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Abstract: In this paper, a series of K5La1-x(MoO4)4: xSm3+ and K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+

(Ln = Sc, Y or Gd) red phosphors were prepared by calcining the mixed raw powders at 600 ◦C.
Meanwhile, the composition and fluorescence properties of the phosphors, especially for the ther-
mal stability, were analyzed in detail. The results indicate that the K5La1-x(MoO4)4: xSm3+ phos-
phors can be effectively excited at 401 nm and emit red light with three main peaks at 561 nm,
600 nm and 646 nm, attributed to the 4G5/2→6Hj/2 (j = 5, 7 and 9) energy transitions of the Sm3+ ion
respectively, among which the K5La0.93(MoO4)4: 0.07Sm3+ exhibits the highest intensity. The quench-
ing mechanism is ascribed to the dipole-dipole interaction. Ln3+ co-doping does not change the
shape and peaking position of the excitation and emission spectra of K5La0.93(MoO4)4: 0.07Sm3+, but
further increases the emission intensity in different degrees. Particularly, K5La0.86(MoO4)4: 0.07Sm3+,
0.07Gd3+ demonstrates a high quantum efficiency of 74.63%, a low color temperature (1753 K), and
a high color purity of up to 99.97%. It is worth noting that all the phosphors have a good thermal
stability, even a zero quenching phenomenon occurs, attributed to the electron traps confirmed by
the TL spectrum.

Keywords: K5La1-x(MoO4)4: xSm3+; Ln3+ ions co-doping; zero-thermal-quenching; quantum
efficiency

1. Introduction

Compared with traditional lighting methods, the new generation of LED lighting
has a relatively longer life expectancy, produces less heat and consumes less energy with
adjustable colors [1–4]. On the whole, it is in line with the current pursuit of low-carbon
environmental protection and sustainable scientific development goals [5,6].

At present, using GaInN chips to excite YAG: Ce3+ phosphors is still the most com-
monly seen solution of commercial lighting [7,8]. However, this scheme has some existing
problems, such as high color temperature (CCT), low color rendering index (Ra) and blue-
light hazards to the eyes [3]. Therefore, as one way to improve the color rendering ability
of white LED, it is of practical significance to develop high-performance red phosphors or
seek new excitation resource.

For now, the commercial red phosphor is mainly Y2O3: Eu3+. However, due to its
poor thermal stability [9] and invalidity to be excited by near-ultraviolet light [10], new red
phosphors doped with Mn4+, Eu3+, Sm3+ and Pr3+ have been extensively explored, such
as BaLaMgTaO6: Mn4+ [11], BaMoO4: Eu3+ [12], LiCaGd(WO4)3: Eu3+ [13], Ca2LiScB4O10:
Sm3+ [14], Ca3Y(AlO)3(BO3)4: Sm3+ [15], CsMgPO4: Sm3+ [16], Sr3Ga2Sn1.5Si2.5O14:
Sm3+ [17], CaTiO3: Pr3+ [18], NaCaTiNbO6: Pr3+ [19].

In a large number of phosphors with different matrix, rare earth doped molybdate has
shown a great application potential in red phosphors for w-LED. For example, La2(MoO4)3:
Eu3+ [20] phosphors have been found to have good red luminescence properties and an
excellent thermal stability; BaY2(MoO4)4: Eu3+ [21] phosphors exhibit a stable red emission
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with high quantum efficiency; K5La(MoO4)4: Eu3+ [22] phosphors show a high quantum
efficiency and potential applications in fingerprint detection. In addition, studies have
indicated that the phosphors could present excellent luminescent properties by using non-
luminescent centers such as La, Y, and Gd, which have the same valence state and similar
ionic radius as the matrix component or co-doped ions [23–25]. However, although previous
studies have obtained some excellent phosphors, their comprehensive performance is still
not good enough, and at the same time, the current theoretical study on the thermal stability
of phosphors is not deep enough. It is still of practical significance to prepare excellent red
phosphors with high luminous intensity, good thermal stability, high quantum efficiency
and high color purity and to enrich their theoretical analysis.

In this work, a series of K5La1-x(MoO4)4: xSm3+ and K5La0.86(MoO4)4: 0.07Sm3+,
0.07Ln3+ (Ln = Sc, Y or Gd) red phosphors were prepared by calcining the mixed raw
powders at 600 ◦C. Meanwhile, the composition and preferable fluorescence properties of
the phosphors, especially for the thermal stability, were analyzed in detail.

2. Experimental
2.1. Preparation of the Targets

Firstly, the raw materials including K2CO3(A.R.), La2O3(4N), MoO3(A.R.), Sm2O3(4N),
Sc2O3(4N), Y2O3(4N) and Gd2O3(4N) were dried and weighed proportionally in accor-
dance with the designed chemical formula of the phosphors: K5La1-x(MoO4)4: xSm3+

(x = 0.005, 0.01, 0.03, 0.05, 0.07, 0.10, 0.20 and 0.40) and K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+

(Ln = Sc, Y and Gd). After mixed thoroughly in an agate mortar for 20 min, the raw powders
were transferred to a corundum crucible and calcined in air at 600 ◦C for 8 h. Finally, the
products were cooled in the furnace and ground to obtain the target samples.

2.2. Characterization of Materials

The X-ray diffraction (XRD) patterns were obtained using Cu-Kα radiation (λ = 1.54056 Å)
on the XRD-6000 (Hitachi Japan, Tokyo, Japan) in the range of 10–70◦ with a scanning
step of 0.02◦. The XRD results were refined by Rietveld method using GASA software
(ver.gasa2full 5455). The microtopography, and the Mapping patterns of the samples were
measured by the scanning electron microscope (SEM, JSM-7500, Tokyo, Japan) equipped
with INCA X-Max50 (Oxford, UK). The excitation and emission spectra of the samples at
different temperature were characterized using Hitachi F-4600 (Chiyoda, Tokyo, Japan) and
its heating accessories (Orient KOJI TAP-02, Tianjing, China). The fluorescence lifetime and
quantum efficiency of the samples were determined by FluoLog-3 (Horiba Scientific, Kyoto,
Japan). The thermoluminescence (TL) spectra of the samples were recorded on TOSL-3DS
(Guangzhou, China).

3. Result and Discussion
3.1. Phase Composition and Morphology

Figure 1a demonstrates the XRD patterns of K5La1-x(MoO4)4: xSm3+ phosphors. As
can be seen, all the locations and relative intensities of diffraction peaks fit well with the
PDF card (#027-1363), and no other obvious secondary phases can be found, indicating that
K5La(MoO4)4-based phosphors are successfully prepared without preferential growth. The
K5La(MoO4)4 crystal belongs to the trigonal system with space group of R3m, where the
La site is surrounded by eight oxygen atoms, forming the [La/K1]O8 octahedral structure
(Figure S1). It is worth noting that since the radius of Sm3+ ion is smaller than that of La3+

ion, the peaks slightly shift to a larger angle with the increase of doping concentration.
Figure 1b shows the refined XRD patterns of K5La0.93(MoO4)4: 0.07Sm3+ phosphors, from
which it can be found the calculation result is in good agreement with the experimental data,
the Rp and Rwp are 9.13% and 7.39%, respectively. The information of atomic occupancy
obtained from the refinement is listed in Table 1.
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Figure 1. The XRD patterns of K5La1-x(MoO4)4: xSm3+ phosphors (a), and the refinement pattern of
K5La0.93(MoO4)4: 0.07Sm3+ phosphors (b).

Table 1. The atomic location parameters of refinement K5La0.93(MoO4)4: 0.07Sm3+.

Label Elem Mult x y z Frac

K1 K + 1 3 0 0 0 0.418
La1 La + 3 3 0 0 0 0.495
Mo1 Mo + 6 6 0 0 0.400674 0.983
K2 K + 1 6 0 0 0.195013 1
O1 O − 2 18 −0.043738 0.043738 0.318691 0.262
O2 O − 2 36 −0.1855 0.1509 0.4173 0.13
O3 O − 2 18 −0.144455 0.144455 0.429581 0.569

Figure 2 presents the SEM microtopography (a) and particle size distribution (b) of
K5La0.93(MoO4)4: 0.07Sm3+ phosphors. According to the results of particle size analysis,
it is observed that the particle sizes of phosphors are mainly distributed in 5–20 µm, and
the average particle size is calculated to be 10.49 µm. It could be seen from the Mapping
patterns in Figure S2 that Sm3+ ions in the phosphors sample are uniformly distributed in
the matrix.
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Figure 2. The SEM microtopography (a) and particle size distribution (b) of K5La0.93(MoO4)4:
0.07Sm3+ phosphors.

3.2. Fluorescence Property

Figure 3a displays the excitation and emission spectra of K5La0.93(MoO4)4: 0.07Sm3+

phosphors. Under the monitoring of 600 nm emission, the sample exhibits multiple excita-
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tion peaks of 343 nm, 359 nm, 373 nm, 401 nm, 436 nm and 472 nm, which correspond to the
6H2/5→4K17/2, 4H7/2, 6P7/2, 4F7/2, 4G9/2, and 4I11/2 transitions of Sm3+ ion respectively.
Under 401 nm excitation, the phosphors exhibit obvious fluorescence emission peaking at
561 nm, 600 nm and 646 nm, attributed to the 4G5/2→6H5/2, 6H7/2 and 6H9/2 transitions of
Sm3+ ion severally. In addition, a weaker emission peak at 705 nm is observed, ascribed to
the 6G2/5→6H11/2 transition of the Sm3+ ions [26,27].
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Figure 3. Excitation (black) and emission (red) spectra of K5La0.93(MoO4)4: 0.07Sm3+ phosphors (a)
and energy levels diagram of Sm3+ ion (b).

Figure 3b shows the schematic diagram of the energy levels of Sm3+ ions. After excited,
the electrons in the ground state absorb energy and transition to the excited state, and then
relax to 4G5/2 through non-radiation (NR). Finally, these electrons transition back to the
ground state, emitting the corresponding wavelength of visible light.

Figure 4 exhibits the emission spectra of K5La1-x(MoO4)4: xSm3+ phosphors, and the
inset presents the variation trend of the emission intensity at 600 nm (4G5/2→6H7/2) with
doping concentrations (x). Obviously, when the doping concentration is relatively small,
the emission intensity of the phosphors is enhanced due to the increase of the luminous
centers, reaching a maximum value at x = 0.07, and then concentration quenching occurs.
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In general, the concentration quenching mainly takes place in three ways: radiation
reabsorption, exchange and multi-dipole interaction [28]. Radiation reabsorption requires
obvious overlap between the excitation spectra and emission spectra of phosphors [29],
which is not observed in Figure 4, thus radiation reabsorption is not considered. The
exchange is a short-range interaction, which plays a role when the critical distance (Rc) of
energy transfer between the two neighboring luminous center ions is shorter than 5 Å [30].
The smaller the critical distance, the less probability of concentration quenching. According
to Blass’s studies [31,32], Rc can be approximately equal to twice the radius of the sphere in
the acting volume:

Rc ≈ 2(3V/4πNx)1/3 (1)

where V is the volume of unit cell, N is the number of replaceable atoms in the unit
cell, and x refers to the critical quenching concentration. According to Formula (1), the
Rc of K5La(MoO4)4 matrix is calculated to be 14.30 Å, much longer than 5 Å. In other
words, exchange does not contribute to the concentration quenching. Therefore, multi-
dipole interaction can be deduced to be responsible for the concentration quenching in
K5La(MoO4)4:Sm3+ phosphors.

Dexter’s research [33,34] indicates that the multi-dipole interaction between the lumi-
nescent centers in phosphors could be described by the following formula:

log (I/x) = A − θ/3logx (2)

where I stands for the emission intensity, x is the concentration of the luminescent centers,
and A is a constant. When θ is equal to 6, 8, 10, it corresponds to dipole-dipole, dipole-
quadrupole and quadrupole-quadrupole interaction separately.

Figure 5 exhibits the relationship between lg(I/x) and lg(x) in the K5La1-x(MoO4)4:
xSm3+ phosphors according to the Formula (2), which is linearly fitted with the slope
(−θ/3) calculated as −1.97, i.e., the θ is equal to 6, indicating the dipole-dipole interaction
plays a role.
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Figure 6 exhibits the curves of lifetime decay for K5La1-x(MoO4)4:xSm3+ phosphors.
Using quadratic exponents to fit the fluorescence lifetime decay curves is a common
analytical method [35,36]:

I(t) = I0 + A1 exp(−t/t1) + A2 exp(−t/t2) (3)
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In which I0 and I(t) are respectively the initial emission intensity and the emission in-
tensity after the decay time t, A1 and A2 are constants, and the t1 and t2 are two attenuation
life factors. Based on this, the average decay life (τ) of the phosphors can be calculated by
the following formula [37] and listed in Figure 6:

τ = (A1t1
2 + A2t2

2)/(A1t1 + A2t2) (4)

On the whole, the fluorescence lifetime of phosphors decreases with the increase of
doping concentration, which might be caused by the interaction or energy transfer between
Sm3+ ions [38,39].

As well known, the luminescence properties of rare earth ions are affected by sur-
rounding crystal field environment. In order to further improve the luminescence prop-
erties of K5La(MoO4)4: Sm3+ phosphors, Ln3+ (Ln = Sc, Y or Gd) ions are co-doped in
K5La0.93(MoO4)4: 0.07Sm3+ phosphors although they do not emit visible light.

As can be seen from Figure S3, the shape and peaking position of XRD patterns do not
change significantly after co-doping with Ln3+ ions although deviation of peaks is observed
to some different degree, which could be due to the radii difference between Ln3+ ions
and La3+ ions, as shown in Table 2, where Dr represents the difference between ions and is
calculated by the following formula:

Dr = |(Rm − Rd)/Rm| × 100% (5)

Table 2. Comparison of radii between Ln3+ ions and La3+ ion.

Cation Radius (Å) (CN = 6) Dr (%)

La3+ 1.032 \
Sm3+ 0.958 7.17
Sc3+ 0.745 27.8
Y3+ 0.900 12.8

Gd3+ 0.938 9.11

In Formula (5), Rm is the radius of La3+ ions and Rd is the radius of different Ln3+

ions. Studies have demonstrated that when Dr is less than 30%, the dopant ions are more
inclined to enter the matrix site in the way of replacement solution [40].
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In terms of microtopography, as shown in Figure S4, the co-doping of Ln3+ ions does
not significantly change the morphology of phosphors. The Mapping results in Figures
S5–S7 further indicate that Ln3+ ions, similar to Sm3+ ions, are uniformly distributed in the
phosphors as dopant.

Figure 7 provides the excitation and emission spectra of Ln3+ co-doping phosphors. It
can be found that the shape and peaking position of excitation and emission spectra have
not changed significantly after co-doping of different Ln3+ ions. However, the emission
intensity of phosphors is improved to a certain extent.
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Figure 7. The excitation (a) and emission (b) spectra of K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+

(Ln = Sc, Y and Gd) phosphors.

Figure 8 shows the change of main emission peaks intensity after Ln3+ ions are co-
doped and exhibits its normalization analysis. It can be seen more directly that all the three
kinds of Ln3+ ions have either large or small enhancement effects on the three emission
peaks intensity. Taking the strongest emission peak of 600 nm as an example, after Sc3+, Y3+

or Gd3+ ions are co-doped, the emission intensity increases to 1.102, 1.055 and 1.387 times
of the original value of K5La0.93(MoO4)4: 0.07Sm3+ respectively. Due to the certain ionic
radius difference between Ln3+ ions and La3+ ions, the cell would produce a certain degree
of contraction, which would enhance the crystal field strength surrounding Sm3+ ions [41].
According to the crystal field theory, the luminescence intensity of rare earth ions would
increase with the increase of the crystal field intensity [25,42,43].
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Figure 8. The effect of Ln3+ ions co-doping on the intensity of emission peaks (a) and the normalized
intensity of main emission peaks (b) after Ln3+ ions co-doping.

According to Table 2, the order of radius difference between Ln3+ ions and La3+ ion
is Dr(Sc3+) > Dr(Y3+) > Dr(Gd3+), so the Sc3+ ions co-doped phosphors should have the
strongest gain effect. However, the results indicate that the gain effect of Ln3+ ions on
phosphors is Gd3+ > Sc3+ > Y3+, which could be explained by the energy transfer between
Gd3+ and Sm3+ ions [44,45].
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Figure 9 is the schematic diagram of the energy transfer between Gd3+ and Sm3+ ions.
Although Sc3+, Y3+ and Gd3+ are all categorized as inert rare earth ions that do not emit
light in the visible region [46–48], unlike empty filled 4f0 for Sc3+ and Y3+ ions, the 4f
electron orbitals of Gd3+(4f7) are half filled, which allows energy transfer through f-f leaps
from Gd3+ ions to luminescent center ions [49,50]. In the case of Gd3+ ions being excited,
electrons transition from the ground state (8S7/2) to the excited state (6Dj), then relax to
the lower energy levels (6IJ, 6Pj) and transfer to the excited states of Sm3+. After further
relax to the 4G5/2 level of Sm3+ ions, the electrons eventually transition back to the ground
state and emit light. In this way, co-doping of Gd3+ ions increases the number of electrons
transitioned from the excited state to the ground state through this energy transfer (ET)
process and enhances the luminescence intensity. In order to describe this energy transfer
in more detail, we characterized the fluorescence lifetime of K5La0.86(MoO4)4: 0.07(Sm3+,
Ln3+) phosphors.
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Figure 9. Energy transfer diagram between Gd3+ and Sm3+ ions.

Figure 10 displays the curves of fluorescence lifetime of K5La0.86(MoO4)4: 0.07Sm3+,
0.07Ln3+ (Ln = Sc, Y and Gd) phosphors. It can be seen that the fluorescence lifetime does
not change significantly after Sc3+ or Y3+ ions are co-doped, while the fluorescence lifetime
of phosphors increases from 1.3971 ms to 1.7027 ms after co-doping of Gd3+ ions. The
increase of fluorescence lifetime confirms the energy transfer of Gd3+ ions to Sm3+ ions to
some extent [51–53].

Figure 11 expresses the emission spectra of K5La0.93(MoO4)4: 0.07Sm3+ (a) and
K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ (b) phosphors, as well as the changes of emission
intensity at different temperature (inset). With the increase of temperature, the emission
intensity of phosphors first shows a certain enhancement and reaches the highest value at
348 K, and then with the further increase of temperature, although the emission intensity of
phosphor gradually decreases, it still keeps at 1.3–1.9 times of the initial emission intensity
at 473 K.

In theory, with the increase of temperature, thermal motion of the molecules becomes
more active, the phonon action is enhanced, and the probability of the excited electrons
returning to the ground state through the form of non-radiative transition increases, eventu-
ally the thermal quenching takes place [54]. However, for K5La0.93(MoO4)4: 0.07Sm3+ and
K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ phosphors, the emission intensity increases instead
of decreasing, showing an abnormal thermal quenching phenomenon, i.e., zero thermal
quenching is found. As a matter of the fact, the thermal stability of a phosphors can be
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expressed by the thermal activation energy Ea, which can be calculated by the Arrhenius
formula below [55]:

ln(I0/I − 1) = lnA − Ea/kT (6)

where I0 and I are the emission intensity at room temperature and T respectively, and k is
the Boltzmann constant.
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Figure 11. Emission spectra at different temperatures of K5La0.93(MoO4)4: 0.07Sm3+ (a) and
K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ (b) phosphors, and the relationship between emission in-
tensity and temperature (insets).

According to the fitting results in Figure 12, the thermal activation energy Ea of
K5La0.93(MoO4)4: 0.07Sm3+ and K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ phosphors is calcu-
lated as 0.28 eV and 0.27 eV respectively.

Taken into account the temperature range (298–473 K) of characterization, the pos-
sibility of phase transition is little, and far fewer studies reported that Sm3+ ions have
thermal coupling energy levels (TCLs) like Dy3+ or Er3+ ions [56,57]. This anomalous ther-
mal quenching phenomenon of the target phosphors might be explained by the electron
traps [58–61].

Figure 13 is a schematic diagram of electron trapping. In general, after excitation, the
electrons transition from the ground state to the excited state through the process of 1©,
then relax to the excited state level with lower energy through 2©, and finally return to the
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ground state via 3© and emit visible light. However, once the electron traps exist in the
phosphors, a part of the excited electrons would be captured by them ( 4©) and cannot get
enough energy to escape. When the temperature is high enough, these electrons would
absorb heat energy and ( 5©) escape from the traps to reach the excited state, and finally
transition back to the ground state via radiation ( 6©). In order to confirm the existence of
electron traps in phosphors, the TL spectrum of phosphors are characterized.
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Figure 13. Schematic diagram of the electronic traps.

Figure 14 is the TL spectrum of the K5La0.93(MoO4)4: 0.07Sm3+ and K5La0.86(MoO4)4:
0.07Sm3+, 0.07Gd3+ phosphors, from which it can be told that the TL spectra have peaks
centered at 405 K and 406 K in the range of 300–500 K, at a heating rate of 1 K/s. The
appearance of TL peak proves the existence of electron traps to some extent. To better
describe the relationship between the electron traps and the TL spectrum, the following
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two formulas could be used to calculate the depth (Etrap) and density (N0) of the electron
traps in the phosphors [35,62]:

Etrap = Tm/500 (7)

N0 =ω × Im/{β × [2.52 + 10.2 × (µg − 0.42)]} (8)
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In the above formulas, Tm is the temperature corresponding to the highest point of
the TL peak, and ω is defined as the shape parameter, ω = τ + δ, in which τ is the low-
temperature half-width, and δ is the high temperature half-width. The symmetry parameter
µg = δ/(τ + δ), β is the heating rate, and Im is the intensity of the TL peak. According to
these formulas, the depth and density of the electron trap in the phosphors are 0.81 eV,
0.812 eV and 2.15 × 106, 2.09 × 106 respectively. The Etrap and N0 of K5La0.93(MoO4)4:
0.07Sm3+ phosphors are slightly larger than that of Gd3+ co-doped phosphors, which is
consistent with the thermal stability they exhibit in the illustrations in Figure 11.

Quantum efficiency is another important index to evaluate the performance of phos-
phors. Figure 15 presents the tested diagram of quantum efficiency of K5La0.86(MoO4)4:
0.07Sm3+, 0.07Gd3+ phosphors. The internal quantum efficiency of phosphors could be
calculated from the ratio of the emission to the absorption peak area of the sample [63,64]:

ηq = (
∫

LS −
∫

LB)/(
∫

EB −
∫

ES) (9)

In Formula (9),
∫

LS and
∫

LB represent the emission spectral area of phosphors and
blank sample respectively, while the

∫
EB and

∫
ES represent the absorption spectral area

of phosphors and blank sample. According to Formula (9), the quantum efficiency of
K5La0.86(MoO4)4: 0.07Sm3+, 0.07Gd3+ phosphors is calculated to be 74.63%.

Color coordinates are an intuitive representation of the luminous color of the
phosphors. Figure 16 displays the color coordinates of the K5La1-x(MoO4)4: xSm3+ and
K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+ (Ln = Sc, Y or Gd) (b) phosphors, while Figures S8
and S9 indicate the actual fluorescence photos of these two series of phosphors under
ultraviolet irradiation, which suggest the color coordinates of the samples are all located in
the orange-red region. Meanwhile, Tables 3 and 4 list the color coordinates (CIE), color tem-
perature (CCT) and color purity of phosphors samples with different doping concentration,
revealing the color temperature of all the phosphors is about 1750–1760 K, and it’s worth
noting that the color purity is as high as 99.97%.
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Figure 16. Color coordinates (CIE) of K5La1-x(MoO4)4: xSm3+ (a) and K5La0.86(MoO4)4: 0.07Sm3+,
0.07Ln3+ (Ln = Sc, Y and Gd) (b) phosphors.

Table 3. The CIE, CCT and color purity of K5La1-x(MoO4)4: xSm3+ phosphors.

Number x CIE (xc, yc) CCT (K) Color Purity (%)

1 0.005 (0.5880, 0.4113) 1764 99.97
2 0.01 (0.5888, 0.4105) 1761 99.97
3 0.03 (0.5895, 0.4098) 1759 99.97
4 0.05 (0.5896, 0.4097) 1759 99.97
5 0.07 (0.5898, 0.4095) 1758 99.97
6 0.10 (0.5899, 0.4094) 1758 99.97
7 0.20 (0.5894, 0.4099) 1759 99.97
8 0.40 (0.5870, 0.4123) 1767 99.97
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Table 4. The CIE, CCT and color purity of K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+ (Ln = Sc, Y or Gd)
phosphors.

Number Dopant CIE (xc, yc) CCT (K) Color Purity (%)

1 0.07Sm3+ (0.5898, 0.4095) 1758 99.97
2 0.07Sm3+ + 0.07Sc3+ (0.5922, 0.4071) 1753 99.97
3 0.07Sm3+ + 0.07Y3+ (0.5919, 0.4074) 1754 99.97
4 0.07Sm3+ + 0.07Gd3+ (0.5924, 0.4069) 1753 99.97

4. Conclusions

In this work, a series of K5La1-x(MoO4)4: xSm3+ and K5La0.86(MoO4)4: 0.07Sm3+,
0.07Ln3+ (Ln = Sc, Y or Gd) red phosphors were synthesized via solid state reaction at
600 ◦C. The excitation and emission spectra of the samples suggest that the phosphors
can be efficiently excited at 401 nm and emit visible light at 561 nm, 600 nm and 646 nm,
which are corresponding to the 4G5/2→6Hj/2 (j = 5, 7 and 9) energy transitions of Sm3+ ion
with the highest intensity at x = 0.07, and the concentration quenching is attributed to the
dipole-dipole interaction. The emission intensity of the phosphors is further improved
by co-doping of Ln3+ (Ln = Sc, Y or Gd) ions in the same amount via the enhanced the
crystal field strength surrounding Sm3+ ions, among which Gd3+ ions exhibit the best gain
effect due to their energy transfer to Sm3+ ions, and the emission intensity is increased by
1.3–1.4 times. It is interesting that K5La1-x(MoO4)4: xSm3+ and K5La0.86(MoO4)4: 0.07Sm3+,
0.07Ln3+ phosphors have excellent thermal stability, even an abnormal thermal quenching
phenomenon, i.e., a zero thermal quenching appears. At 473 K, the emission intensity of
K5La0.86(MoO4)4:0.07Sm3+, 0.07Gd3+ phosphor is still 1.3–1.8 times that at room tempera-
ture, which can be attributed to the electron traps in the phosphors. It is worth mentioning
that under 401 nm excitation, the quantum efficiency of the sample is 74.63%. At the same
time, the color temperature of the phosphors is 1500–1600 K; and the color purity is as
high as 99.97%. These results imply that this red phosphor has potential application in the
LED field.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11100406/s1, Figure S1: Schematic diagram of K5La(MoO4)4
crystal structure from different views (a) normal, (b) a axis, (c) b axis, (a) c axis; Figure S2: The
Mapping patterns of K5La0.93(MoO4)4: 0.07Sm3+ sample: entirety (a), Mo (b), K (c), O (d), La (e), Sm
(f); Figure S3: The XRD pattern of K5La0.86(MoO4)4: 0.07(Sm3+, Ln3+) phosphors; Figure S4: The SEM
photos of K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+ (Ln = Sc (a), Y (b) and Gd (c)) phosphors; Figure S5:
The EDS and Mapping patterns of K5La0.86(MoO4)4: 0.07(Sm3+, Sc3+) phosphors (inset a-f): Sm (a),
Mo (b), K (c), O (d), La (e), Sc (e); Figure S6: The EDS and Mapping patterns of K5La0.86(MoO4)4:
0.07(Sm3+, Y3+) phosphors (insets a-f): Sm (a), Mo (b), K (c), O (d), La (e), Y (e); Figure S7: The EDS
and Mapping patterns of K5La0.86(MoO4)4: 0.07(Sm3+, Gd3+) phosphors (insets a-f): Sm (a), Mo (b),
K (c), O (d), La (e), Gd (e); Figure S8: Actual fluorescence photos of K5La1-x(MoO4)4: xSm3+, x= 0.005
(a), 0.01 (b), 0.03 (c), 0.05 (d), 0.07 (e), 0.10 (f), 0.20 (g) and 0.40 (h); Figure S9: Actual fluorescence
photos of K5La0.86(MoO4)4: 0.07Sm3+, 0.07Ln3+ (Ln = Sc, Y and Gd) phosphors: Sm (a), Sm+Sc (b),
Sm+Y (c) and Sm+Gd (d).
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