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Abstract: Coordination compounds of copper exhibit cytotoxic activity and are suitable for the search
for novel drug candidates for cancer treatment. In this work, we synthesized three copper(II) carboxy-
late complexes, [Cu2(3-(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O (C1), [Cu2(phenylpropanoate)

4(H2O)2] (C2) and [Cu2(phenylacetate)4] (C3), and characterized them by elemental analysis and
spectroscopic methods. Single-crystal X-ray diffraction of C1 showed the dinuclear paddle-wheel
arrangement typical of Cu–carboxylate complexes in the crystal structure. In an aqueous solution, the
complexes remain as dimeric units, as studied by UV-visible spectroscopy. The lipophilicity (partition
coefficient) and the DNA binding (UV visible and viscosity) studies evidence that the complexes
bind the DNA with low Kb constants. In vitro cytotoxicity studies on human cancer cell lines of
metastatic breast adenocarcinoma (MDA-MB-231, MCF-7), lung epithelial carcinoma (A549) and
cisplatin-resistant ovarian carcinoma (A2780cis), as well as a nontumoral lung cell line (MRC-5),
indicate that the complexes are cytotoxic in cisplatin-resistant cells.

Keywords: copper complexes; phenyl-carboxylate; DNA interaction; cytotoxic activity

1. Introduction

Metal-based drugs play an important role in cancer treatment. Cisplatin and its
congeners (carboplatin, oxalylplatin, heptaplatin and picoplatin) are successfully used
against various cancer types, being curative in several cases [1]. Despite this, there is still a
lack of effective treatment for all types of cancer. Furthermore, despite offering a variety
of compounds and mechanisms of action, the development of new potential anticancer
metallopharmaceuticals remains mainly academic, possibly due to the complexity of metal-
coordination compounds’ reactivity [2].

Copper-coordination compounds are an attractive class of compounds for the de-
velopment of novel cancer treatments [2–5]. Different copper complexes with antitumor
activity have been synthesized and characterized, with promising results, even presenting
antimetastatic and antiangiogenic activities (in vitro assays) or being cytotoxic to cancer
stem cells [3,4,6–13]. Cu(II) complexes of ligands with no appreciable cytotoxic activity are
active, indicating that the metal itself plays a role in antitumor activity.
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The mechanism of action of copper compounds may include various molecular pro-
cesses, which have not been thoroughly characterized [3,4,13]. The lack of specificity
against a single molecular target strengthens copper complexes’ ability to fight a diverse
cell population, such as those found in a tumor. DNA binding and producing reactive
oxygen species (ROS), inducing redox stress, are commonly proposed as molecular events
for most anticancer copper compounds [2,4,14–16].

As a part of our research of copper complexes with cytotoxic activity [17–25], we
search for simple molecules, especially those already tested for their biological use, that
can act as anion ligands. Phenylacetic acid is a compound used to treat high nitrogen
levels in hepatic patients and, therefore, meets the safety regulations to be used as a
drug [26]. In this work, we explored the chemical properties and cytotoxicity of copper com-
plexes with phenylacetic acid, as well as two related compounds, phenylpropanoate and
3-(4-hydroxyphenyl)propanoate, in order to prepare complexes with varying lipophilicity
and possibly other differences in chemical behavior.

The complexes were studied both in the solid state and aqueous solution, including
a new crystal structure. The binding of the complexes to the DNA molecule was inves-
tigated. The cytotoxicity of the complexes was evaluated against MDA-MB-231, MCF-7
(human metastatic breast adenocarcinomas, the first triple negative), A549 (human lung
epithelial carcinoma), A2780cis (cisplatin-resistant human ovarian carcinoma, SIGMA)
and MRC-5 (human nontumoral lung epithelial cells), finding an interesting activity on
cisplatin-resistant A2780cis cells.

2. Results

As described in the experimental section, three complexes were synthesized: [Cu2(3-
(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O (C1); [Cu2(phenylpropanoate)4(H2O)2] (C2);
and [Cu2(phenylacetate)4] (C3).

2.1. Crystal Structures

The obtained complexes were recrystallized from water by slow evaporation at room
temperature. Single crystals suitable for X-ray diffraction analysis were obtained only for
C1, a new compound, and C3, which had two previously reported [27,28]. The most rele-
vant structural features are described in this section. Table 1 summarizes crystallographic
data and refinement details. A scheme of the complexes and the ligands is included in the
supplementary material (Figure S1).

Table 1. Crystallographic data and refinement details for C1 and C3.

Complex C1 C3

Formula C36H44Cu2O16 C16H14CuO4
Dcalc./g cm−3 1.594 1.618

µ/mm−1 2.130 2.374
Formula Weight 859.832 333.81

Color Blue Blue
Shape Prism Plate

Size/mm3 0.15 × 0.10 × 0.10 0.30 × 0.15 × 0.08
Crystal System Triclinic monoclinic
Space Group P1 P21/c

a/Å 8.6810(2) 5.17356(6)
b/Å 10.6746(3) 26.2143(3)
c/Å 11.3849(3) 10.20173(12)
α/◦ 66.930(3) 90
β/◦ 70.661(2) 97.8378(11)
γ/◦ 71.814(2) 90

V/Å3 895.43(5) 1370.64(3)
Z 1 4
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Table 1. Cont.

Complex C1 C3

Θmin/◦ 4.347 3.372
Θmax/◦ 80.066 79.397

Measured Refl. 15,912 13,429
Independent Refl. 3875 2965

Reflections with I > 2σ(I) 3820 2743
Rint 0.0193 0.0451

Parameters 251 191
Restraints 0 0

Largest Peak 0.622 0.476
Deepest Hole −0.737 −0.597

GooF 1.040 1.027
wR2 (all data) 0.0708 0.0855

wR2 0.0706 0.0835
R1 (all data) 0.0278 0.0349

R1 0.0275 0.0325
CCDC deposition number 2,288,430 2,288,436

2.1.1. [Cu2(3-(4-Hydroxyphenyl)propanoate)4(H2O)2]·2H2O

[Cu2(3-(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O, C1, crystallizes in the triclinic
space group P1 with one molecular formula per unit cell. Figure 1 presents both the
asymmetric and cell unit of the structure, whereas Table 2 indicates bond lengths (Å) and
angles (◦) surrounding the coordination center. The copper ion presents a pentacoordi-
nated environment where the equatorial donors are four carboxylate O atoms from four
different ligands, and the apical position is occupied by an O atom from a water molecule.
The carboxylate group acts as a bridging bidentate ligand, connecting the two copper(II)
centers in the dimeric molecule. Figure 1b presents the molecular moiety where the
dimeric paddle-well arrangement typical of dimeric Cu–carboxylate complexes can be
observed. This motif is observed on several Cu(II) compounds with ligands containing
carboxylate groups, such as acetate [29,30], propionate [31], dinitrobenzoates [32] and
N-acetylglycinato [33], among others.
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is omitted for clarity. Atom color code: Cu (orange), C (gray), O (red) and H (white). 

Figure 1. ORTEP representation at 50% probability of (a) the asymmetric unit and (b) molecular
moiety of [Cu2(3-(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O (C1). The hydration water molecule
is omitted for clarity. Atom color code: Cu (orange), C (gray), O (red) and H (white).
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Table 2. Selected bond lengths (Å) and angles (◦) for C1.

Bond Lengths (Å) Angles (◦)

Cu1-Cu2 2.6075(4) O1-Cu1-O4 90.98(5)
Cu1-O4 1.9649(11) O5′-Cu1-O4 169.16(4)
Cu1-O1 1.9604(10) O5′-Cu1-O1 88.48(4)
Cu1-O5′ 1.9751(10) O2′-Cu1-O4 91.39(5)
Cu1-O2′ 1.9628(11) O2′-Cu1-O1 168.36(5)

O5′-Cu1-O2′ 87.05(5)

A crystallographic database search in the CSD [34] v2022.3.0, conducted using Con-
quest [35], found 786 related structures, which were analyzed in Mercury [36]. The bridging
bidentate mode of coordination of the carboxylate group determines Cu···Cu distances in
this dinuclear paddle-wheel type complexes. The distances in the analyzed structures range
from 2.58 to 2.68 Å, including the 2.608 Å distance observed in C1. Other structures con-
taining a 2.608 Å Cu···Cu distance include structures with acetate [37], propionate [31,38],
benzoate [39,40] and paranitrobenzoate [41] as ligands.

The crystal packing is sustained primarily by strong classical H-bond interactions [42]
involving the hydroxyl and carboxylate groups in the ligand and the coordinated and lattice
water molecules. Each hydroxyl group acts as an H-bond acceptor with a coordinated
water molecule in a contiguous complex molecule (H···O distance of 1.898 Å, O-H-O angle
172.4◦) and donor with a lattice water molecule (H···O distance of 1.903 Å, O-H-O angle
172.5◦). The lattice water molecule also acts as an H-bond donor to a carboxylate O atom
with an H···O distance of 2.028 Å and an O-H-O angle of 153.0◦. Nonclassical H-bonds are
also observed in the C-H···π interactions between phenyl rings of ligands in contiguous
molecules with a centroid to H distance of 2.658 Å and the angle between the phenyl rings
of 47.45◦.

2.1.2. [Cu2(Phenylacetate)4]·2H2O and [Cu2(Phenylpropanoate)4(H2O)2]

The crystal structure of Cu2(phenylacetate)4]·2H2O, C3, has been previously reported
at 150 [27] and 298 [28] K. There are only slight differences in the cells’ axis lengths and
angles for these structures. We run the structure comparison tool available at the Bilbao
Crystallographic Server [43] to compare the structure at 100 K reported in this article with
the one obtained at room temperature, which presented the higher differences, finding
a degree of lattice distortion of 0.0055 with a maximum difference of atomic positions
of 0.1370 Å. C3 also exhibits a paddle-wheel coordination motif with the carboxylate
group in a bis-chelate fashion. In the case of C1, each carboxylate O atom coordinates
to one copper(II) center. Meanwhile, in C3, an O atom from the carboxylate group can
be connected to one or two copper(II) centers. This coordination motif gives rise to the
formation of a 1D chain along the a axis.

In C3, the Cu···Cu distance is 2.5787(5) Å, also contained in the expected range.
The same intermetal distance was observed in the structures with hexanoate [44], ben-
zoate [45,46] and 2,3-dihydro-1,4-benzodioxine-6-carboxylate [47]. C-H···π interactions can
be observed between phenyl rings of ligands within the paddle wheel on the 1D chain
contiguous molecules with a centroid to H distance of 3.062 Å and an angle between the
phenyl rings of 71.00◦. The infinite chains are sustained with each other through disper-
sive interactions involving the phenyl groups. No obvious hydrogen bonds or π-stacking
interactions can be observed in the structure.

The structure of [Cu2(phenylpropanoate)4(H2O)2], C2, was also previously deter-
mined, showing a coordination scheme similar to that of C3 [48]. In spite of that, according
to the molecular formula found, it is possible that, in the compound prepared by us, the
structure is similar to that of C1.
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2.2. Infrared Spectra

The studied ternary complexes present similar infrared spectra. Table 3 presents
a tentative assignment of the bands related to coordinating groups. In particular, the
values of the ∆ν (calculated as ν(COO)as-ν(COO)s) for C1 = 157 cm−1, C2 = 157 cm−1 and
C3 = 176 cm−1 agree with a bidentate coordination of the carboxylate [49], as observed
in the crystal structures of C1 and C3. The spectra of the complexes and the ligands are
included in the supplementary material (Figures S2–S7).

Table 3. Wavenumber (cm−1) of common bands in the complexes, and their tentative assignment.

Compound ν(O-H) ν(C=O) + ν(COO)as ν(COO)s ν(Cu-O)

[Cu2(3-(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O 3330 sh 1582 s, 1516 w 1425 m 532 w
[Cu2(phenylpropanoate)4(H2O)2] 3500–3200 sh 1588 s, 1516 w 1431 m 480 w

[Cu2(phenylacetate)4] 3500–3200 sh 1594 s, 1514 s 1438 m 532 w

2.3. Solution Studies
Major Species in Solution Characterization Using UV-Visible Spectra and Lipophilicity

The visible spectra of the complexes show an absorption band at around 710 nm
(DMSO solution), as presented in Table 4, which, if compared with the wavelength of the
maxima calculated according to the empiric correlation of Prenesti et al. [50,51], agrees with
an equatorial coordination by four carboxylate oxygen atoms (calculated λmax 708 nm),
as observed in the solid state. In relation to the dimeric structure, the occurrence of a
band between 350 and 400 nm has been related to this species’ existence in solution [52].
This band is present in the complexes’ UV spectra but not in the ligand spectra. According
to this analysis, in a DMSO solution, the complexes remain as dimers like the solid-state
form of C1. The complexes are not soluble in H2O, but, as an approach to studying their
behavior in this solvent, spectra were also registered in a DMSO:water mixture (80:20),
Table 4 presents the obtained results. The λmax shifts slightly, and the shape of the spectra-
changed difference was accounted for by n (n = ε850/εmax × 100), which is higher in an
aqueous solution, suggesting a different degree of distortion of the coordination geometry
depending on the solvent [53], as previously observed with other Cu complexes.

Table 4. Maximum absorption wavelength (λmax, nm), molar absorptivity (ε, M−1cm−1) and n
(ε850/εmax × 100) of the spectra in DMSO and DMSO:H2O (80:20) and partition coefficients (P)
between n-octanol and physiologic solution.

Compound λmax/ε * n * λmax/ε ** n ** P

[Cu2(3-(4-hydroxyphenyl)propanoate)4(H2O)2]·2H2O 710/388 43 726/134 65 0.10

[Cu2(phenylpropanoate)4(H2O)2] 715/313 44 713/288 73 0.24

[Cu2(phenylacetate)4] 711/404 48 736/150 72 0.47

* DMSO, ** DMSO:H2O (80:20), ε calculated per Cu mole.

The lipophilicity of the complexes is similar, with the hydroxyl group of C1 giving rise
to a slightly more hydrophilic compound, as expected.

2.4. Complex–DNA Binding Studies
2.4.1. Kb Determination (UV-Visible Spectra)

The intrinsic binding constants of the complexes to the DNA (Kb) were determined via
UV-visible titration (Figure 2 and supplementary material Figures S8 and S9). Their values
are presented in Table 5. The ligands produce nonappreciable DNA binding as studied via
this technique.
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Table 5. DNA binding constants (Kb), as determined by the Benesi–Hildebrand method.

Compound C1 C2 C3 L1 L2 L3

Kb (M-1) 5.2 × 102 2.0 × 102 8.7 × 102 ND * ND * ND *
* Not Determined.

The observed values of Kb are relatively low if compared with other Cu-carboxylate com-
plexes. For instance, compounds [Cu2(nitrofenilacetate)4)(H2O)2] and [Cu2(fenilbutanoate)4]n
present Kb values in the 103–104 range [54,55]. In particular, the binding of C3 on salmon sperm
DNA was already reported and determined by the same methodology, with Kb = 1.4× 104 M–1

nm on the used DNA being suggestive of intercalation in addition to binding by the grooves [27].

2.4.2. Mode of Binding (Relative Viscosity)

Relative viscosity is a highly sensitive method to detect changes in the overall length of
the DNA caused by the interaction of small molecules [49]. Figure 3 presents the effect of the
increasing concentration of the complexes on the relative viscosity of CT-DNA. Free ligands induce
no appreciable change in DNA’s relative viscosity, as detected by this technique. The complexes
induce a slight relative viscosity decrease at the studied ratios. This suggests that the binding
provokes bends in the DNA helix [56]. A small slope is observed, in agreement with the low Kb
of the complexes, evidencing that the binding event is relatively minor compared to other Cu
complexes and induces only small changes in DNA conformation.
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2.5. Cytotoxicity of the Compounds

The cytotoxicity of the complexes and free ligands was evaluated on four tumor and
one nontumor cell lines; Table 6 presents the results expressed by IC50. The ligands L1–L3
present no detectable cytotoxicity up to 100 µM.

Table 6. Cytotoxic activity (expressed by IC50) of the studied complexes after 48 h of incubation,
against MCF-7, MDA-MB-231 (human metastatic breast adenocarcinomas, the latter triple negative),
A549 (human lung epithelial carcinoma), A278cis (human ovarian cisplatin-resistant) and MRC-5
(lung nontumoral) cell lines.

Cytotoxicity, IC50 (µM)

Compound MCF-7 MDA-MB-231 A549 A278cis MRC-5

C1 >50 >50 >50 26.80 ± 4.50 >50

C2 20.20 ± 0.78 >50 >50 13.50 ± 0.57 >50

C3 >50 >50 >50 7.85 ± 0.86 >50

Cisplatin 8.91 ± 2.60 24.90 ± 3.40 14.40 ± 1.40 26.90 ± 0.60 29.09 ± 0.78

The complexes induce low cytotoxicity to four of the studied lines but are cyto-
toxic to the A278cis cell line and resistant to cisplatin, therefore showing no cross resis-
tance. This activity can be classified as moderate compared to other Cu complexes [3].
There seems to be a correlation between the IC50 and lipophilicity (P). Both C2 and C3
are more cytotoxic than cisplatin on A278cis cells and are less toxic than cisplatin to the
nontumor cell MRC-5, making both complexes C2 and C3 interesting complexes for further
study of their activities on other tumor cells, especially those resistant to cisplatin.

3. Discussion

The compounds presented in this work are dimeric complexes in the solid state, with
C3 further extending into a polymeric structure. In a DMSO solution, the dimeric structure
seems to be preserved. In the conditions of the biological assays, coordination may be
altered, possibly including, in addition to carboxylate, other ligands such as residues from
albumin. The biological activity of the compounds is different when compared with the
free ligands, suggesting also that the ligands remain coordinated in the major species in
these conditions.

The complexes bind the DNA with low Kb compared to other Cu complexes; therefore,
this seems not to be part of the mechanism of the cytotoxicity of the complexes.

This work aimed to find new complexes with interesting cytotoxic activity, particularly
with ligands that present no appreciable toxicity. The complexes were active only in one of
the studied tumor cells, a cell line that is resistant to cisplatin. This opens an opportunity to
further explore the activity of C2 and C3 on other tumor cell lines. To date, there are few
Cu(II) complexes that have ligands with low toxicity and are cytotoxic to tumor cells.

4. Materials and Methods
4.1. Synthetic Procedures

All reagents were used as commercially available: copper(II) carbonate and copper(II)
chloride (Fluka, SIGMA-Aldrich, St. Louis, MI, USA), carboxylic ligands (SIGMA-Aldrich,
St. Louis, MI, USA) and calf thymus DNA (CT-DNA, SIGMA-Aldrich, St. Louis, MI, USA).

[Cu2(phenylcarboxylate)4] Complexes

An ethanolic solution of phenylcarboxylate (0,23 mmol, 5 mL) was added under constant stir-
ring at room temperature to an aqueous solution of copper(II) chloride
(0,23 mmol, 5 mL). The solution turned green instantly. It was allowed to slowly evaporate
giving rise to green prismatic single crystals adequate for X-ray diffraction studies. [Cu2(3-(4-
hydroxyphenyl)propanoate)4(H2O)2]·2H2O (C1) Calc. for C36H44Cu2O12/Found: %C: 50.29/
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50.15 %H: 5.16/5.45; [Cu2(phenylpropanoate)4(H2O)2] (C2) Calc. for C36H40Cu2O10/Found:
%C: 56.90/56.80 %H: 5.31/5.39; [Cu2(phenylacetate)4] (C3) Calc. for C32H28Cu2O8/Found: %C:
57.57/57.67 %H: 4.23/4.57.

4.2. Physical Methods
4.2.1. Characterization—General

Elemental analyses (C, N and H) of the samples were carried out on a Thermo Flash
2000 elemental analyzer (Thermo Fisher Scientific, USA). Infrared spectra were measured
on a Shimadzu IR Prestige 21 (Shimadzu, Kyoto, Japan, 4000 to 400 cm−1) as 1% KBr
disks with a 4 cm−1 resolution. UV-visible spectra of 5 mM solutions in DMSO or DMSO
H2O (80:20) of the complexes were recorded on a ShimadzuUV1900 spectrophotometer
(Shimadzu, Kyoto, Japan) in 1 cm path-length quartz cells.

4.2.2. Crystal Structure Determination

Suitable single crystals of C1 and C3 were obtained from recrystallization from DMSO
aqueous solution slow evaporation. Samples were mounted, and their diffraction patterns
were measured on a Rigaku XtaLAB Synergy-S diffractometer (Rigaku, USA) equipped
with an Oxford Cryosystems Cryostream 800 PLUS. The crystals were kept at a steady
T = 100(2) K during data collection with a PhotonJet (CuKα = 1.54184 Å) X-ray Source.
CrysAlisPro v 42.84a software (Rigaku) was used to evaluate the collection strategy, data
reduction and scaling, as well as absorption correction. The structure was solved using
direct methods with ShelXt [57] and refined using the atoms in the molecules model
with ShelXL-2019/2 [58] using least squares minimization on F2. Both ShelXt and ShelXL
were used within Olex2 [59]. Hydrogen atoms were geometrically positioned and refined
isotopically with the riding model. Molecular graphics were prepared using Mercury [36].

The nonhydrogen atoms were refined anisotropically. Then, all hydrogen atoms
were located from electron-density difference maps and were positioned geometrically
and refined using the riding model [Uiso(H) = 1.2 Ueq or 1.5 Ueq]. The Olex2 was also
used for analysis and visualization of the structures and for graphic material preparation.
Table 1 summarizes the X-ray diffraction data and refinement parameters obtained for
the elucidated crystal structures. The CIF files of complexes C1 and C3 were deposited in
the Cambridge Structural Data Base under the CCDC numbers 2,288,430 and 2,288,436,
respectively. Copies of the data can be obtained, free of charge, via www.ccdc.cam.ac.uk.

4.3. Lipophility Assessment

Lipophilicity was studied by determining the partition coefficient of the complexes
in n-octanol/physiological solution (0.9% NaCl in water). To 1 mL of n-octanol 0.2 mM
solution of the complex, 1 mL of physiological solution was added. It was shaken for 1 h.
Afterward, the samples were centrifugated, and the phases separated. UV-vis spectra were
used to determine the concentration of the complex in each phase. The partition coefficient,
P, was calculated as C n-octanol/Cwater.

4.4. DNA Interaction

A stock solution of Calf Thymus DNA (CT-DNA, 5 mg in 5 mL H2O) was prepared by
stirring overnight, stored at 4 ◦C and used within 3 days. Its concentration was determined
spectroscopically at 260 nm (ε260 = 6600 M−1cm−1/base pair). The solution was free of
protein, as determined by the A260/A280 ratio, which varied in the 1.8–1.9 range.

4.4.1. DNA Binding Constant: UV Absorption Titration Experiments

The DNA intrinsic binding constant (Kb) was determined by UV absorption measure-
ments using the Benesi–Hildebrand model [60,61]. Solutions of the complexes 5 mM, in
buffer Tris/HCl pH = 7.5 and 50 mM in NaCl were used, and their concentration was kept
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constant at 10–15 µM while adding CT-DNA to obtain concentrations in the 0–250 µM in
the base pairs range. The Benesi–Hildebrand model can be described by the equation:

1/(εa − εf) = 1/(εb − εf) + 1/Kb[DNA] (εb − εf) (1)

where [DNA] is the concentration of DNA, εa are the apparent absorption coefficients,
εf and εb are the extinction coefficient for the free copper(II) complex and the extinction
coefficient for the copper(II) complex in the fully bound form, respectively. In Equation (1),
1/(εa − εf) is equivalent to Aobserved/[Cu]. Therefore, according to this model, the Kb
value equals the slope to the intercept ratio of the plot [complex]/Aobserved as a function
of 1/[DNA].

4.4.2. DNA Binding Mode: Variation of Viscosity Experiments

Viscosity measurements were performed in an Ostwald-type viscosimeter (SIGMA-
Aldrich, St. Louis, MI, USA) maintained at a temperature of 25.0 ± 0.1 ◦C in a thermostatic
bath. Solutions of CT-DNA (150 µM base pairs) and complexes were prepared separately
in Tris-HCl (5 mM, pH = 7.2, 50 mM NaCl) and thermostatized at 25 ◦C. Complex−DNA
solutions (4 mL) were prepared just prior to running each experiment at different molar
ratios ([complex]/[CT-DNA] = 0.125, 0.250, 0.375, 0.500, 0.625 and 0.750 (equivalent to
[DNA]/[complex] ratio contained values of 8, 4, 2.7, 2 and 1.3). Solutions were equilibrated
for 15 min at 25 ◦C, and, then, 5 flow times were registered. The relative viscosity of DNA
in the absence (η0) and presence (η) of complexes was calculated as (η/η0) = t − t0/tDNA
− t0, where t0 and tDNA are the flow times of the buffer and DNA solution, respectively,
and t is the flow time of the DNA solution in the presence of copper complexes. Data are
presented as a plot of (η/η0)1/3 versus the ratio of [complex]/[DNA [62].

4.5. Cytotoxicity Studies

The cytotoxicity of the complexes was evaluated on human cancer cell lines: metastatic
breast adenocarcinoma MDA-MB-231 (triple negative, ATCC: HTB-26), MCF-7
(ATCC: HTB-22), cisplatin-resistant ovarian carcinoma A2780cis (SIGMA), lung epithelial
carcinoma A549 (ATCC: CCL-185) and on the nontumoral lung cell line MRC-5 (ATCC:
CCL-171) using the MTT colorimetric assay. Cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) for MDA-MB-231, A549 and MRC-5, supplemented with 10%
fetal bovine serum (FBS), Roswell Park Memorial Institute (RPMI) 1640 Medium for MCF-7
and A278cis, supplemented with 10% FBS, containing 1% penicillin and 1% streptomycin,
at 310 K in a humidified 5% CO2 atmosphere. In the assay, 1.5× 104 cells/well were seeded
in 150 µL of medium in 96-well plates and incubated at 310 K in 5% CO2 for 24 h, to allow
cell adhesion. Then cells were treated with copper complexes for 48 h. Cu complexes
were dissolved in DMSO, and 0.75 µL of solution were added to each well with 150 µL
of medium (final concentration of 0.5% DMSO/well). Cisplatin, used as a reference drug,
was solubilized in DMF. Afterward, to detect cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, 50 µL, 1 mg mL−1 in PBS) was added to each well,
and the plate was further incubated for 4 h. Living cells reduce MTT to purple formazan.
The formazan crystals were solubilized with isopropanol (150 µL/well), and each well was
measured with a microplate spectrophotometer at a wavelength of 540 nm. The concen-
tration to 50% (IC50) of cell viability (Table) was obtained from the analysis of absorbance
data from three independent experiments.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics11100398/s1, Figure S1: Scheme of complexes.
Figures S2–S7: Infrared spectra of complexes C1–C3 and ligands L1–L3; Figures S8 and S9: UV
spectra of C2 (S7) and C3 (S8) with increasing amounts of DNA. Inset: [complex]/Aobs as a function
of 1/[DNA] plot with regression parameters.
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