the measurement is poor,
but the high concentration of materials can also cause noise in the signals. However, its
simple mechanism still brings opportunities for application. Masikini et al. conducted
a study on estradiol detection (6~20 µM) using another combination of multiwall carbon
nanotube (MWCNT) and gold nanoparticles (Figure 10a) [105]. There are many ways to
fabricate and combine the excellent properties of nanoparticles and nanotube structures.
On the other hand, there are studies proposed that gold nanoparticles and carbon nan-
otubes can easily support each other and give different advantages for electrochemical
properties [106]. Thus, the cyclic voltammetry aera was enhanced and therefore the peak
current was higher. However, since the MWCNT and gold nanoparticles were simply
mixed together, there is a limitation in the interaction between the two nanomaterials.
Filik et al. proposed another MWCNT/gold nanoparticle use for the detection of heavy
chromium (Cr) and vanadium (V) ions (Figure 10b) [107]. Here, the authors used neutral
red as a cross-linking material between the carbon structure and the gold nanoparticles.
This crosslinker allowed electron to be transferred between MWCNT and gold nanoparti-
cles. It is noted that sulfuric acid was used as the supporting electrolyte for the detection.
The presence of Cr ions clearly affects the detection of V ions. The nature of LSV made
the current value unable to fully recover, making it difficult to see changes in the current
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peak. Though the material can detect Cr (0.4~80 µM) and V (3~200 µM) simultaneously, the
presence of a high concentration of Cr ions can completely obscure the signal generated by
V ions. Punrat et al. introduced the Cr ions detection function of a polyaniline/graphene
quantum dot deposited on a screen-printed carbon electrode using cyclic voltammetry
(Figure 10c) [108]. Conducting polyaniline is capable of improving the sensitivity of electro-
chemical detection thanks to its stable electrical conductivity [109]. The authors emphasize
the advantage of LSV, which is the short operation time to create a rapid measurement
device. The sensor appears to be able to detect the presence of Cr (0.1~10 ppm) in a short
amount of time, repeatedly, over multiple times without the need for renewal. However, the
composite has the morphology that is similar to a film, which may have limited its surface
area. Li et al. developed a nitrogen-doped carbons by treating graphene oxide precursor
with melamine (Figure 10d) [110]. The material was applied in the application of ascorbic
acid (0.6~1.2 mM), dopamine (0.12~0.22 mM) and uric acid (0.1~0.25 mM) detection. The
material can detect the presence of three chemicals independently in the same test. Thus,
the results are a method for the development of a rapid and good material for the detection
of the above biomaterials.
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Figure 10. (a) Multiwall carbon nanotube/gold nanoparticle mixer for estradiol detection [105].
(b) Gold nanoparticles decorated on multiwall carbon nanotube for the detection of Cr and V
ions [107]. (c) Polyaniline/graphene quantum dot on the screen-printed carbon electrode toward
sensitivity of Cr ions [108]. (d) Nitrogen–doped graphene for electrochemical detection of ascorbic
acid, dopamine and uric acid [110].

4.2. Cyclic Voltammetry

CV has the same mechanism as linear sweep voltammetry, but the scanning of potential
is made into a closed cycle. After the oxidation process has been carried out, the reduction
reaction will occur when the second scanning process occurs. The closed cycles of the
scanning potential allow the material to be recovered to its original state, and from there it
can be reused. On the other side, the repeatability of cyclic voltammetry ensures that the
oxidation state of the material is the same for each measurement. Thus, this measurement
method has high repeatability while requiring a short measurement time. Karikalan et al.
conducted research on the caffeic acid sensor with nitrogen-doped carbon (Figure 11a) [111].
The authors used a method in which pyrrole was burned to prepare the carbonaceous
materials with a hetero atom dopant. The current peak linear range of the sensor is from
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100 to 1000 µM. It is noted that the material is also able to sense the presence of caffeic
acid by DPV with an ultra-low limit of detection at 0.01 µM. Karthika et al. used graphite
carbon nitride as a material decorated with AgM (Figure 11b) [112]. Graphite carbon
nitride has excellent redox properties, is environmentally friendly, has good stability and
has high electrical conductivity. The composite material was used to detect heavy Cr ions
in a pH 2 environment. The studied carbon material can show the signal in the CV curve
with Cr ions from 10 to 100 µM present in the solution. Zhang et al. worked on graphite
carbon nanosheets based on laser-scribed graphenization from a polyimide precursor
(Figure 11c) [113]. It was mentioned that the preparation process of the material was in
a matter of minutes. After the carbon material is prepared, the palladium was decorated
by the electrodeposition method. Finally, the composite material can detect hydrazine
(50 µM~5 mM), which is harmful to the human body despite its wild applications. However,
it is clear that the limit of detection was sacrificed for production efficiency.

The combination of MWCNT and a manganese-based metal-organic framework was
introduced by Madej et al. (Figure 11d) [114]. The authors applied the material for
the detection of citalopram (0.05~115 µM). Although the anodic oxidation peak results
collected from the CV cannot be calibrated to one linear line, they form a linear line in
three concentration ranges with three different sensitivities. The research showed that
using the high electrocatalytic material as the loaded material in the composite can greatly
improve the sensing function in voltammetry.
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Figure 11. (a) Voltammetry determination of caffeic acid in red wines using nitrogen-doped carbon
material [111]. (b) Graphene carbon nitride-doped silver molybdate immobilized Nafion for sensitiv-
ity of Cr ions [112]. (c) Ultra sensitivity toward hydrazine based on palladium−loaded laser−scribed
graphite carbon nanosheets [113]. (d) Carbon/metal–organic framework composite for citalopram
detection [114].

4.3. Different Pulse Voltammetry

Since the reactions surrounding the electrode are diffusion processes, the scanning rate
may directly affect the accuracy of the data received from the electrochemical system [115].
The slower the scan rate, the better the peak current. Despite the advantages of the potential
state, it is difficult to make such an accurate small change in the applied potential. Thus,
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the DPV, which involves the use of a potential waveform, was developed to overcome
the problem. Instead of simply using the measured current, the change in current during
the execution of the pulse was calculated (I1 and I2) (Figure 9), where Tr is the rest time,
Td is the pulse duration, EDP, H is the pulse high and EDP, I is the pulse increment. In
exchange for the low limit and wild range of detection, there are many parameters that
need to be controlled.

Sakthivel et al. introduced a combination of VS2-SNS2 and functionalized MWC-
NTs that can recognize the presence of the neurotransmitter dopamine (Figure 12a) [116].
Transition metal sulfides have excellent physicochemical properties that are suitable for
electrochemical sensors [117,118]. The detection limit could be reduced to 8 nM, and the
linear range was extended to 25~1017 µM. This is the typical behavior of the DVP, which
has excellent sensitivity yet a long measurement time. Motaghedifard et al. used sulfated
zirconium oxide mixed with polyaniline nanostructure to sense Cr ions in wastewater
(Figure 12b) [119]. Here, instead of using carbon as the conducting material, the authors
used polyaniline to transfer charge between zirconium oxide and the measurement system.
The material again showed high sensitivity with a limit of detection of 64 nM, and a linear
range line between 0.55 and 39.5 µM. The application of anionic surfactant sodium lauryl
sulfate modified carbon nanotube and a pencil graphite composite paste electrode for the
detection of riboflavin was introduced by Tigari et al. (Figure 12c) [120]. Their sensor mate-
rial can detect a target within the range of 0.2 to 5 µM. Although the upper point of the linear
range is low, the material showed an excellent limit of detection of 12 nM. Manasa et al.
proposed MWCNT embedded with maghemite nanoparticles (Figure 12d) [121]. The mate-
rial was used to detect resorcinol, which is a concern for ecology and human health. The
sensor also reported a limit of detection of 22 nM, and a linear range from 0.5 to 10 µM.
Though the peak current calibration in the mentioned studies was divided into two parts,
they still form linear lines. Compared to the staircase voltammetry, the DPV measurement
technique is clearly preferable for better results at the limit of detection and can almost
reduce the noise generated by redox reactions.

4.4. Square Wave Voltammetry

Since the execution of DPV takes a long time, SWV was proposed to optimize the time
consumption of the measurement process. The basic mechanism of SWV is the same as
DPV but the rest time is equal to the duration of the pulse, forming the waveform of the
applied potential over time. Reducing the rest time can make a big effect on the shape of
the current peak. The peak current will increase, the peak width will decrease, and the
peak location will shift to a nearby location [122]. The parameters included in SWV are
pulse increment (∆E), square wave amplitude (ESW) and duration of the potential step τ

(1/f, where f is the frequency of the wave) (Figure 9) [123].
Castro et al. studied the sensitivity of reduced graphene oxide/MWCNT nanocom-

posite toward 2,4,6-trinitrotoluene (Figure 13a) [124]. The combination of the two carbon
materials seems to have a huge impact on the detection ability, including the limit of
detection, linear range, and limit of quantification. The limit of detection is 60 nM, which is
much lower than for the two materials separately. The linear range also becomes wilder,
extended to 0.5~1100 µM. This advantage and the low interfacial resistance between the
material electrode and the electrolyte may be due to the synergistic effect. A compos-
ite poly(amidoamine) dendrimer functionalized magnetic graphene oxide prepared by
co-precipitation was introduced by Baghayeri et al. (Figure 13b) [125]. Graphene oxide
was bound to poly(amidoamine) through the reaction between the amine group of the
polymer (-NH2) and the acid functional group of graphene (-COOH). Not only can the
material detect palladium (Pd) and cadmium (Cd) ions, but it can also distinguish the
concentration of ions individually. While the linear range for the two ions is said to be the
same (0.5~100 µM), the sensitivity of the Cd ions is lower. Phan et al. used the modified
carbon nanoparticles that were carbonized from a polypyrrole precursor (Figure 13c) [126].
The authors used the plasma field in the exposure with O2, NH3 and C4F8 in order to dope
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different elements in the structure of amorphous carbon material. The electrochemical prop-
erties of carbon treated with O2 plasma seemed to be the most enhanced, followed by NH3
plasma and C4H8 plasma. Since the material is formed from polypyrrole, there are many
nitrogen-functional groups already doped in the structure of carbon. NH3 plasma only in-
creases the number of nitrogen function groups and O2 plasma brings out the combination
of oxygen and nitrogen elements. The developed oxygen-doped carbon nanoparticles have
the limit of detections 5 and 10 nM toward lead (Pb) and copper (Cu) ions, respectively.
Though it is well known that doping functional group can enhance the sensing activity of
material, this study proved that oxygen-doping and nitrogen-doping are the most effective.
Nevertheless, plasma seems to be a very useful method for element-doping, since it is fast,
safe to use and environmentally friendly. Brycht et al. studied the difference in fenhexamid
sensitivity of basic carbon electrodes such as glassy carbon electrodes, glassy carbon paste,
conventional carbon paste electrodes and carbon paste electrodes modified with MWCNTs
(Figure 13d) [127]. When comparing basic electrodes, the conventional carbon electrode
has advantages in both the linear range and limit of detection. On the other hand, though
the modification of the electrode with MECNTs clearly increases the linear range and limit
of detection, it may limit the recovery of the electrode between measurements.
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fides hybrid/functionalized MWCNTs [116]. (b) Sensitivity toward Cr in wastewater via polyani-
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otubes and its sensitivity to riboflavin [120]. (d) Rapid quantification of resorcinol in hair dye using
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Figure 13. (a) The nanocomposite of reduced graphene oxide/MWCNTs for high sensitivity of
trinitrotoluene) [124]. (b) Functionalized magnetic graphene oxide for the determination of Pb and
Cd [125]. (c) Carbon nanoparticles modified with plasma towards ultrasensitivity of heavy metal
ions [126]. (d) Fungicide fenhexamid in berries and wine grapes determination using carbon−based
electrode [127].

5. Conclusions

This review presents carbon nanomaterials and their application in electrochemical
voltammetry. sp2 carbon nanomaterials can come from a variety of sources. Depending
on the properties of the carbon material, it may have an amorphous or crystallizing struc-
ture. To date, although many carbon nanomaterials have been developed, the multiwalled
carbon nanotube seems to be the most widely used. The detection process uses voltam-
metry methods, including linear sweep voltammetry, cyclic voltammetry, different pulse
voltammetry and square wave voltammetry. Until recently, more and more new carbon
materials have been developed for better properties and morphological structure. On the
other hand, the voltammetry methods still have great potential for the determination of
many other targets.
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