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Abstract: Emerging as a new class of advanced functional materials with hierarchical architectures
and redox characters, organic–inorganic hybrid materials (OIHs) have been well developed and
widely applied in various energy conversion reactions recently. In this review, we focus on the
applications and structure–performance relationship of OIHs for electrochemical water oxidation.
The general principles of water oxidation will be presented first, followed by the progresses on the
applications of OIHs that are classified as metal organic frameworks (MOFs) and their derivates,
covalent organic framework (COF)-based hybrids and other OIHs. The roles of organic counterparts
on catalytic active centers will be fully discussed and highlighted with typical examples. Finally,
the challenges and perspectives assessing this promising hybrid material as an electrocatalyst will
be provided.

Keywords: organic–inorganic hybrid; water oxidation; electrochemical catalysis

1. Introduction

Electrochemical water splitting coupled with renewable energy sources is one of the
most efficient and promising methods for green hydrogen production [1–3], which could
tackle both the energy crisis and environmental pollution problems. The anode half reaction
of water splitting is an oxygen evolution reaction (OER), which is very energy consuming,
limits hydrogen production efficiency and determines the cost of hydrogen production via
water splitting. So, developing efficient OER catalysts without noble metals has attracted
much attention. Till now, many advanced noble-metal-free electrocatalysts have been
successfully fabricated, such as transition metal (TM) oxides [4–9], hydroxide [10–13],
oxyhydroxides [14,15], phosphides [16–18], etc., which presented excellent activity and
stability for OER in different conditions. What’s more, the rational designed hybrids with
two functional materials have also been constructed that exhibited even better performance
or multifunctional properties when compared with their single counterparts [9,19,20].

Emerging as a new class of advanced materials, organic–inorganic hybrid mate-
rials (OIHs, [21]) have abundant nanoscale interfaces and redox properties, arising
from strong interactions between the inorganic compounds that are rich in transition
metal active sites and organic compounds that offer flexible and assembly properties.
Therefore, the OIHs often exhibit various nanoscale architectures with various func-
tionalities, leading to promising applications in many research areas such as energy
storage [22–24], sensors [25–27], and catalysis [28–30], etc. Herein, we will review the
recently reported OIHs and their applications in hydrogen production via water oxida-
tion, with an emphasis on the roles of organic molecules on tuning the coordination
environments of transition metal active centers. After a brief introduction of OER mech-
anisms, the progresses on fabrication, modification and application of MOFs and their
derivates, COF-based hybrids, as well as other rational designed and fabricated OIHs
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will be fully presented and discussed (Figure 1). Finally, the perspectives, challenges
and future research directions of OIHs for water oxidation will be provided.

Figure 1. Typical classifications of different OIHs and the roles of organic compounds.

2. Fundamental Principles of Water Oxidation

In general, full water splitting is composed of two half reactions, the cathode hydrogen
evolution reaction (HER) and the anode oxygen evolution reaction (OER). Since the OER
is a four-electron oxidation process that involves four-electron transfer and an O=O bond
formation, while it is a two-electron transfer process for HER, the OER on the anode is
considered to be [31] the performance-limiting half reaction of the overall water splitting
that limits the hydrogen production efficiency. So, in this review, we would just focus on
the introduction of fundamental principles of anode OER.

2.1. Mechanisms of Electrochemical Water Oxidation

Different to the HER that has been fully investigated and the reaction mechanism has
been well developed as Volmer–Heyrovsky or Volmer–Tafel processes [32–34], the OER
with an equilibrium potential of 1.23 V (vs. RHE: reversible hydrogen electrode) is much
more complicated [10,35–37]. The overall OER reaction in neutral/acidic and alkaline
electrolytes would be written as follows:

2H2O→ O2 + 4e− + 4H+ (In acidic/neutral electrolytes)

4HO− → O2 + 4e− + 2H2O (In alkaline electrolytes)

Even though the mechanism of OER has not been settled yet, many possible reaction
pathways have been proposed depending on the catalysts and reaction conditions. Herein,
the most recognized OER mechanisms—the adsorbates evolution mechanism (AEM) and
lattice-oxygen participated mechanism (LOM)—will be introduced and discussed in detail.

Taking OER in alkaline electrolyte for example, the four-proton-coupled electron
transfer process of OER is illustrated in Figure 2a. Initially, OH− is chemisorbed on a
coordinatively unsaturated metal site and then deprotonates via a proton-coupled electron
transfer process to generate *O species. Afterwards, an *OOH intermediate is formed
through nucleophilic attack of OH−, where the O–O coupling occurs. Along with the second
deprotonation, the adsorbed O2 molecule forms on the catalytic site. Finally, the absorbed
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O2 molecule departs from the catalyst surface and the catalytic reaction cycle ends, leaving
the active site to be ready for absorbing another OH−. This AEM mechanism works well for
understanding the intrinsic activities of catalysts with different chemical compositions and
structures, by comparing the adsorption ability of active sites with oxygen intermediates
(i.e., *OH, *O, and *OOH) [33,38]. However, the scaling relationship between the absorption
energies of intermediates (mainly *OH and *OOH) indicates there would be a large energy
barrier for water oxidation through this reaction pathway [39–42], which is inconsistent
with the advanced catalytic performance of recently developed OER catalysts such as
TM oxides, hydroxides, oxyhydroxides, etc. where low overpotentials were required for
efficient water splitting. What’s more, the AEM mechanism proposed the catalyst surface
to be a stable platform with only valence state changes during the OER process, which is
contradictory to the recently observed surface reconstruction phenomenon and the pH-
dependent OER activity of many catalytic materials [14,35,43,44]. Therefore, another OER
mechanism named lattice oxygen participated mechanism (LOM) was proposed in order
to give better scientific explanations of catalyzed OER (Figure 2b) [35,37,45].

Figure 2. The reaction pathways (a) AEM and (b) LOM of water oxidation in alkaline electrolyte.

Taking OER in alkaline solution for an example again, in LOM, the OH− is first
chemisorbed on an active site, similar to the first step of an AEM mechanism. Then the
formed *OH species will transfer to the nearby lattice oxygen in the catalyst to generate
the *OO intermediate by adding another OH−, and an oxygen vacancy near the active
site will be left at the same time. Then just like the last step of AEM, the *OO species
will release an O2 molecule, leaving the active site to be O-deficient. At the third step, an
OH− from the electrolyte will fill the oxygen vacancy to generate the chemisorbed OH−.
Finally, the adsorbed OH− will lose a proton by reacting with OH− in the electrolyte and
the active site will be recovered to initiate the next reaction cycle. Therefore, OER following
the LOM mechanism usually shows pH-dependent activity due to the non-concerted
nature of electron–proton transfer in the second and third steps [46]. However, due to the
involvement of lattice oxygen in the catalytic reaction, the surface layer of catalysts may
undergo a reconstruction process, which deactivates the catalysts [47].

In general, the mechanism of OER depends on the intrinsic properties of the M-O bond
that is related to the physiochemical property such as the band structure of catalysts. The
two OER mechanisms discussed above could explain different experimental observations
but could not cover all issues discovered in OER processes, due to the complexity of
catalytic materials. So, it is critically important to identify the structure and coordination
environments of active sites, especially the dynamic change in structure of the catalytic
sites under OER conditions. However, the fast reaction rate that occurs on the micro- to
milli-second scale on particular reaction sites at atomic levels, makes it a great challenge to
obtain real-time information of the OER. Developing in situ/operando techniques with high



Inorganics 2023, 11, 424 4 of 21

spatiotemporal resolution would be a promising way to visualize the dynamic behavior of
active sites and shed light on the revelation of OER mechanisms.

2.2. Important Descriptors for the Evaluation of Electrochemical Performance

In this section, we will introduce some descriptors such as overpotential, Tafel slope,
electrochemical double-layer capacitance, stability and Faradaic efficiency that are critical
for evaluating the electrochemical water oxidation performance of the organic–inorganic
hybrid materials.

The first important descriptor is the overpotential (η), which is a quantification of the
part of the operating potential that exceeds the equilibrium potential. It represents the
excess potential required to overcome the intrinsic kinetic barriers in an electrochemical
reaction. In general, an overpotential is identified through the polarization curve (after
internal resistance compensation). Typically, researchers compare overpotentials at a
specific current density (such as 10 mA cm−2) as it provides a standardized metric for
evaluating the performance of different electrocatalytic materials or systems. The smaller
the overpotential, the higher the electrocatalytic activity.

The second important descriptor, Tafel slope (b), is the slope of the linear region in a
Tafel plot obtained by transferring the uncompensated polarization curve into a logarithmic
value with base 10 on the current density. This linear region is fitted using the Tafel equation:

η = a + blog10 j (Tafel equation)

where η and j stand for the overpotential and current density, respectively, and a and b
are the intercept and slope obtained from the fitted curve. In other words, the Tafel slope
describes the additional potential that needs to be applied for every 10-fold increase in
current density over a certain range, reflecting the kinetic nature of the reaction.

The third descriptor frequently mentioned in the literature is the electrochemical
double-layer capacitance (Cdl). The electrochemical double-layer capacitance reflects the
electrochemical surface area of the actual contact interface between the electrode and the
electrolyte [48,49]. In the case of the OIHs discussed in this review, the porous structures of
these materials lead to high contact areas, which can be characterized by measuring the Cdl.

For practical applications, stability is a crucial parameter reflecting the ability of an
electrocatalyst to maintain its activity over extended periods. Typically, it is described by
the number of cycles of cyclic voltametric (CV) measurements that maintain the polariza-
tion curves nearly unchanged. The shift of the redox peaks between different cycles can
reveal changes in the electrochemical properties of the catalyst or changes in the catalysts
themselves, which may be crucial for the studies investigating the electrochemical water
oxidation performances of OIHs. However, the stability determined by this method de-
pends on the operating conditions such as scanning rates and potential intervals, so it is
inconvenient for researchers to compare the stability of their catalyst with others. Thus,
many researchers also conduct chronoamperometry or chronopotentiometry measurements
on a specific current density (e.g., 10 mA cm−2) or potential to illustrate how the current
density or potential varies with time, providing insights into the stability of the catalyst [50].

Faradaic efficiency (FE) is another critical descriptor to determine the current density
from water oxidation, rather than undesirable but unavoidable side reactions such as
the oxidation of organic components in OIHs. Generally, the organic molecules, such as
carboxylic acids, would be oxidized during the high potential (1.36 V vs. RHE [51]). So, it
is necessary to quantify the portion of the current from the OER [52]. This quantification
enables the determination of FE that represents the effectiveness of the electrochemical
process in converting water into oxygen. For an electrochemical reaction involving z
electrons, the transferred charge Q can be calculated according to the Faradaic laws of
electrolysis below,

Q = nzF (Faradaic equation)
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where the n and F stand for the amount of substance involved in the reaction and the
Faradaic constant. As a result, the accuracy of FE is based on the precise measurement
of produced oxygen during the testing time. Generally, the most widely used method to
quantify the O2 yield is the application of a gas chromatogram with a thermal conductivity
detector. The FE determined by this method is most accurate. However, GC equipment
should be settled and coupled with an electrochemical workstation. Another frequently
used method is based on a rotating ring-disk electrode setup, in which the catalyst is
loaded on the disk that acts as the first working electrode and delivers a constant current to
generate oxygen. A relatively low potential (typically 0.4 V vs. RHE) is set on the ring that
works as the second working electrode, where the generated oxygen is reduced. However,
not all the oxygen generated on the disk could be timely reduced on the ring, leading to an
underestimated FE. Therefore, the oxygen collection coefficient could be first ascertained by
using IrO2 as a catalyst. What’s more, the Archimedes drainage method was also applied in
many studies to assess the yield of produced O2. However, the FE would be overestimated
if there were any other gas products in addition to oxygen. So, attention should be paid to
the determination methods when comparing the FE of water oxidation catalyzed by IOHs.

3. Organic–Inorganic Hybrid Materials for Electrochemical Water Oxidation

For most cases, the electrochemical activity of OIHs is still provided by metal sites, but
the coordination environments of the metal sites that are greatly influenced by the ligands
have been found to play critical roles on the catalytic performance of the materials. In this
section, we would review different kinds of OIHs and their derivates, as well as the effects
of organic components in modulating the coordination environment of catalytic sites and
then improving their performance towards water oxidation.

3.1. Metal–Organic Frameworks (MOFs) and Their Derivates

In 1995, Prof. Yaghi [53] synthesized a crystalline material consisting of coordination
bonds between transitional metal cation Co2+ and multidentate organic linker benzenedi-
carboxylic acid (BTC) for the first time and named this type of material a metal–organic
framework (MOF) material. Since then, many different types of MOFs such as iso-reticular
MOFs [54], zeolitic imidazolate frameworks (ZIFs) [55], Matérial Institut Lavoisier [56],
etc. have been successfully synthesized. Recently, MOFs have been widely studied for
applications in various fields such as gas separation [57–60], water purification [61,62],
industrial catalysis [62–66], drug delivery [67], etc. due to their structural merits including
high specific surface area, high porosity, and designable micromorphology. Particularly,
MOFs are considered to have the advantages of both homogeneous and heterogeneous
catalysts for electrochemical water splitting [68], due to the highly porous nature of the
MOFs that are perfect for immobilizing active metal complexes. In this section, we will
discuss the progress of MOFs and their derivates towards electrochemical water oxidation
as summarized in Table 1.
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Table 1. Summary of data for MOFs and their derivates used as water oxidation catalysts.

Catalyst Electrode
Substrate Electrolyte

Overpotential
(V, at 10 mA

cm−2)
Stability

Double-Layer
Capacitance
(mF cm−2)

Faradaic
Efficiency

(%)
Reference

NiCo-UMOFNs GC 1 1.0 M KOH 0.250 40,000 s / 99.3 [69]
2D MOF-Fe/Co(1:2) GC disks 1.0 M KOH 0.238 50,000 s 66.9 / [70]

NiFe-NFF NFF 2 1.0 M KOH 0.227 1000 cycles 12.72 100 [71]
Co3Fe-MOF GC 1.0 M KOH 0.280 10 h 17.74 / [72]
Fe2Ni-MOF NF 3 1.0 M KOH 0.213 1033 h 4 5.8 / [73]

Ni0.9Fe0.1-MOF-74 GC 1.0 M KOH 0.198 / / 99.6 [74]
Fe2Ni-BPTC
(NNU-23) CC 5 0.1 M KOH 0.365 2000 cycles 5.10 / [75]

CTGU-10c2 GC 0.1 M KOH 0.280 1000 cycles 8.9 / [76]
Ni@N-HCGHF GC 1.0 M KOH 0.260 2000 cycles / / [77]
MPN@Fe3O4 GC 1.0 M KOH 0.260 24 h 25.8 / [78]

NiCo2−xFexO4 NBs CP 6 1.0 M KOH 0.274 25 h 30.7 / [79]

1 GC stands for glass carbon; 2 NFF stands for nickel iron foam; 3 NF stands for nickel foam; 4 1033 h at 100 mA
cm−2 followed by another 200 h at 500 mA cm−2; 5 CC stands for carbon cloth; and 6 CP stands for carbon paper.

Mesbah et al. [80,81] designed and synthesized a MOF with an infinite chain of
nickel octahedra similar to that in metal hydroxides, in which the metal ions were linked
together via O and H atoms (Figure 3a). Considering that transition metal hydroxides were
efficient catalysts for electrochemical water oxidation, many studies have been conducted
to investigate and modulate the OER performance of this kind of MOF [69–72]. By using
benzenedicarboxylic acid (BDC) as the organic ligands, Zhao et al. [69] fabricated ultrathin
NiCo bimetal–organic framework nanosheets, which showed advanced alkaline OER
activity with small overpotentials of 0.250 V and 0.189 V at 10 mA cm−2 when loading
on glass carbon and copper foam, respectively. According to atomic force microscopy
(AFM, Figure 3d), they found the thickness of as-prepared NiCo MOF nanosheets was
only ca. 3.1 nm, suggesting a crystal structure of 2D bimetal layers that were separated
by BDC molecules (Figure 3c). By combining the ex situ extended X-ray absorption fine
structure (EXAFS) data with ab initio calculations (Figure 3b), they confirmed the existence
of abundant coordinatively unsaturated metal sites on the ultrathin NiCo-MOFs, which
were determined to be the dominating active sites. Then, FeCo bimetallic MOFs with
different morphologies were also reported by using BDC as the organic linker [70]. The
authors investigated the effects of transition metal ratio and found that the one with
Fe/Co~1:2 exhibited the best OER performance, with a low overpotential of 0.238 V at
10 mA cm−2 and a small Tafel slope of 52 mV dec−1 in alkaline solution. However, both
the chemical stability of the formed NiFe MOFs were undesirable, which showed a clear
degradation after 30 days maintained in the air in the form of slurry. Similarly, Ni(Fe)-MOFs
with an ultrathin nanosheet (ca. 1.56 nm) microstructure (Figure 3e) were fabricated by
using NiFe foam as a semi-sacrificial template [71]. The strong coupling effects between
the Ni and Fe sites were observed, leading to an advanced OER activity and relatively
improved stability in 1.0 M KOH with a FE of nearly 100%. However, the FE in this study
was measured by the above-mentioned Archimedes drainage method, which was actually
overestimated if there were any other gas byproducts such as CO or CO2 generated by
the oxidation of organic components in the MOFs. Furthermore, the stability of 15 h at
20 mA cm−2 was actually not enough for practical applications.

To investigate the reason behind the poor stability of MOFs, Li et al. [72] carefully
characterized the structure of CoFe-MOF nanosheets before and after the OER catalysis.
Based on the high-resolution transmission electron microscopy (HRTEM) images, they
observed a lattice fringe of 0.247 nm with 60◦ that could be ascribed to the (010) and
(100) plane of Co(Fe)OOH (Figure 3f), suggesting the transformation of CoFe-MOFs to the
corresponding oxyhydroxides during the OER process. The transformation of MOFs to the
other phases would inevitably lead to structure collapse and deteriorate their stability [82].
However, the formed metal hydroxides/oxyhydroxides were found to be the real active
sites for OER electrochemical catalysis. So, obtaining comprehensive knowledge on the
transformation processes of transition metal sites during the OER process is critical for
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revealing the reaction mechanism and shedding light on the design of novel catalytic mate-
rials, which leads to more extensive studies by coupling ex situ and in situ characterization
techniques [73,74].

Figure 3. (a) MOF structure synthesized by Mesbah et al. [80], viewed down the b axes. Copyright ©
2014, American Chemical Society. (b) Comparison of the Ni K-edge XANES experimental and
theoretical spectra including NiCo-UMOFNs, bulk NiCo-MOFs and the theoretical structural models
with unsaturated metal sites. (c) Theoretical thickness of NiCo-UMOFNs with four metal coordination
layers. (d) AFM image of NiCo-UMOFNs prepared by Zhao et al. [69] showing measured dimensions
of individual flakes. Copyright © 2016, Springer Nature Limited. (e) AFM image of NiFe-NFF
synthesized by Cao et al. [71]. Copyright © 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
Germany. (f) TEM images of OER activated Co3Fe–MOF synthesized by Li et al. [72]. Copyright ©
2020, The Royal Society of Chemistry. (g) XRD patterns of Ni-MOF nanoarrays after different CV
tests, which were synthesized by Wang et al. [73]. Copyright © 2021, American Chemical Society.

Wang et al. [73] investigated the effect of Fe in the bimetallic MOF (named NiFe-MOF)
with 2D nanobelt microstructure through ex situ XRD characterizations. The NiFe-MOFs
were vertically grown on the nickel foam and exhibited a greatly increased OER activity
after 100 cycles of CV scanning in 1 M KOH electrolyte. A similar phenomenon was also
observed in a single-metal Fe-MOF, but the Ni-MOF showed negligible change. The authors
found that the characteristic diffraction peaks of the NiFe-MOF and Fe-MOF in ex situ
XRD spectra were retained after 500 CV cycles, but those of the Ni-MOF disappeared at
300 cycles, suggesting the good stability of MOFs with the existence of Fe (Figure 3g).
What’s more, the ratio of Fe3+/Fe2+ increased from 2/5 to 8.9/5 from the 10th to the 100th
CV cycle in the FeNi-MOF, indicating the dependence of enhanced OER performance with
the formation of high-valence Fe3+ species, which could in turn strengthen the electrostatic
interaction between the metal nodes and organic ligand and then contribute to the stability
of the bimetal MOFs. Noting that this electrode worked at 100 mA cm−2 for more than
1033 h without obvious degradation, suggests a much better stability than the other MOF
materials. Taking advantages of in situ synchrotron X-ray absorption spectroscopy (XAS)
that could provide the time-resolved information on local bonding of specific elements,
Zhao et al. [74] tracked the self-reconstruction of bimetal MOF-74 under OER conditions.
Firstly, they found that the Ni valence increases to +3, and the Co valence was nearly
unchanged at the 1.3 V vs. RHE, while both increased at a higher potential (Figure 4a).
By fitting the result of XAS, they also found that both the bond length and coordination
number of Ni-O and Ni-metal decreased significantly at the applied potential of E = 1.3 V
vs. RHE (Figure 4b), due to the formation of Ni(OH)2 and NiOOH (Figure 4c). They also
synthesized MOFs with different chemical compositions and found that only with the
existence of a Co element in the MOFs, would the bond length and coordination number
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of Ni-O and Ni-metal decrease dramatically, while those of Co-O and Co-metal showed a
similar decreasing pattern even in the MOFs without Ni elements (Figure 4d). Based on
these results, they proposed that the existence of Co species in the MOFs was crucial for
the formation of Ni(Co)OOH which was the real active site for alkaline OER.

Figure 4. (a) Change in the Ni and Co valence states and OER current as a function of applied
potentials. (b) Changes in bond length and coordination number for the Ni–O and Ni–M coordination
shells. (c) Comparison of Ni K-edge EXAFS wavelet transforms recorded for the standard references,
and the bimetal MOF-74 in different conditions. (d) Change in bond length as a function of applied
potentials for Ni1−xCox-MOF-74. Copyright © 2020, the Author(s), under exclusive license to Springer
Nature Limited. (e) The structure of MOF-5 synthesized by Yaghi’s group [83]. (f) The 3D framework
of NNU-21–24 connected by trinuclear metal clusters and biphenyl-3,4′,5-tricarboxylic acid (BPTC)
ligands prepared by Wang et al. [75].

In addition to the above-mentioned MOFs with continuous metal sites, the MOFs
with isolated metal clusters and a large cavity in the structure were also intensively
investigated [75,76]. Most of these MOFs are descendants of MOF-5 synthesized by
Yaghi’s group [83] in 1999, with metal carboxylate clusters as the metal center (Figure 4e).
Wang et al. [75] synthesized a MOFs with NiFe clusters by replacing the CH3COO− groups
in the Fe2M(µ3-O)(CH3COO)6(H2O)3 (M=Fe, Co, Ni, Zn) clusters with biphenyl-3,4′,5-
tricarboxylic acid (BPTC) ligands (Figure 4f). Although scanning electron microscopy
(SEM) images showed the size of the particles they synthesized to be almost 200 µm, they
showed advanced OER performances even when loaded on glassy carbon electrodes due
to abundant nanopores in the structure. Then, this type of MOF with three-metal clus-
ters and tunable chemical compositions (Co3, Co2Ni, CoNi2, and Ni3) was reported by
Zhou et al. [76]. Depending on the Co/Ni ratio, the morphology of these MOFs showed
nanosphere or nanobelt microstructures assembled by nanosheets as the building block.
Among them, the CoNi2-MOF exhibited the best OER activity with an overpotential of
0.28 V at 10 mA cm−2, and a Tafel slope of 58 mV dec−1 in 0.1 M KOH, which was attributed
to the coupling effects between Ni and Co, as well as the ultrathin microstructure with the
thickness of ca. 1.1 nm.

Apart from the direct application of MOFs as electrocatalysts, their derivates obtained
by controlled post-processing treatments have been attracting widespread attention due to
the much-increased stability under OER conditions. A commonly used strategy to fabricate
MOF derivates is pyrolysis. In 2020, Yan et al. [77] found that pyrolysis of Ni-based MOFs
with BTC as a ligand resulted in the synthesis of composites of Ni nanoparticles and carbon
nanotubes (CNTs), respectively. By pyrolyzing the mixture of Ni-based MOF and graphene
oxide (GO), they synthesized a freestanding 3D hetero-structured film composed of Ni
nanoparticles and 1D CNT, which were linked with the 2D rGO nanosheets to stitch the 3D
freestanding film (Figure 5a). The as-prepared hetero-structured freestanding film could
be easily transferred onto the surface of conductive substrate without any binding, which
could serve as a working electrode. After electrochemical evaluation, they found that
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the prepared freestanding film named Ni@N-HCGHF exhibited excellent electrocatalytic
activity for both OER and HER due to the synergistic effect of the N-doped carbon shell
and Ni nanoparticles in the films. The electrolyzer assembled only using this electrode
worked at 1.6 V for more than 20 h without obvious degradation, suggesting good stability.

Figure 5. (a) Schematic of the preparation process of Ni@N-HCGHF by Yan et al. [77]. Copyright
© 2020, Wiley-VCH GmbH. (b) Schematic illustration of the formation of organic–inorganic Co/Fe-
polyphenolic networks@Fe3O4 hybrid nanostructures by Jia et al. [78]. Copyright © 2019, The Royal
Society of Chemistry.

Noticing that organic ligands will greatly influence the mass transport and utilization
of active sites, rational tuning of the nature of organic ligands in MOFs would be an ideal
approach to enhance their catalytic performance. Recently, Jia et al. [78] synthesized a
dodecahedral shaped core-shell structured catalyst of ZIF-67@Fe3O4 and then dispersed it
in tannic acid (TA) methanol solution to convert the shell to a layer of amorphous metal–
polyphenolic networks (MPNs), leading to the formation of a catalyst named MPN@Fe3O4
with a changed organic linker (Figure 5b). Compared to the original Fe3O4 nanoparticles,
they found that the specific surface area of ZIF-67@Fe3O4 was greatly increased from
20.5 m2 g−1 to 746.1 m2 g−1, while it decreased to 8.71 m2 g−1 with the conversion of
the ZIF-67 shell to the amorphous MPNs. However, MPN@Fe3O4 exhibited better OER
performance (η10 = ca. 0.26 V) and higher double-layer capacitance (Cdl, 25.8 mF cm−2)
than that of Fe3O4 (ca. 0.453 V, 2.26 mF cm−2) and ZIF-67@Fe3O4 (0.335 V, 6.11 mF cm−2).
The authors proposed that the amorphous MPN shell could lead to an increased density
of electrochemically active sites, which was further confirmed by the results observed in
the FeMPN@Fe3O4 and CoMPN@ZIF-67 systems they designed. Also, by etching ZIF-76
with TA, Huang et al. [79] synthesized TA-Co nanoboxes (TA-Co NBs) and conducted a
cation exchange reaction to obtain trimetallic TA-NiCo2−xFexO4 NBs, which were further
calcinated in air and converted to spinel NiCo2−xFexO4 NBs. Though the as-prepared
NiCo2−xFexO4 NBs presented good OER performance with a low overpotential of 0.274 V
at 10 mA cm−2 for more than 25 h, it actually converted from the spinel oxide to the corre-
sponding oxyhydroxides during the OER processes via surface reconstruction, suggesting
the importance of rational selection of organic ligands and post-treatment condition for
preparing highly active and stable MOF derivates towards efficient OER.

In summary, various types of MOFs and techniques for synthesizing ultra-thin MOFs
have been developed. However, their stability remains an unresolved challenge. Out of the
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mentioned MOF materials, only the Fe2Ni-MOF prepared by Wang et al. [73] demonstrated
the necessary stability for industrial applications. However, during the 1033 h chronopo-
tentiometry measurement, the crystal structure of the MOF collapsed and slowly converted
to an amorphous structure. But because of the lack of Faradaic efficiency data and detailed
characterizations of the catalyst after long-term OER, it became uncertain whether the
organic components were oxidized or still existed in the final catalytic material. So, it is
suggested here that to better assess the OER performance and understand the catalytic
mechanism, the Faradaic efficiency as well as the conversion processes should be paid more
attention to in future studies by using OIHs as OER catalysts.

Regarding the synthetic routes of MOF derivatives, the existing synthetic methods are
limited to pyrolysis and ion-exchange methods, which still show limitations in terms of
achieving sufficient OER activity and stability. More methods should be explored in future
studies that allow for better control over the composition, structure, and morphology of
MOF derivatives. This would be involved in the development of novel precursors, template-
assisted synthesis methods, or post-synthetic modifications to tailor the properties of the
materials specifically for OER applications.

3.2. Derivates of Covalent Organic Frameworks (COFs)

Covalent organic frameworks (COFs), which were first synthesized by Yaghi’s group
in 2005 [84], have similar structural properties to that of MOFs, such as high porosity,
tunable structure, etc., that would benefit the catalytic processes. However, unlike MOFs,
which are coordinately linked by metal ions and organic ligands, COFs are composed of
non-metal elements that connected by covalent bonds (Figure 6, [85]). The applications of
COFs and their derivates in electrocatalysis could be generally divided as the COF-based
hybrids [86–95] and the pristine COFs with active backbones [96,97]. In this section, we
will discuss the recently reported COF-based OIHs for water oxidation, as presented in
Table 2. Furthermore, we will delve into the specific techniques used for modifying the
active centers, with illustrative examples.

Figure 6. A schematic representation of the MOF (left) and COF (right) structures.

Table 2. Summary of data for COFs and their derivates used as a water oxidation catalyst.

Catalyst Substrate Electrolyte
Overpotential
(V, at 10 mA

cm−2)
Stability

Double-Layer
Capacitance
(mF cm−2)

Faradaic
Efficiency

(%)
Reference

Co4Ni12-COF GC 0.1 M KOH 0.258 13 h 0.398 90.0 [87]
Ni3N-COF GC 1.0 M KOH 0.230 20 h 3.63 × 10−2 98.0 1 [88]
COF-C4N CC 1.0 M KOH 0.349 20 h 5.01 / [97]

N-MoS2@COF-C4N1:1 CC 1.0 M KOH 0.349 70,000 s 4.19 / [90]
Co@COF-C4N1:1 CC 1.0 M KOH 0.280 20 h 42.04 / [91]
CoV@COF-SO3 / 1.0 M KOH 0.318 1000 cycles 3.38 99.0 [92]

(cyclen@NiFe)@COF-SO3 CP 1.0 M KOH 0.276 25 h 0.462 99.0 [93]
Nb2CO2@COF GC 1.0 M KOH 0.373 10 h 2.17 / [94]

1 98% at 1 mA cm−2, while reduced to 58% at 10 mA cm−2.
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Early in 2011, Wang’s group [86] synthesized a COF with microporous channels (ca.
1.8 nm) for the first time (named COF-LZU1) and used it as a host to introduce palladium
as the active species in the interlayer to catalyze the Suzuki–Miyaura coupling reaction.
With this idea of using COF as a host, Vaidhyanathan’s group grew CoxNiy(OH)2 and
Ni3N nanoparticles on a flexible COF and used them for electrochemical water oxidation
for the first time [87,88]. The prepared Co4Ni12-COF shows excellent OER performance,
requiring overpotentials of only 0.258 V at 10 mA cm−2 in 0.1 M KOH. By HRTEM, they
confirmed that the nanoparticles resided within the COF rather than lying on the surface
to form a heterostructure. More specifically, they hypothesized that the nanoparticles
could be sandwiched between the two sp3 nitrogen atoms of the COF based on theoretical
calculations. Delivering a stable current at 1.5 V vs. RHE for 13 h, the catalyst showed
an acceptable stability but far from industrial applications. The Ni3N-COF reported in
the same year also exhibited superior OER performance, with a small overpotential of
0.230 V at 10 mA cm−2 and was stable at this current density over 20 h in 1.0 M KOH.
Rather than directly growing nanoparticles within the COF, Luo’s group used interlayer
coordination to introduce metal sites in the COF [92,93]. They first synthesized a COF
with a sulfonic acid group (named as COF-SO3H) via a condensation reaction by using
both the 2,5-diaminobenzenesulfonic and 2,4,6-triformylphloroglucinol as the precursor.
Subsequently, the COF-SO3H was aminated in concentrated ammonia and the NH4@COF-
SO3 with NH4

+ ions in the pores was formed. Then, a cation exchange process was
conducted to replace the ammonium ions therein by catalytically active metal ions (i.e.,
Co2+ and V3+) or metal complexes (i.e., cyclen@NiFe complex), and finally, the CoV@COF-
SO3 and (cyclen@NiFe)@COF-SO3 (Figure 7a) with different molar ratio of metals were
obtained. When used to catalyze OER, the CoV@COF-SO3 performed much worse than
(cyclen@NiFe)@COF-SO3, which had organic components. According to XPS spectra, the
Ni-N and Fe-N bonds in the organic–inorganic hybrid of (cyclen@NiFe)@COF-SO3 were
found to be immobilized through the coordination of the metal ions to N in the cyclen.
Though the incorporation of the bimetal cyclen@NiFe complex into the pore channel of
NH4@COF-SO3 decreased the specific surface area from 110 to 42 m2 g−1, the catalytic
activity of the hybrid was still far beyond that of the two single component counterparts
(Figure 7b). Based on various experimental characterizations, the advanced activity of
(cyclen@NiFe)@COF-SO3 hybrid was proposed to arise from the significant bimetallic
electronic interactions between and transition metals Ni and Fe, even though they were
separated by the organic linkers. In addition to the application of COFs as the substrates
to synthesize OIHs, COFs were also designed to directly grow on the surface of inorganic
materials, such as the hetero-structured Nb2CO2@COF (Figure 7c) made by Zong et al. [94].
The as-prepared Nb2CO2@COF hybrids delicately overcame the disadvantage of easy
aggregation of Nb2CO2 MXene, and hence exposed more active sites. Moreover, the
confinement effects of COF were found to affect the distribution of oxygen molecules on the
surface of the catalyst and promoted the orderly and efficient reactions, further contributing
to the improved stability of the hybrids for OER and making it efficient in rechargeable
zinc-air batteries.

Later in 2019, Zhang’s group found a COF-C4N that would have an OER active
backbone based on theoretical calculations [97]. According to this finding, they further syn-
thesized the COF-C4N and confirmed its excellent OER performance with an overpotential
of 0.349 V at 10 mA cm−2 and a Tafel slope of 34 mV dec−1 in 1.0 M KOH. Three years
later, they further grew MoS2 vertically on the COF-C4N through a hydrothermal method
and obtained a MoS2/COF-C4N hybrid, which exhibited advanced catalytic activity for
both alkaline OER and acidic HER [90], arising from the abundant OER active sites in the
COF backbone and HER active centers in the well-dispersed and vertically grown MoS2
nanosheets, respectively. What’s more, the interface between the COF and MoS2 further
enhanced the charge transfer, resulting in the good bifunctional activity of the prepared
MoS2/COF-C4N hybrids. Then, by impregnating the COF-C4N in an M(OAc)2 (M=Mn,
Fe, Co, Ni, or Cu) methanol solution, the authors synthesized a series of hybrid materials
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named M-COF-C4N [91]. Among these hybrids, the Co-COF-C4N exhibited the best OER
performance, requiring only a low overpotential of 0.28 V at 10 mA cm−2, and a Tafel slope
of 69 mV dec−1. The strong d-pz coupling between transition metal Co and organic COF
backbone, as well as the fast charge transfer, were found to facilitate the formation of key
intermediates during the OER process and hence improved the catalyzed OER kinetics.

Figure 7. (a) Preparation of COF-anchored NiFe complex (Cyclen@Ni0.5Fe0.5)@COF-SO3 synthesized
by Feng et al. [93]. (b) Polarization curves of their COFs-based materials. Copyright © 2020, The
Royal Society of Chemistry. (c) Schematic illustration of the preparation process of Nb2CO2@COF by
Zong et al. [94]. Copyright © 2022, American Chemical Society.

To summarize, there has been extensive exploration of two approaches: one involves
the insertion of metal ions/nanoparticles into the interlayers or nanochannels of COFs,
while the other focuses on synthesizing COF-based heterostructures. However, simulta-
neously achieving precise control over the size of nanoparticles and nanochannels that
could further improve the catalytic performance of the COF-based OER catalysts remains
challenging and still needs extensive studies. In addition, some studies did not give data
on the Faradaic efficiency of water oxidation, which should be emphasized in further
research to confirm the accuracy of the reported electrochemical performance towards
water oxidation.

3.3. Other Organic–Inorganic Hybrid Materials (OIHs) for Electrochemical Water Oxidation

Though MOFs and the derivates of COFs are the most typical and widely investigated
OIHs, there are also many studies on the rational coupling of organic molecules and
inorganic compounds to generate functional hybrids for water oxidation that have achieved
some important breakthroughs, which will be introduced and discussed in this section, as
illustrated in Table 3.
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Table 3. Summary of data for other OIHs used as water oxidation catalysts.

Catalyst Substrate Electrolyte
Overpotential
(V, at 10 mA

cm−2)
Stability

Double-Layer
Capacitance
(mF cm−2)

Faradaic
Efficiency

(%)
Reference

LDH-ppy NF 1.0 M KOH 0.248 10 h / 94.5 [98]
CuZrO3@ppy SSS 1 1.0 M KOH 0.226 50 h 0.96 / [99]
NiFe-BTC//G graphite foil 1.0 M KOH 0.106 150 h 2 81.6 100 [100]

CoCor-CNT GC 0.1 M pH 7
phosphate buffer 0.470 100 cycles / / [101]

FePor/CNT GC 0.1 M KOH 0.500 8 h 0.21 98.0 [102]
1 SSS stands for stainless steel strip; 2 the stability test was performed in 0.1 M KOH.

Since most of the transition metal-based catalysts such as TM oxides [103,104], hy-
droxides [12,105], etc. have inferior conductivity, many researches have tried to couple
the catalytically active TM compounds with conductive materials to increase the charge
transfer characters, and many functional hybrids such as TM LDH/CNT [106–108], TM
LDH/rGO [109,110], MoS2/rGO [111,112], etc. have been successfully developed. All of
these hybrids showed a much-improved performance. In addition to the carbon materials,
the conductive polymers that also have high conductivity and even outperform that of
rGO, have also attracted much attention [113–118]. By taking the poly-pyrrole (ppy) that
has a high conductivity of 105 S cm−1 as the typical example, Ju et al. [98] coupled the
OER active NiFe LDH with it and synthesized the LDH–ppy hybrid via a facile interlayer
anion exchange process followed by the in situ polymerization (Figure 8a). The synthesized
LDH–ppy showed a nanosheet morphology with a lateral size of 2–3 µm and a thickness
of 4–40 nm, similar to the pristine LDH. Through XPS survey, they found that the direct
contact of conductive ppy with active transition metal centers at the atomic level greatly
enhanced the electron transfer from Ni sites to the surrounding Fe sites, leading to a larger
ratio of Ni(III)/Ni(II). The much more active Ni(III) species in the LHD–ppy greatly re-
duced the overpotential of the alkaline OER. What’s more, the authors carried out the in
situ AFM-scanning electrochemical microscopy (SECM) and electrochemical quartz crystal
microbalance with dissipation (EQCM-D) and tracked the OER processes on the surface of
the LDH–ppy hybrids. They found that the intercalation of ppy made the LDH–ppy hybrid
structure much more dynamically adaptive and robust to the OER process, indicating the
positive role of organic polymer for increasing both the charge transfer and long-term
stability of the catalysts. Inspired by their work, Aman et al. [99] also synthesized nanocom-
posites of poly-pyrrole and CuZrO3, named CuZrO3@ppy. They found that the introduction
of the conductive polymer ppy reduced the Tafel slope from 113 mV dec−1 to 76 mV dec−1,
which greatly improved the kinetics of OER. In 2019, Li et al. [101] immobilized Co corroles
on CNT to obtain CoCor-CNT. The as-prepared CoCor-CNT exhibited a pH universal
bifunctional catalytic performance for both OER and HER, which worked well in 0.5 M
H2SO4, (pH = 1.0), 0.1 M phosphate buffer (pH = 7.0), and 1.0 M KOH (pH = 14.0). Based
on a series of experiments, the authors found that the chemical properties of amino groups
were crucial for catalytic activity of the formed hybrid materials. Some researchers have
taken an alternative approach, as demonstrated by the work by Lyu et al. [100], where
they incorporated poorly conducting MOF materials into highly conducting graphene to
synthesize NiFe-BTC//G with extremely high activity. The prepared NiFe-BTC//G only
required an overpotential of 0.106 V at 10 mA cm−2, significantly lower than that of the
bulk NiFe-BTC without graphene (0.399 V).
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Figure 8. (a) Synthesis processes including anion exchange and interlayer confined polymerization
for the preparation of LDH–ppy by Ju et al. [98]. Copyright © 2021, American Chemical Society.
(b) Molecular structure of the two different Fe-porphyrins (1, 2) synthesized by Xie et al. [102].
(c) Diagram showing the electronic “push effect” of the trans axial histidine imidazole group in CcOs.
Copyright © 2021, Wiley-VCH GmbH.

In addition to the oxidation states of transition metal ions, the spin states of the
electrons in the orbitals also affect the electronic structure and, hence, influence the elec-
trocatalytic activity of catalysts with transition metal ions as the active centers [119]. In
2022, Liang et al. [120] investigated the role of thiadiazole-[7] helicene, which is a chiral
molecule, on modulating the catalytic performance of NiOx/Au or NiFeOx/Au by deposit-
ing monolayer NiOx and NiFeOx islands on the Au film. The chiral molecule was loaded
on the surface of Au film just underlying the NiOx or NiFeOx catalyst layer. By evaluating
the OER performance of the hybrids with and without the chiral molecule, the authors
revealed that the positive effects of the chiral thiadiazole-[7] helicene on catalytic properties
was not arising from the thiadiazole groups that directly affected the metal sites, but it
was the existence of the chiral molecule itself that impacted the spin polarization of the
electrons. The relationship between the spin of electrons and catalytic performance was
also studied by using two different Fe-porphyrins [102]. As illustrated in Figure 8b, the
difference between the delicately designed two Fe-porphyrins was that the one had an
additional imidazole group (red molecule in Figure 8b) coordination, leading to a similar
coordination structure of Fe ions to that in cytochrome c oxidases (CcOs), in which the
electron density on Fe is increased through a so-called “push effect” (Figure 8c). According
to the electron paramagnetic resonance (EPR) spectra, the electrons of Fe in Fe-porphyrin
with an imidazole group, existed in both the high-spin and low-spin states, while only
the high-spin state was observed in Fe-porphyrin without the imidazole group. And a
dynamic equilibrium of Fe species between 6-coordinated high-spin and 5-coordinated
low-spin states was proposed to accelerate the OER kinetics. These results give another
way to tune the electronic structure of transition metal ions and then make the elemental
component modulation of catalyst materials to go beyond the volcano limits.

4. Summary and Perspectives

OIHs are new kinds of emerging functional materials that have abundant nanoscale
interfaces and redox properties, making them promising in electrocatalysis. This review
has summarized the advances in fabrication, modification and application of typical OIHs
including MOFs and their derivates, COF-based hybrids, and other rationally designed
OIHs. The well-designed organic molecules could be evenly dispersed and interact with
transition metal centers in the inorganic counterpart, greatly influencing the coordination
environments of active sites and leading to advanced catalytic performance towards water
oxidation. Though many achievements have been realized, the research of OIHs for water
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oxidation is still at its early stage and the challenges as well as the future research directions
to address and deal with these limitations are listed below.

(1) Rational design and fabrication of OIHs. The chemical compositions including both
organic molecules and transition metal-based inorganic compounds in the reported
OIHs are limited, while they are critical to determine the OER activity of the hy-
brids. Consequently, developing a universal and controllable method to fabricate
the targeted OIH hybrids with high quality and in large scale is required in further
studies. What’s more, efforts should be made to expand the chemical composition
of OIHs, enabling the synthesis of a wider range of organic molecules and transition
metal-based inorganic compounds. This will facilitate the creation of highly tailored
and functional materials.

(2) Developing OIHs for efficient OER in low-pH conditions. In most OIHs, the active
metal sites are immobilized through relatively weak chemical bonds, leading to their
vulnerability in excessive acidic conditions. This is the reason why the majority of
currently available OIHs function effectively only in alkaline environments. However,
in terms of cost and safety, expanding the application of OIHs as OER catalysts that
work well in acidic or neutral mediums is important [121]. To this end, the structure–
performance relationship and reaction mechanism of OIHs towards OER should
be identified to expand the application environments. The structure of the active
center should be carefully determined, and the in situ techniques should be coupled
with computational modelling to obtain the dynamic structural evolution of active
centers in acidic or neutral electrolytes. This knowledge will guide the design of novel
acidic-resistant OIHs with enhanced performance.

(3) Understanding the low stability of OIHs. Although thousands of OIHs have been
reported as OER electrocatalysts, most of them suffer from poor stability, especially
under harsh reaction conditions. However, little in-depth research has been conducted
on revealing the underlying reasons, leaving significant room for further interpreta-
tion. Several factors are suggested to be considered in future studies: (a) The effect of
strong alkaline solutions. This consideration is important as the harsh environment
may contribute to the collapse of the crystal structure and the coordination bonds in
OIHs. (b) The potential applied during the OER process. The high positive potential
to meet the high current density requirement would lead to the oxidation of organic
components in OIHs that should be carefully determined. Note that measuring the
Faradaic efficiency of O2 is a helpful method to identify the accurate current density
from water oxidation and provides some hints to the stability of organic components
in OIHs, which should be highlighted when comparing the catalytic performance of
OIHs in future investigations.
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Abbreviations

AEM adsorbates evolution mechanism
AFM atomic force microscopy
BDC benzenedicarboxylic acid
BPTC biphenyl-3,4′,5-tricarboxylic acid
BTC benzenedicarboxylic acid
CC carbon cloth
CNT carbon nanotubes
COF covalent organic frameworks
CV cyclic voltametric
Cdl electrochemical double-layer capacitance
EPR electron paramagnetic resonance
EQCM-D electrochemical quartz crystal microbalance with dissipation
EXAFS extended X-ray absorption fine structure
FE Faradaic efficiency
GC glass carbon
GO graphene oxide
HER hydrogen evolution reaction
HRTEM high-resolution transmission electron microscopy
LOM lattice-oxygen participated mechanism
MOF metal organic frameworks
MPN metal–polyphenolic network
NB nanoboxes
NF nickel foam
NFF nickel iron foam
OER oxygen evolution reaction
OIH organic–inorganic hybrid materials
RHE reversible hydrogen electrode
SECM scanning electrochemical microscopy
SEM scanning electron microscopy
SSS stainless steel strip
TA tannic acid
TM transition metals
XAS synchrotron X-ray absorption spectroscopy
ZIF zeolitic imidazolate frameworks
η overpotential
b Tafel slope
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